
Citation: Stanojević, V.; Kazakovtsev,

L.; Stanimirović, P.S.; Rezova, N.;

Shkaberina, G. Calculating the

Moore–Penrose Generalized Inverse

on Massively Parallel Systems.

Algorithms 2022, 15, 348.

https://doi.org/10.3390/a15100348

Academic Editor: Serge Gaspers

Received: 30 August 2022

Accepted: 19 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Calculating the Moore–Penrose Generalized Inverse on
Massively Parallel Systems
Vukašin Stanojević 1 , Lev Kazakovtsev 2,3,* , Predrag S. Stanimirović 1,2 , Natalya Rezova 3

and Guzel Shkaberina 2,3

1 Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
2 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal

University, Krasnoyarsk 660041, Russia
3 Institute of Informatics and Telecomunications, Reshetnev Siberian State University of Science and

Technology, Krasnoyarsk 660014, Russia
* Correspondence: levk@bk.ru

Abstract: In this work, we consider the problem of calculating the generalized Moore–Penrose in-
verse, which is essential in many applications of graph theory. We propose an algorithm for the
massively parallel systems based on the recursive algorithm for the generalized Moore–Penrose
inverse, the generalized Cholesky factorization, and Strassen’s matrix inversion algorithm. Com-
putational experiments with our new algorithm based on a parallel computing architecture known
as the Compute Unified Device Architecture (CUDA) on a graphic processing unit (GPU) show the
significant advantages of using GPU for large matrices (with millions of elements) in comparison
with the CPU implementation from the OpenCV library (Intel, Santa Clara, CA, USA).

Keywords: Moore–Penrose generalized inverse; generalized Cholesky factorization; Strassen’s matrix
inversion; GPU; CUDA

1. Introduction

The generalized inverses of a matrix are defined as generalizations to the matrix
inverse, so a matrix can have a generalized inverse even if the matrix is not regular or
square. For nonsingular matrices, the generalized inverse coincides with its ordinary
inverse. In this paper, we consider the Moore–Penrose generalized matrix inverse (or the
pseudoinverse), which is the oldest type of generalized matrix inverses [1]. Pseudoinverse
exists for arbitrary matrices, and one of its most important applications is finding the least
square solution to the overdetermined systems of linear equations [2–5].

The generalized Moore–Penrose inverse finds multiple applications in graph theory.
In [6], the authors proved an equation that relates the Moore–Penrose pseudoinverses of
two matrices A, B such that A = N−1BM−1 and applied it to the Moore–Penrose inverse
representation of the normalized Laplacian of a graph. In [7], the authors considered
the Moore–Penrose inverse of an oriented graph incidence matrix. In [8], the same au-
thors presented a combinatorial interpretation of the Moore–Penrose inverse problem for
complete multipartite and bi-block graphs. In [9], the authors provided a combinatorial
interpretation of the Moore–Penrose inverse of the graph incidence matrix, where blocks
are either cliques or cycles, and they described the minors of the Moore–Penrose inverse of
the incidence matrix, with the rows indexed by cut edges. In [10], the authors considered
the Moore–Penrose inverses of the signless Laplacian and signless edge-Laplacian of a
graph and proposed combinatorial formulas of the Moore–Penrose inverses for trees and
odd unicyclic graphs.

In addition to the above, the pseudoinverse matrix finds application in many other
areas. In [11], the authors considered two security issues for smart devices such as

Algorithms 2022, 15, 348. https://doi.org/10.3390/a15100348 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5439-1057
https://orcid.org/0000-0002-0667-4001
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0001-8257-7329
https://doi.org/10.3390/a15100348
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100348?type=check_update&version=1


Algorithms 2022, 15, 348 2 of 16

smartphones, tablets, etc., namely changing a shared key between two users and privacy-
preserving auditing in cloud storage. Their solution is a one-way method of linear complex-
ity based on the matrix pseudoinverse. Fast computation enables us to apply this method
to devices with limited computational capacity. An interesting approach is the application
of pseudoinverse and projective matrices in the areas of studying control, observation,
and identification problems [12]. The method of the pseudoinverse perturbation, based
on matrix splitting, is extended to projective matrices for application in identification,
nonlinear regressive analysis, function approximation, and prediction problems.

Many authors [13,14] proposed various methods for applying the Moore–Penrose
inversion to restore digital images. In [14], the authors introduced a method for the
restoration of images that have been blurred by uniform and nonuniform linear motion.
This method is based on the pseudoinverse solution of the matrix equation modeling
the motion blur. The method directly generates blurring matrices based on their special
structure, without iterative computations, which leads to a decrease in the CPU time,
compared with other methods for the pseudoinverse computation. In [13], the authors
presented a new approach to the problem of image reconstruction with the use of the
Moore–Penrose generalized inverse, which provides a very high-resolution level of the
reconstructed image as well as a considerable decrease in the computational load compared
with the classic techniques.

The calculation of the pseudoinverse matrix is often necessary when solving fore-
casting problems. In [15], a flat neural network was considered for the online prediction
of engine states using a recursive algorithm based on a pseudoinverse partition matrix.
Experimentally, the high accuracy of the developed neural network and its sufficient re-
liability in real-time forecasting are established, which enables us to use this network for
nonlinear systems with multiple inputs and multiple outputs, such as vehicle engines. The
problem of prediction was also considered in [16]. The authors proposed a fault diagnosis
strategy for a ventilation unit that uses a neural network with a radial basis function to
model the causes of faults. As the main ones, the authors chose the Gaussian functions.
The parameters of these functions and the network weights were calculated using a new
network training method that combines a genetic algorithm and a pseudoinverse matrix
algorithm. Algorithm testing showed the successful identification of each artificial fault.

The methods based on pseudoinversion can be used to model the phenomena of
various physical natures. The authors of [17] considered the determination of temperature
and strain in a single-fiber Brillian Optical Pulse Analyzer (BOTDA) system based on the
Moore–Penrose inversion of nonsquare matrices. By comparing the developed method for
one optical band with another reference method for two optical bands, the authors experi-
mentally proved that the method under study is suitable for recovering the temperature
and strain data with sufficient accuracy. In [18], the methods for obtaining brightness and
temperature for synthetic aperture radiometers were considered. The authors proposed
one of the inversion methods for the general equation to use the pseudoinverse matrix
method. The authors of [19] presented an incremental pseudoinverse matrix calculation
method applicable to machine learning and computational neuroscience, which, according
to the authors, is a biologically plausible learning method and can be adapted for nonsta-
tionary data flows. The authors claimed that the presented method is significantly more
memory-efficient than the usual calculation of pseudoinverses through singular value de-
composition. In [20], the algorithms for the formation of control actions in control systems
of dynamic objects were studied. To find a solution, the authors used stable algorithms
based on orthogonal expansions and the pseudoinversion of square matrices, which con-
tribute to an increase in the accuracy of the formation of control actions. In [21], two models
of discrete-time Taylor-type neural networks for the pseudoinversion of a time-varying
matrix were proposed. Additionally, examples of these models were given and analyzed to
generate the manipulator’s movement. The study was continued in [22], where the authors
used two simplified nonlinear activation functions. Compared with the models from [21],
these two simplified models achieved faster finite-time convergence and possess better



Algorithms 2022, 15, 348 3 of 16

robustness. Comparative simulations and examples in engineering applications show the
advantage of these two new models for solving the time-varying matrix pseudoinverse
problems.

Numerous computational methods have been developed for the generalized inverse
of a matrix, from Newton-type iterative methods [23–27] to finite algorithms [28–30]. The
finite algorithms are based on the generalized inverse computation of the rank-one modified
matrix. For example, in [29], the authors presented a recursive procedure to compute the
Moore–Penrose inverse of a matrix A based on the symmetric rank-one updates. The
singular value decomposition and full-rank decomposition enable us to calculate the
pseudoinverse [31,32]. In addition, the QR decomposition is a useful tool for calculating
generalized inverses [33].

One of the methods of computing the inverse of a nonsingular matrix A is the Gauss–
Jordan elimination procedure [28]. In [34–36], the authors presented an alternative ex-
pression for the matrix pseudoinverse. Based on this expression, the authors proposed a
Gauss–Jordan elimination method for the computation of A†.

In our work, based on the recursive algorithm given in [28], we propose a recursive
algorithm for the parallel computing architecture CUDA (Compute Unified Device Archi-
tecture, Nvidia, Santa Clara, CA, USA), where a massively parallel system performs the
most computationally expensive operations of matrix multiplication. The computations
were performed with a graphic processing unit (GPU). Even though GPU cores are simpler
and have fewer functionalities and show far worse performance than CPU cores, GPUs
can have thousands of cores, which makes them suitable for computations applicable to
parallelizable calculations.

The structure of this paper is as follows: In Section 2, we give a formal definition and
some of the properties of the Moore–Penrose generalized inverse; Section 3 represents the
specific features of GPU programming and CUDA. In Section 4, we state the algorithm
from [28], while in Section 5, we introduce the algorithm for massively parallel systems in
CUDA. In Section 6, we compare the execution time of the implemented algorithm and
that of an algorithm from the OpenCV library, which runs on the CPU. Section 7 represents
the conclusion.

2. Moore–Penrose Generalized Inverse

In this section, we give a brief introduction to the Moore–Penrose pseudoinverse, a
generalization of the matrix inverse.

Definition 1 ([37]). The inverse of a given regular square matrix A ∈ Cn×n is a square matrix
A−1 such that

AA−1 = In, A−1A = In,

where In is the n × n identity matrix.

A square matrix A ∈ Cn×n has a unique inverse if det(A) 6= 0. If A has an inverse, we say
that A is a nonsingular (regular) matrix. Otherwise, we say that A is a singular matrix.

One of the basic and the most important applications of a matrix inverse is in solving
a system of linear equations

Ax = b, (1)

where A ∈ Rm×n and b ∈ Rm. If A is regular, the solution to the system (1) is given by

x = A−1b. (2)

However, by Definition 1, the inverse can exist only for regular square matrices
(satisfying m = n). Generalized inverses are introduced to overcome these restrictions
of the ordinary inverse [1]. System (1) has at least one solution if b ∈ R(A), where
R(A) = {y| ∃ x ∈ Rm, Ax = y}. In other words, b ∈ R(A) if there exists a matrix



Algorithms 2022, 15, 348 4 of 16

X ∈ Rn×m such that x = Xb is a solution to the linear equations system. The matrix X
can be described using the following Penrose equations [38]:

AXA = A, (a)
XAX = X, (b)

(AX) * = AX, (c)
(XA) * = XA. (d)

(3)

A matrix X, X ∈ Rn×m that satisfies (c) is called the Moore–Penrose generalized inverse
of matrix A or the pseudoinverse of matrix A and is denoted by A†. The authors of [38]
proved that the linear equation system (3) has a unique solution for the arbitrary matrix A.

If A is a regular square matrix, its inverse, A−1, satisfies the equations in (3), and it is
equal to pseudoinverse A†. Sometimes, we may need to find a matrix X that satisfies only
some equation from 3. For an array S of elements from {1, 2, 3, 4}, the set of matrices that sat-
isfies the equations from 3 indexed by elements from S is denoted by A{S} (if S = {1, 2, 3, 4};
the set A{S} has exactly one element, A{S} = {A†}).

3. Massively Parallel Computing and CUDA

GPUs are traditionally used for the fast generation and manipulation of images by
splitting the massive computation task into tiny operations on a small volume of data
performed in parallel threads. Usually, each thread is related to a single pixel. This
technology was adjusted for parallel computing on many cores. Using GPUs for general-
purpose computing was made accessible in 2006 when NVidia released the first version of
the CUDA platform [39] with indirect access to the instructions and memory for parallel
computation on GPUs.

The code of a CUDA program contains the host code that is executed on a CPU and
the device code that is executed on a GPU. The host and the device have distinct memories
and address spaces, and the device memory is managed by built-in functions. In most
cases, we can identify three main steps in the execution flow of a CUDA program: copying
the memory from the CPU to GPU, the function calls and the execution of functions that
are executed on the GPU, and copying the results from the GPU to CPU [39].

The procedures and functions that are executed on the GPU in parallel are called
kernels (keyword _global_ in their declaration). The most important factor in a parallel
version of the algorithm is the execution of the most expensive calculations using the kernel
functions and avoiding heavy information traffic between the GPU and the host device.

The kernel body, using the CUDA programming model, is executed in parallel with
many threads grouped in blocks, which are further grouped in a grid. The maximum
number of threads one block can contain is 1024. The CUDA allows blocks and grids to be
organized in one, two, or three dimensions. Every thread has a unique identifier within
the block, which can be accessed through the built-in threadIdx, which contains x, y, and z
attributes. Similarly, each thread can access the blockIdx variable. The dimensions of the
block and grid can be accessed through the built-in variables blockDim and gridDim. We use
the following formulas to identify a thread within a block and a block within a grid:

uniqueThreadIdWithinBlock = xt + ytBx + ztBxBy, (4)

uniqueBlockId = xb + ybGx + zbGxGy, (5)

where (Bx, By, Bz) and (Gx, Gy, Gz) are the dimensions of the block and grid, respectively,
and xt, yt, and zt and xb, yb, and zb represent the threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x,
blockIdx.y, and blockIdx.z, respectively. We can easily calculate the unique global thread ID as:

uniqueGlobalThreadId = Nbbid + tid, (6)

where bid and tid represent the unique thread ID within the block and block ID, respectively.



Algorithms 2022, 15, 348 5 of 16

The GPU contains various types of programmable and nonprogrammable memories.
L1 cache, constant cache, L2 cache, and read-only cache are types of nonprogrammable GPU
memory. The programmable types of GPU memory are global memory, shared memory,
and registers [39]. Global memory is the largest and slowest. Optimizing access to global
memory is crucial to improving the program’s performance.

Shared memory (programmable cache) is a fast memory shared by all the threads
within the same block and is visible to all these threads within the same block. It is divided
into 32 equally sized banks. Different memory banks can be accessed simultaneously, so it
is important to organize the data so that different threads access different shared memory
banks. Its address space is one-dimensional, and assuming that we store 4-byte values, the
kth bank contains elements such that i mod 32 = k, where i is the index of the data in shared
memory. The optimal use of shared memory is crucial for overall performance. In general,
the bank index is calculated as

bankIndex = (byteAddress/4) mod 32. (7)

The CUDA offers a few types and levels of synchronization. The most important is
the synchronization between the threads of the same block and between different kernels.
The execution of each thread that invokes the _syncthreads() function is blocked until all the
threads of the same block execute the same function. The concurrency and synchronization
between the different kernels, the host, and the device or the memory transfer between the
host and the device and the execution of the device code can be achieved using the CUDA
Streams and Events. The operations in different streams are executed in parallel, while the
operations from the same stream are executed sequentially.

4. Recursive Algorithm for Calculating the Pseudoinverse

This section describes a recursive algorithm for calculating the Moore–Penrose gener-
alized inverse [28]. A few algorithms and results from other papers [40–42] are combined
to produce this algorithm. In the following subsections (similarly to the structure of [28]),
we list the auxiliary algorithms used to calculate the pseudoinverse.

4.1. Generalized Cholesky Factorisation

This subsection presents the algorithm for the recursive calculation of the generalized
Cholesky factorization [43] of an arbitrary positive semidefinite matrix. If a given matrix A is
positive definite, there exists an upper triangular matrix U such that A = UTU. By generalizing
the Cholesky factorization, it is possible to calculate the unique matrix U even if A is positive
semidefinite. The existence and uniqueness of such a matrix are verified in [41].

The recursive generalized Cholesky factorization is taken from [28], and it calculates the
matrix U and its inverse matrix Y = U−1 (Figure 1). The symmetric positive semidefinite
n× n matrix A is the input. Matrices U and Y defined by A = UTU and Y = U−1 are the output.

If we implement matrix multiplications in Algorithm 4.1 (Figure 1) in the time com-
plexity of O(n2+∈), 0 < ∈ < 1, the complexity of this algorithm is also O(n2+∈). The memory
complexity of the algorithm is Θ(n2) [28].

4.2. Strassen’s Matrix Inverse Algorithm

The block diagram of Strassen’s matrix inverse algorithm (Figure 2) is based on the
pseudocode taken from [28] and is originally stated in [40]. The input is a regular n × n
matrix A, in which all the main diagonal minors are regular. The algorithm returns the
inverse matrix X = A−1.

As in Algorithm 4.1, we assume that the matrix product complexity is O(n2+∈),
0 < ∈ < 1; the complexity of Algorithm 4.2 is O(n2+∈), while the memory complexity
is Θ(n2). The proof is presented in [28]. The original Strassen’s matrix inverse algorithm
uses Stassen’s matrix multiplication algorithm to multiply the matrices, which has a time
complexity of O(nlog7) ≈ O(n2.8074).



Algorithms 2022, 15, 348 6 of 16
Algorithms 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

Figure 1. Algorithm 4.1 (Figure A1) Recursive generalized Cholesky factorization. 

If we implement matrix multiplications in Algorithm 4.1 (Figure 1) in the time 

complexity of O(n2+∈), 0 < ∈ < 1, the complexity of this algorithm is also O(n2+∈). The 

memory complexity of the algorithm is Θ(n2) [28]. 

4.2. Strassen’s Matrix Inverse Algorithm 

The block diagram of Strassen’s matrix inverse algorithm (Figure 2) is based on the 

pseudocode taken from [28] and is originally stated in [40]. The input is a regular n × n 

matrix A, in which all the main diagonal minors are regular. The algorithm returns the 

inverse matrix X = A−1. 

Figure 1. Algorithm 4.1 (Figure A1) Recursive generalized Cholesky factorization.
Algorithms 2022, 15, x FOR PEER REVIEW 7 of 18 
 

 

Figure 2. Algorithm 4.2 (Figure A2) : Strassen’s matrix inverse algorithm. Recursion calls are 

marked with “*” 

As in Algorithm 4.1, we assume that the matrix product complexity is O(n2+∈), 0 < ∈ < 

1; the complexity of Algorithm 4.2 is O(n2+∈), while the memory complexity is Θ(n2). The 

proof is presented in [28]. The original Strassen’s matrix inverse algorithm uses Stassen’s 

matrix multiplication algorithm to multiply the matrices, which has a time complexity of 

O(nlog7) ≈ O(n2.8074). 

4.3. Calculating the Pseudoinverse 

The following lemma [42] provides the basis for the algorithm used in this work. 

Lemma 1. Let A be real m × n matrix and STS generalized Cholesky factorization of matrix 

ATA. If matrix LT is obtained by dropping the zero rows of matrix S, the Moore–Penrose generalized 

inverse of matrix A satisfies the following equation: 

A† = L(LTL)−1(LTL)−1LTAT. (8) 

Figure 2. Algorithm 4.2 (Figure A2): Strassen’s matrix inverse algorithm. Recursion calls are marked with “*”.



Algorithms 2022, 15, 348 7 of 16

4.3. Calculating the Pseudoinverse

The following lemma [42] provides the basis for the algorithm used in this work.

Lemma 1. Let A be real m × n matrix and STS generalized Cholesky factorization of matrix ATA.
If matrix LT is obtained by dropping the zero rows of matrix S, the Moore–Penrose generalized
inverse of matrix A satisfies the following equation:

A† = L(LTL)−1(LTL)−1LTAT. (8)

To calculate the pseudoinverse in the same time complexity as matrix multiplication,
in [28], the inverse of (LTL)−1 is calculated by using Algorithm 4.2, and matrix S is computed
using Algorithm 4.1. That way, we come to Algorithm 4.3 (Figure 3) for calculating the
pseudoinverse [28].

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 18 
 

To calculate the pseudoinverse in the same time complexity as matrix multiplication, 

in [28], the inverse of (LTL)−1 is calculated by using Algorithm 4.2, and matrix S is com-

puted using Algorithm 4.1. That way, we come to Algorithm 4.3 (Figure 3) for calculating 

the pseudoinverse [28]. 

 

Figure 3. Algorithm 4.3 (Figure A3) : Computing the pseudoinverse in matrix multiplication time 

complexity. 

5. Algorithm for Massively Parallel Systems 

This section presents the massively parallel (CUDA) version of the algorithm de-

scribed in Section 4. The important parts of the code or functions are given in the listings 

available in Appendix A, as indicated in [44]. 

5.1. Representing a Matrix in GPU Memory 

A way to store a matrix in the GPU memory is by using a 1D array and arranging the 

elements in a row-major or column-major order. We implement the matrices in the 

row-major order, so the matrix is accessed using the index calculated from the row and 

column index as index = i × m + j, where i, j, and m represent the row index, the column 

index, and the number of columns in a given matrix, respectively. Since we cannot access 

the array values (stored in the GPU memory) from the host (CPU), we need to copy the 

array from the device to the host first. To hide index mapping and memory management, 

the matrix is accessed through the Matrix class (a class template Matrix<T>, where T is the 

type of values stored in the matrix). Parts of the Matrix class template is listed in [44]. 

To enable the fast partitioning of a matrix, we implemented a get_submatrix() 

method, which does not copy the memory but only assigns the pointer, offset, and row 

stride attributes. The attributes row stride is used to specify how many elements we must 

Figure 3. Algorithm 4.3 (Figure A3): Computing the pseudoinverse in matrix multiplication time
complexity.

5. Algorithm for Massively Parallel Systems

This section presents the massively parallel (CUDA) version of the algorithm described
in Section 4. The important parts of the code or functions are given in the listings available
in Appendix A, as indicated in [44].



Algorithms 2022, 15, 348 8 of 16

5.1. Representing a Matrix in GPU Memory

A way to store a matrix in the GPU memory is by using a 1D array and arranging
the elements in a row-major or column-major order. We implement the matrices in the
row-major order, so the matrix is accessed using the index calculated from the row and
column index as index = i × m + j, where i, j, and m represent the row index, the column
index, and the number of columns in a given matrix, respectively. Since we cannot access
the array values (stored in the GPU memory) from the host (CPU), we need to copy the
array from the device to the host first. To hide index mapping and memory management,
the matrix is accessed through the Matrix class (a class template Matrix<T>, where T is the
type of values stored in the matrix). Parts of the Matrix class template is listed in [44].

To enable the fast partitioning of a matrix, we implemented a get_submatrix() method,
which does not copy the memory but only assigns the pointer, offset, and row stride
attributes. The attributes row stride is used to specify how many elements we must ”skip”
when moving from one row to another. Note that the row stride does not have to be equal
to the number of columns (attribute m) because a matrix can be created as a submatrix
of a larger matrix. However, both matrices will share the same pointer to a 1D array.
Implemented this way, a matrix can be partitioned in O(1) time complexity. The rest of the
class functionalities can be deduced from the names of the methods or static functions and
the names and argument types.

The functions or methods that take the CUDA stream as an argument can be executed
in a separate stream synchronically or asynchronically, depending on the sync argument.
This holds for all methods or functions.

5.2. Matrix Multiplication

The matrix multiplication implementation is based on the implementation from the
CUDA Programming Guide [45]. In Figure 4, the organization of the calculations is
presented when executing a parallel algorithm for matrix multiplication based on the
division of matrices by rows.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 18 
 

”skip” when moving from one row to another. Note that the row stride does not have to 

be equal to the number of columns (attribute m) because a matrix can be created as a 

submatrix of a larger matrix. However, both matrices will share the same pointer to a 1D 

array. Implemented this way, a matrix can be partitioned in O(1) time complexity. The 

rest of the class functionalities can be deduced from the names of the methods or static 

functions and the names and argument types. 

The functions or methods that take the CUDA stream as an argument can be exe-

cuted in a separate stream synchronically or asynchronically, depending on the sync ar-

gument. This holds for all methods or functions. 

5.2. Matrix Multiplication 

The matrix multiplication implementation is based on the implementation from the 

CUDA Programming Guide [45]. In Figure 4, the organization of the calculations is pre-

sented when executing a parallel algorithm for matrix multiplication based on the divi-

sion of matrices by rows. 

 

Figure 4. Matrix multiplication: CUDA implementation. Parts of the input and output matrices 

processed by CUDA threads are given in different colors. 

All the index calculations are hidden by using the get_element() and set_element() 

methods, and each matrix can be transposed. The implementation of the matrix multi-

plication kernel matmul_kernel() [44] and the wrapping matmul() function are provided in 

[44]. When accessing global memory, all the reads and writes are coalesced and aligned, 

and there are no bank conflicts when accessing shared memory. This rule holds regard-

less of whether some matrix is transposed. 

We also tested our pseudoinverse calculation algorithm with a matrix multiplication 

algorithm from the cuBLAS library. 

In Figure 4, the organization of calculations is presented when executing a parallel 

algorithm for matrix multiplication based on the division of matrices by rows. 

5.3. Implementation of Cholesky Factorization 

The pseudocode shows the implementation of the generalized Cholesky factoriza-

tion based on Algorithm 4.1 (Appendix A, Figure A1). The matrices A, U, and Y need to 

be square matrices. If a 1 × 1 matrix is passed as an argument, we need to call a special-

Figure 4. Matrix multiplication: CUDA implementation. Parts of the input and output matrices
processed by CUDA threads are given in different colors.



Algorithms 2022, 15, 348 9 of 16

All the index calculations are hidden by using the get_element() and set_element() meth-
ods, and each matrix can be transposed. The implementation of the matrix multiplication
kernel matmul_kernel() [44] and the wrapping matmul() function are provided in [44]. When
accessing global memory, all the reads and writes are coalesced and aligned, and there are
no bank conflicts when accessing shared memory. This rule holds regardless of whether
some matrix is transposed.

We also tested our pseudoinverse calculation algorithm with a matrix multiplication
algorithm from the cuBLAS library.

In Figure 4, the organization of calculations is presented when executing a parallel
algorithm for matrix multiplication based on the division of matrices by rows.

5.3. Implementation of Cholesky Factorization

The pseudocode shows the implementation of the generalized Cholesky factorization
based on Algorithm 4.1 (Appendix A, Figure A1). The matrices A, U, and Y need to be
square matrices. If a 1 × 1 matrix is passed as an argument, we need to call a specialized
kernel function that sets the value of U and Y according to Step 1 of Algorithm 4.1 (Figure 5).
Otherwise, we partition the matrices, create the temporary matrices (T1, T2, T3), allocate the
required memory, and proceed to Step 2 of Algorithm 4.1. We free the temporary memory
afterward.

Algorithms 2022, 15, x FOR PEER REVIEW 10 of 18 
 

ized kernel function that sets the value of U and Y according to Step 1 of Algorithm 4.1 

(Figure 5). Otherwise, we partition the matrices, create the temporary matrices (T1, T2, T3), 

allocate the required memory, and proceed to Step 2 of Algorithm 4.1. We free the tem-

porary memory afterward. 

 

Figure 5. Step 1 of Cholesky factorization for CUDA. 

5.4. Strassen’s Matrix Inversion Algorithm 

The implementation follows the block diagram given in Algorithm 4.2 (Figure 2). In 

case n = 1, we call a specialized kernel and proceed with the algorithm using recursive 

function calls and matrix multiplications (Figure 6). As before, we need to partition the 

matrices, create the temporary matrices, and manage their memory. The listing shows the 

implementation of Strassen’s matrix inversion algorithm [44]. We also use the auxiliary 

class StreamManager, which manages the CUDA streams. 

In addition to using the GPU for matrix multiplications, we can also speed up the 

algorithm by utilizing parallelism on a higher level and exploiting the independence of 

some matrix multiplications. All the GPU operations in the strassen_matrix_inversion() 

function are executed by one of the two CUDA streams (note that the matmul function, as 

the last two arguments, has a stream and sync). After calculating the inverse matrix, we 

need to free the memory used for the intermediate results. 

Figure 5. Step 1 of Cholesky factorization for CUDA.

5.4. Strassen’s Matrix Inversion Algorithm

The implementation follows the block diagram given in Algorithm 4.2 (Figure 2). In
case n = 1, we call a specialized kernel and proceed with the algorithm using recursive
function calls and matrix multiplications (Figure 6). As before, we need to partition the
matrices, create the temporary matrices, and manage their memory. The listing shows the
implementation of Strassen’s matrix inversion algorithm [44]. We also use the auxiliary
class StreamManager, which manages the CUDA streams.



Algorithms 2022, 15, 348 10 of 16Algorithms 2022, 15, x FOR PEER REVIEW 11 of 18 
 

 

Figure 6. Step 1 of Strassen’s matrix inverse algorithm: CUDA version. 

5.5. Calculating the Pseudoinverse 

Finally, after presenting the algorithms for matrix multiplication [44], the general-

ized Cholesky factorization (Appendix A, Figure A1), and Strassen’s matrix inversion 

(Appendix A, Figure A2), we use these functions (based on Algorithm 4.3) to calculate 

the Moore–Penrose generalized inverse of an arbitrary real matrix. This main algorithm 

is run on the CPU. The pseudocode shows the code of a function that calculates and re-

turns the pseudoinverse of an arbitrary matrix A passed as an argument to the function 

(Appendix A, Figure A3). 

6. Computational Experiment and Analysis 

To test the efficiency gained by using the GPU algorithm described in this paper, we 

measured and compared the execution time of the parallel algorithm from Section 5 that 

runs on the GPU and the serial algorithm that runs on the CPU (we used the cuBLAS li-

brary for matrix multiplication on the CPU). We also compared our implementation with 

the algorithm that uses the SVD to calculate the pseudoinverse: we used the algorithm 

from the OpenCV library (v.4.5.5, Intel Corporation, Santa Clara, USA) [46], which is ex-

ecuted solely on the CPU, and the algorithm from the PyTorch library (Linux Founda-

tion, San Francisco, CA, USA) [47], which uses the GPU and CUDA internally. We com-

pared the results for matrices of various shapes and both single and double precision. 

Tables 1 and 2 show the average time in milliseconds needed for calculating the 

Moore–Penrose generalized inverse for the float and double matrices, respectively, using 

Figure 6. Step 1 of Strassen’s matrix inverse algorithm: CUDA version.

In addition to using the GPU for matrix multiplications, we can also speed up the
algorithm by utilizing parallelism on a higher level and exploiting the independence of
some matrix multiplications. All the GPU operations in the strassen_matrix_inversion()
function are executed by one of the two CUDA streams (note that the matmul function, as
the last two arguments, has a stream and sync). After calculating the inverse matrix, we
need to free the memory used for the intermediate results.

5.5. Calculating the Pseudoinverse

Finally, after presenting the algorithms for matrix multiplication [44], the general-
ized Cholesky factorization (Appendix A, Figure A1), and Strassen’s matrix inversion
(Appendix A, Figure A2), we use these functions (based on Algorithm 4.3) to calcu-
late the Moore–Penrose generalized inverse of an arbitrary real matrix. This main al-
gorithm is run on the CPU. The pseudocode shows the code of a function that calculates
and returns the pseudoinverse of an arbitrary matrix A passed as an argument to the
function (Appendix A, Figure A3).

6. Computational Experiment and Analysis

To test the efficiency gained by using the GPU algorithm described in this paper, we
measured and compared the execution time of the parallel algorithm from Section 5 that
runs on the GPU and the serial algorithm that runs on the CPU (we used the cuBLAS library
for matrix multiplication on the CPU). We also compared our implementation with the



Algorithms 2022, 15, 348 11 of 16

algorithm that uses the SVD to calculate the pseudoinverse: we used the algorithm from
the OpenCV library (v.4.5.5, Intel Corporation, Santa Clara, USA) [46], which is executed
solely on the CPU, and the algorithm from the PyTorch library (Linux Foundation, San
Francisco, CA, USA) [47], which uses the GPU and CUDA internally. We compared the
results for matrices of various shapes and both single and double precision.

Tables 1 and 2 show the average time in milliseconds needed for calculating the
Moore–Penrose generalized inverse for the float and double matrices, respectively, using
the different algorithms and computing architectures. The OpenCV and PyTorch imple-
mentations are labeled as CPU-SVD and GPU-SVD, respectively. The recursive algorithm
discussed in Section 5 is labeled as R and for the execution on the GPU, we measured the
execution time of the algorithm that uses a custom matmul kernel (GPU-R-v1) and the
algorithm where matrix multiplication is performed using the cuBLAS library (GPU-R-v2).
The values in the table represent the mean of five measurements.

Table 1. Time in milliseconds to calculate the pseudoinverse for float (single precision) matrices.

Matrix
Shape

Float

CPU-SVD CPU-R GPU-SVD GPU-R-v1 GPU-R-v2

12 × 8 0 0 1 0 1
48 × 32 0 0 1 3 4

192 × 128 7 1 4.2 13.2 16
384 × 256 59.6 3.8 10.4 26.8 32.2
768 × 512 474 23.6 28.8 57.4 65.8

1536 × 1024 3749.4 95 117.8 128.8 135.2
3072 × 2048 30,734.6 437 704.2 343.8 294
6144 × 4096 246,801.8 2597.4 5993.2 1392 720.2

Table 2. Time in milliseconds to calculate the pseudoinverse for double matrices.

Matrix
Shape

Double

CPU-SVD CPU-R GPU-SVD GPU-R-v1 GPU-R-v2

12 × 8 0 0 1 1 1
48 × 32 0 0 3.2 4.2 4

192 × 128 7 0.4 21.8 19 9
384 × 256 61.4 3.4 61.6 40.6 40
768 × 512 485.4 27.6 212.2 90.2 42.6

1536 × 1024 3936 128 1233.8 242.2 99.4
3072 × 2048 32,077.6 726 7064.8 910.2 288.2
6144 × 4096 256,628 5290.4 48,339.8 5391.2 1136

Note that we measured only the time needed to calculate the pseudoinverse, not the
time needed to transfer the memory between the CPU and GPU.

Figures 7 and 8 show the data included in Tables 1 and 2 for the float and double data
types, respectively.

The tests were performed on a computer that has GeForce GTX 1080 Ti GPU, Intel(R)
Core(TM) i7-9700 CPU 3.00 GHz (Santa Clara, CA, USA), and 16 GB of DDR4 ram memory
(JEDEC, Arlington, VA, USA) (2400 MT/s speed). We used CUDA 11.7, cuBLAS 3.10,
PyTorch 1.12.1 (with CUDA 10.2), and OpenCV 4.6.

It can be observed that the recursive implementation was faster than the SVD-based
algorithm even when comparing CPU-R and GPU-SVD. The CPU implementations were
notably faster for small matrices (with approximately less than 25,000 elements). For the
larger matrices, we found that the CPU-R algorithm still outperformed GPU-SVD and
was comparable to GPU-R-v1. However, when working with matrices with a few million
elements (3072 × 2048), the implementation of matrix multiplication on the GPU becomes
more important, especially in the case of double-precision multiplications, where GPU-R-v2
outperformed all the other algorithms. This gap further increased when working with



Algorithms 2022, 15, 348 12 of 16

even larger matrices (6144 × 4096). When working with single precision, the GPU-R1
implementation was 2 times faster than the same algorithm run on the CPU and 4.3 times
faster than the SVD-based algorithm that runs on the GPU. When we used cuBLAS to
perform matrix multiplication (GPU-R-v2), we obtained 2 times faster execution (4 times
faster than CPU-R and 8.6 faster than GPU-SVD).

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 18 
 

the different algorithms and computing architectures. The OpenCV and PyTorch im-

plementations are labeled as CPU-SVD and GPU-SVD, respectively. The recursive algo-

rithm discussed in Section 5 is labeled as R and for the execution on the GPU, we meas-

ured the execution time of the algorithm that uses a custom matmul kernel (GPU-R-v1) 

and the algorithm where matrix multiplication is performed using the cuBLAS library 

(GPU-R-v2). The values in the table represent the mean of five measurements. 

Note that we measured only the time needed to calculate the pseudoinverse, not the 

time needed to transfer the memory between the CPU and GPU. 

Figures 7 and 8 show the data included in Tables 1 and 2 for the float and double 

data types, respectively. 

Table 1. Time in milliseconds to calculate the pseudoinverse for float (single precision) matrices. 

Matrix Shape 
Float 

CPU-SVD CPU-R GPU-SVD GPU-R-v1 GPU-R-v2 

12 × 8 0 0 1 0 1 

48 × 32 0 0 1 3 4 

192 × 128 7 1 4.2 13.2 16 

384 × 256 59.6 3.8 10.4 26.8 32.2 

768 × 512 474 23.6 28.8 57.4 65.8 

1536 × 1024 3749.4 95 117.8 128.8 135.2 

3072 × 2048 30,734.6 437 704.2 343.8 294 

6144 × 4096 246,801.8 2597.4 5993.2 1392 720.2 

Table 2. Time in milliseconds to calculate the pseudoinverse for double matrices. 

Matrix Shape 
Double 

CPU-SVD CPU-R GPU-SVD GPU-R-v1 GPU-R-v2 

12 × 8 0 0 1 1 1 

48 × 32 0 0 3.2 4.2 4 

192 × 128 7 0.4 21.8 19 9 

384 × 256 61.4 3.4 61.6 40.6 40 

768 × 512 485.4 27.6 212.2 90.2 42.6 

1536 × 1024 3936 128 1233.8 242.2 99.4 

3072 × 2048 32,077.6 726 7064.8 910.2 288.2 

6144 × 4096 256,628 5290.4 48,339.8 5391.2 1136 

 

Figure 7. Time in milliseconds to calculate the pseudoinverse of float matrix. 
Figure 7. Time in milliseconds to calculate the pseudoinverse of float matrix.

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 18 
 

The tests were performed on a computer that has GeForce GTX 1080 Ti GPU, In-

tel(R) Core(TM) i7-9700 CPU 3.00 GHz (Santa Clara, CA, USA), and 16 GB of DDR4 ram 

memory (JEDEC, Arlington, VA, USA) (2400 MT/s speed). We used CUDA 11.7, cuBLAS 

3.10, PyTorch 1.12.1 (with CUDA 10.2), and OpenCV 4.6. 

 

Figure 8. Time in milliseconds to calculate the pseudoinverse of double matrix. 

It can be observed that the recursive implementation was faster than the SVD-based 

algorithm even when comparing CPU-R and GPU-SVD. The CPU implementations were 

notably faster for small matrices (with approximately less than 25,000 elements). For the 

larger matrices, we found that the CPU-R algorithm still outperformed GPU-SVD and 

was comparable to GPU-R-v1. However, when working with matrices with a few million 

elements (3072 × 2048), the implementation of matrix multiplication on the GPU becomes 

more important, especially in the case of double-precision multiplications, where 

GPU-R-v2 outperformed all the other algorithms. This gap further increased when 

working with even larger matrices (6144 × 4096). When working with single precision, 

the GPU-R1 implementation was 2 times faster than the same algorithm run on the CPU 

and 4.3 times faster than the SVD-based algorithm that runs on the GPU. When we used 

cuBLAS to perform matrix multiplication (GPU-R-v2), we obtained 2 times faster execu-

tion (4 times faster than CPU-R and 8.6 faster than GPU-SVD). 

In the case of double-precision multiplication, we found the matrix multiplication 

algorithm on the GPU to be very important. While the recursive implementation still 

outperformed the SVD-based implementation (both on the CPU and GPU), CPU-R per-

formed slightly better (for large matrices) than GPU-R-v1. When we used cuBLAS, the 

recursive GPU algorithm (GPU-R-v2) outperformed CPU-R up to 5 times and GPU-SVD 

up to 42 times. 

If we compare CPU-SVD to GPU-R algorithms, a speedup of up to 342 times can be 

achieved (see Table 1 and results for a 6144 × 4096 matrix). 

We can also see that the recursive algorithm described in this paper is more scalable 

than the traditional SVD approach and that the GPU implementation provides even bet-

ter scalability than the CPU implementation of the same algorithm, especially if we use 

cuBLAS to multiply the matrices. 

7. Conclusions 

In our work, we introduced the recursive algorithm for the Moore–Penrose gener-

alized inverse based on the algorithm by Petković and Stanimirović [28] for massively 

parallel systems with CUDA architecture to perform calculations on graphical processing 

Figure 8. Time in milliseconds to calculate the pseudoinverse of double matrix.

In the case of double-precision multiplication, we found the matrix multiplication algo-
rithm on the GPU to be very important. While the recursive implementation still outperformed
the SVD-based implementation (both on the CPU and GPU), CPU-R performed slightly better
(for large matrices) than GPU-R-v1. When we used cuBLAS, the recursive GPU algorithm
(GPU-R-v2) outperformed CPU-R up to 5 times and GPU-SVD up to 42 times.

If we compare CPU-SVD to GPU-R algorithms, a speedup of up to 342 times can be
achieved (see Table 1 and results for a 6144 × 4096 matrix).

We can also see that the recursive algorithm described in this paper is more scalable
than the traditional SVD approach and that the GPU implementation provides even better
scalability than the CPU implementation of the same algorithm, especially if we use cuBLAS
to multiply the matrices.



Algorithms 2022, 15, 348 13 of 16

7. Conclusions

In our work, we introduced the recursive algorithm for the Moore–Penrose generalized
inverse based on the algorithm by Petković and Stanimirović [28] for massively parallel
systems with CUDA architecture to perform calculations on graphical processing units.
Testing and comparing our parallel algorithm with the CPU implementation from the
OpenCV library revealed the significant advantages of using the GPU for large matrices
(with millions of elements and more). A speedup of up to 176 times was achieved compared
with the (optimized) algorithm running on the CPU.

The Moore–Penrose inverse of some matrices that appear in graph theory has been
frequently investigated. The main results refer to the Laplacian matrix [48], the Euclidean
distance matrix [49,50], or the distance matrix [51]. The adaptation of the described algo-
rithm to the matrices that appear in graph theory and their application can be the subject of
future research.

Author Contributions: Conceptualization, P.S.S., L.K. and V.S.; methodology, P.S.S., L.K. and V.S.;
software, V.S.; validation, V.S., G.S. and N.R.; formal analysis, P.S.S., L.K. and N.R.; investigation, V.S.
and G.S.; resources, P.S.S.; data curation, V.S. and G.S.; writing—original draft preparation, G.S., V.S.
and N.R.; writing—review and editing, V.S., L.K. and N.R.; visualization, V.S. and N.R.; supervision,
P.S.S.; project administration, P.S.S.; funding acquisition, P.S.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, Grant No. 075-15-2022-1121.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 18 
 

units. Testing and comparing our parallel algorithm with the CPU implementation from 

the OpenCV library revealed the significant advantages of using the GPU for large ma-

trices (with millions of elements and more). A speedup of up to 176 times was achieved 

compared with the (optimized) algorithm running on the CPU. 

The Moore–Penrose inverse of some matrices that appear in graph theory has been 

frequently investigated. The main results refer to the Laplacian matrix [48], the Euclidean 

distance matrix [49,50], or the distance matrix [51]. The adaptation of the described algo-

rithm to the matrices that appear in graph theory and their application can be the subject 

of future research. 

Author Contributions: Conceptualization, P.S.S., L.K. and V.S.; methodology, P.S.S., L.K. and V.S; 

software, V.S.; validation, V.S., G.S. and N.R.; formal analysis, P.S.S., L.K. and N.R.; investigation, 

V.S. and G.S.; resources, P.S.S.; data curation, V.S. and G.S.; writing—original draft preparation, 

G.S., V.S. and N.R.; writing—review and editing, V.S., L.K. and N.R.; visualization, V.S. and N.R.; 

supervision, P.S.S.; project administration, P.S.S.; funding acquisition, P.S.S. All authors have read 

and agreed to the published version of the manuscript 

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian 

Federation, Grant No. 075-15-2022-1121. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 

Figure A1. Generalized Cholesky factorization: CUDA implementation. Figure A1. Generalized Cholesky factorization: CUDA implementation.



Algorithms 2022, 15, 348 14 of 16Algorithms 2022, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure A2. Strassen’s matrix inversion algorithm: CUDA implementation.

Algorithms 2022, 15, x FOR PEER REVIEW 16 of 18 
 

 

Figure A2. Strassen’s matrix inversion algorithm: CUDA implementation. 

 

Figure A3. Calculating the pseudoinverse of an arbitrary real matrix. 

References 

1. Wang, G.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Science Press: Beijing, China, 2018. 

https://doi.org/10.1007/978-981-13-0146-9. 

2. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. 

3. Stanimirović, P.S.; Mosić, D.; Wei, Y. Least squares properties of generalized inverses. Commun. Math. Res. 2021, 37, 421–447. 

4. Leiva, H.; Manzanilla, R. Moore-Penrose Inverse and Semilinear Equations. Adv. Linear Algebra Matrix Theory 2018, 8, 11–17. 

https://doi.org/10.4236/alamt.2018.81002. 

5. Bouman, N.J.; de Vreede, N. A Practical approach to the secure computation of the Moore-Penrose pseudoinverse over the 

rationals. IACR Cryptol. Eprint Arch. 2019, 2019, 470. 

Figure A3. Calculating the pseudoinverse of an arbitrary real matrix.

References
1. Wang, G.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Science Press: Beijing, China, 2018. [CrossRef]
2. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996.
3. Stanimirović, P.S.; Mosić, D.; Wei, Y. Least squares properties of generalized inverses. Commun. Math. Res. 2021, 37, 421–447.
4. Leiva, H.; Manzanilla, R. Moore-Penrose Inverse and Semilinear Equations. Adv. Linear Algebra Matrix Theory 2018, 8, 11–17.

[CrossRef]
5. Bouman, N.J.; de Vreede, N. A Practical approach to the secure computation of the Moore-Penrose pseudoinverse over the

rationals. IACR Cryptol. Eprint Arch. 2019, 2019, 470.

http://doi.org/10.1007/978-981-13-0146-9
http://doi.org/10.4236/alamt.2018.81002


Algorithms 2022, 15, 348 15 of 16

6. Bozzo, E. The Moore–Penrose inverse of the normalized graph Laplacian. Linear Algebra Its Appl. 2013, 439, 3038–3043. [CrossRef]
7. Azimi, A.; Bapat, R.B. Moore–Penrose inverse of the incidence matrix of a distance regular graph. Linear Algebra Its Appl. 2018,

551, 92–103. [CrossRef]
8. Azimi, A.; Bapat, R. The Moore–Penrose inverse of the incidence matrix of complete multipartite and bi-block graphs. Discret.

Math. 2019, 342, 2393–2401. [CrossRef]
9. Azimi, A.; Bapat, R.B.; Estaji, E. Moore–Penrose inverse of incidence matrix of graphs with complete and cyclic blocks. Discret.

Math. 2019, 342, 10–17. [CrossRef]
10. Hessert, R.; Mallik, S. Moore-Penrose inverses of the signless Laplacian and edge-Laplacian of graphs. Discret. Math. 2021, 344,

112451. [CrossRef]
11. Dang, V.H.; Nguyen, T.D. Construction of Pseudoinverse Matrix Over Finite Field and Its Applications. Wirel. Pers. Commun.

2017, 94, 455–466. [CrossRef]
12. Kirichenko, N.F.; Lepekha, N.P. Application of Pseudoinverse and Projective Matrices to Studying Control, Observation, and

Identification Problems. Cybern. Syst. Anal. 2002, 38, 568–585. [CrossRef]
13. Chountasis, S.; Katsikis, V.N.; Pappas, D. Applications of the Moore-Penrose Inverse in Digital Image Restoration. Math. Probl.

Eng. 2009, 2009, 170724. [CrossRef]
14. Miljkovic, S.; Miladinovic, M.; Stanimirovic, P.; Stojanovic, I. Application of the pseudoinverse computation in reconstruction of

blurred images. Filomat 2013, 26, 453–465. [CrossRef]
15. Jurgen, R. 2001-01-0562 On-Line State Prediction of Engines Based on Fast Neural Network. In Electronic Engine Control Technologies;

SAE: Sydney, Australia, 2004; pp. 713–719. [CrossRef]
16. Huang, Y.; Huang, N.; Li, Y.; Shi, Y. Automated Fault Detection and Diagnosis for an Air Handling Unit Based on a GA-Trained

RBF Network. In Proceedings of the 2006 International Conference on Communications, Circuits and Systems, Guilin, China,
25–28 June 2006; Volume 3, pp. 2038–2041. [CrossRef]

17. Lima dos Reis Marques, F.; Floridia, C.; Alves Almeida, T.; Leonardi, A.A.; Fruett, F. Separation of temperature and strain in a
single fiber BOTDA system by pseudo-inverse approach. In Proceedings of the 2017 SBMO/IEEE MTT-S International Microwave
and Optoelectronics Conference (IMOC), Aguas de Lindoia, Brazil, 27–30 August 2017; pp. 1–4. [CrossRef]

18. Corbella, I.; Torres, F.; Camps, A.; Duffo, N.; Vall-Llossera, M. Brightness-Temperature Retrieval Methods in Synthetic Aperture
Radiometers. IEEE Trans. Geosci. Remote Sens. 2009, 47, 285–294. [CrossRef]

19. Tapson, J.; van Schaik, A. Learning the pseudoinverse solution to network weights. Neural Netw. 2013, 45, 94–100. [CrossRef]
20. Sevinov, J. Regularized Algorithms for the Formation of Control Actions in Locally Optimal Control Systems for Dynamic Objects.

Int. J. Adv. Res. Sci. Eng. Technol. 2018, 5, 5853–5857.
21. Jin, L.; Zhang, Y. Discrete-time Zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application

to manipulator motion generation. Neurocomputing 2014, 142, 165–173. [CrossRef]
22. Hu, Z.; Xiao, L.; Li, K.; Li, K.; Li, J. Performance analysis of nonlinear activated zeroing neural networks for time-varying matrix

pseudoinversion with application. Appl. Soft Comput. 2021, 98, 106735. [CrossRef]
23. Tanabe, K. Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method. Linear

Algebra Its Appl. 1975, 10, 163–175. [CrossRef]
24. Pan, V.; Schreiber, R. An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications. SIAM J. Sci. Stat.

Comput. 1991, 12, 1109–1130. [CrossRef]
25. Weiguo, L.; Juan, L.; Tiantian, Q. A family of iterative methods for computing Moore–Penrose inverse of a matrix. Linear Algebra

Its Appl. 2013, 438, 47–56. [CrossRef]
26. Liu, X.; Jin, H.; Yu, Y. Higher-order convergent iterative method for computing the generalized inverse and its application to

Toeplitz matrices. Linear Algebra Its Appl. 2013, 439, 1635–1650. [CrossRef]

27. Soleymani, F. An efficient and stable Newton-type iterative method for computing generalized inverse A(2)
T,S. Numer. Algorithms

2015, 69, 569–578. [CrossRef]
28. Petković, M.D.; Stanimirović, P.S. Generalized matrix inversion is not harder than matrix multiplication. J. Comput. Appl. Math.

2009, 230, 270–282. [CrossRef]
29. Chen, X.; Ji, J. Computing the Moore-Penrose Inverse of a Matrix through Symmetric Rank-One Updates. Am. J. Comput. Math.

2011, 1, 147–151. [CrossRef]
30. Kadiam, S.C. Sciences Applications: Research and Education. Ph.D. Dissertation, Civil & Environmental Engineering, Old

Dominion University, Norfolk, VA, USA, 2012. [CrossRef]
31. Yanai, H.; Takeuchi, K.; Takane, Y. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition; Springer: New

York, NY, USA, 2011.
32. Sun, W.; Wei, Y. Inverse Order Rule for Weighted Generalized Inverse. SIAM J. Matrix Anal. Appl. 1998, 19, 772–775. [CrossRef]
33. Stanimirović, P.S.; Pappas, D.; Katsikis, V.N.; Stanimirović, I. Full–rank representations of outer inverses based on the QR

decomposition. Appl. Math. Comput. 2012, 218, 10321–10333. [CrossRef]
34. Andrilli, S.; David Hecker, D. Elementary Linear Algebra, 4th ed.; Academic Press: New York, NY, USA, 2009; 768p.

35. Sheng, X.; Chen, G.L.; Gong, Y. The representation and computation of generalized inverse A(2)
T,S. J. Comput. Appl. Math. 2008, 213,

248–257. [CrossRef]
36. Sheng, X.; Chen, G.L. A note of computation for M-P inverse A. Int. J. Comput. Math. 2010, 87, 2235–2241. [CrossRef]

http://doi.org/10.1016/j.laa.2013.08.039
http://doi.org/10.1016/j.laa.2018.04.003
http://doi.org/10.1016/j.disc.2019.05.007
http://doi.org/10.1016/j.disc.2018.09.020
http://doi.org/10.1016/j.disc.2021.112451
http://doi.org/10.1007/s11277-015-3095-6
http://doi.org/10.1023/A:1021110319693
http://doi.org/10.1155/2009/170724
http://doi.org/10.2298/FIL1203453M
http://doi.org/10.4271/pt-110
http://doi.org/10.1109/ICCCAS.2006.285078
http://doi.org/10.1109/IMOC.2017.8121068
http://doi.org/10.1109/TGRS.2008.2002911
http://doi.org/10.1016/j.neunet.2013.02.008
http://doi.org/10.1016/j.neucom.2014.04.051
http://doi.org/10.1016/j.asoc.2020.106735
http://doi.org/10.1016/0024-3795(75)90008-7
http://doi.org/10.1137/0912058
http://doi.org/10.1016/j.laa.2012.08.004
http://doi.org/10.1016/j.laa.2013.05.005
http://doi.org/10.1007/s11075-014-9913-1
http://doi.org/10.1016/j.cam.2008.11.012
http://doi.org/10.4236/ajcm.2011.13016
http://doi.org/10.25777/fwcf-9z49
http://doi.org/10.1137/S0895479896305441
http://doi.org/10.1016/j.amc.2012.04.011
http://doi.org/10.1016/j.cam.2007.01.009
http://doi.org/10.1080/00207160802624117


Algorithms 2022, 15, 348 16 of 16

37. Ji, J. Gauss–Jordan elimination methods for the Moore–Penrose inverse of a matrix. Linear Algebra Its Appl. 2012, 437, 1835–1844.
[CrossRef]

38. Strang, G. Introduction to Linear Algebra, 5th ed.; Wellesley-Cambridge Press: Wellesley, MA, USA, 2016; 600p.
39. Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [CrossRef]
40. Soyata, T. GPU Parallel Program Development Using CUDA, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2018. [CrossRef]
41. Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
42. Courrieu, P. Straight monotonic embedding of data sets in Euclidean spaces. Neural Netw. 2002, 15, 1185–1196. [CrossRef]
43. Courrieu, P. Fast solving of weighted pairing least-squares systems. J. Comput. Appl. Math. 2009, 231, 39–48. [CrossRef]
44. Stanojević, V.; Kazakovtsev, L.; Stanimirović, P.S.; Rezova, N.; Shkaberina, G. Program Code for Calculating Moore-Penrose

Generalized Inverse on Massive-Parallel Systems. Available online: http://levk.info/GPUMoorePenroseCode.zip (accessed on
28 August 2022).

45. Higham, N.J. Cholesky factorization. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 251–254. [CrossRef]
46. OpenCV Team. Available online: https://www.google-melange.com/archive/gsoc/2014/orgs/opencv (accessed on 28 August 2022).
47. PyTorch Library. Available online: http://citebay.com/how-to-cite/pytorch (accessed on 28 August 2022).
48. Gutman, I.; Xiao, W. Generalized inverse of the Laplacian matrix and some applications. Bull. Cl. Sci. Math. Natturalles 2004, 129,

15–23. [CrossRef]
49. Kurata, H.; Bapat, R.B. Moore–Penrose inverse of a Euclidean distance matrix. Linear Algebra Its Appl. 2015, 472, 106–117.

[CrossRef]
50. Balaji, R.; Bapat, R.B. On Euclidean distance matrices. Linear Algebra Its Appl. 2007, 424, 108–117. [CrossRef]
51. Jeyaraman, I.; Divyadevi, T.; Azhagendran, R. The Moore-Penrose Inverse of the Distance Matrix of a Helm Graph. arXiv 2022,

arXiv:2208.10897. [CrossRef]

http://doi.org/10.1016/j.laa.2012.05.017
http://doi.org/10.1017/S0305004100030401
http://doi.org/10.1201/9781315368290
http://doi.org/10.1007/BF02165411
http://doi.org/10.1016/S0893-6080(02)00091-6
http://doi.org/10.1016/j.cam.2009.01.016
http://levk.info/GPUMoorePenroseCode.zip
http://doi.org/10.1002/wics.18
https://www.google-melange.com/archive/gsoc/2014/orgs/opencv
http://citebay.com/how-to-cite/pytorch
http://doi.org/10.2298/BMAT0429015G
http://doi.org/10.1016/j.laa.2015.01.032
http://doi.org/10.1016/j.laa.2006.05.013
http://doi.org/10.48550/arXiv.2208.10897

	Introduction 
	Moore–Penrose Generalized Inverse 
	Massively Parallel Computing and CUDA 
	Recursive Algorithm for Calculating the Pseudoinverse 
	Generalized Cholesky Factorisation 
	Strassen’s Matrix Inverse Algorithm 
	Calculating the Pseudoinverse 

	Algorithm for Massively Parallel Systems 
	Representing a Matrix in GPU Memory 
	Matrix Multiplication 
	Implementation of Cholesky Factorization 
	Strassen’s Matrix Inversion Algorithm 
	Calculating the Pseudoinverse 

	Computational Experiment and Analysis 
	Conclusions 
	Appendix A
	References

