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Abstract: This paper investigates new solution sets for the Yang–Baxter-like (YB-like) matrix equation
involving constant entries or rational functional entries over complex numbers. Towards this aim,
first, we introduce and characterize an essential class of generalized outer inverses (termed as {2, 5}-
inverses) of a matrix, which commute with it. This class of {2, 5}-inverses is defined based on
resolving appropriate matrix equations and inner inverses. In general, solutions to such matrix
equations represent optimization problems and require the minimization of corresponding matrix
norms. We decided to analytically extend the obtained results to the derivation of explicit formulae
for solving the YB-like matrix equation. Furthermore, algorithms for computing the solutions are
developed corresponding to the suggested methods in some computer algebra systems. The main
features of the proposed approach are highlighted and illustrated by numerical experiments.

Keywords: Yang–Baxter-like matrix equation; outer inverse; Moore–Penrose inverse; idempotent
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1. Introduction and Literature Review

Given a square matrix A; we are concerned about finding the unknown matrix X
which fulfills the matrix equation

XAX = AXA. (1)

This equation is called the Yang–Baxter-like (YB-like, for short) matrix equation. If
A is singular (resp. nonsingular), we call (1) the singular (resp. nonsingular) YB-like
matrix equation. Furthermore, if the entries of A are constants (resp. multivariate rational
functions with coefficients) over the field of complex numbers C, then Equation (1) is said
to be the constant (resp. rational) YB-like matrix equation.

Equation (1) possesses a similar format to the famous Yang–Baxter equation, first
introduced by Yang [1] in 1967 and then by Baxter [2] independently in 1972, in the field
of statistical mechanics. The classic Yang–Baxter equation has been a hot research area in
science and engineering applications, closely related to various mathematical subjects, such
as knot theory [3], braid groups [4], statistical mechanics [5], and quantum research [6]. So,
it is necessary to find partial or general solutions of (1) from the viewpoint of matrix theory.
The YB-like matrix equation is identifiable as the star-triangle-like equation in statistical
mechanics ([7], [Part III]) and [8].

Notice that (1) is a quadratic matrix equation with at least two (trivial) solutions,
X = A and X = 0, but its nonlinearity makes it challenging to solve: the problem of
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calculating a nontrivial solution requires solving a system of n2 quadratic equations with
n2 variables, which is a complex task.

Many direct methods have recently been constructed to find several classes of solu-
tions to (1) and most of them are based on the structure of A; see, e.g., [9–24] and refer-
ences therein. To illustrate it further, all solutions were investigated in [9] for the matrix
A = I − uvT such that vTu 6= 0, where u and v are n-dimensional vectors. In [10], com-
muting solutions have been located for the situation where A has some particular Jordan
forms. Solutions to (1) for some types of Jordan canonical form of A were suggested in [11].
All commuting solutions for a diagonalizable matrix and non-commuting solutions for a
Householder matrix are discovered in [12]. All solutions to (1) were found in [13–15] when
A is an idempotent and a rank-one matrix, respectively. Spectral solutions were studied
in [16,17]. It was shown in [18] that any semisimple eigenvalue of a matrix A gives rise
to infinitely many solutions. This result was extended in [19] to the matrix A having a
non-semisimple eigenvalue with at least 1× 1 Jordan block. The complete solution set
can be attained from [20–22] for the matrix A of rank two. All the commuting solutions
were found for the matrix A = I − PQT, where P and Q are two n× 2 matrices of full
column rank and det(QTP) 6= 0. All solutions that commute with A were identified in [23]
provided A3 = 0. In [24], all the solutions were observed for A such that A2 = 0 and has a
rank equal to one or two.

However, by increasing the dimension of the input matrix A, direct methods cannot be
used in practice for solving the Equation (1) due to considerable cost in both time and space
requirements. This observation has led some analysts to suggest and rely on numerical
methods to discover solutions. Such solutions were obtained in [25] using the classic
Brouwer fixed point theorem for a nonsingular quasi-stochastic matrix A such that A−1

is stochastic. The authors of [26] proposed iterative methods for calculating commuting
solutions via the mean ergodic theorem for the diagonalizable matrix A. Some iterative
methods have been presented in [27] for an arbitrary matrix A. An iterative method based
on the Hermitian and skew-Hermitian splitting of the matrix A was introduced in [28].

Zeroing neural network (ZNN) dynamical system approach has been exploited in
solving the time-varying Yang–Baxter matrix equation X(t)A(t)X(t) = A(t)X(t)A(t),
where the given A(t) and the unknown X(t) are real time-varying square matrices. Various
ZNN dynamical systems were proposed in [29–31].

The rank optimization problem minAXA=B rank(B− XAX) related to the YB matrix
equation was considered in [32].

After all, the computation of the solutions to the rational YB-like equation in symbolic
implementation has not been investigated so far. The symbolic calculation is an essential
area of computer algebra and scientific computing. Moreover, there has not been any
efficient algorithm for solving YB-like equation if the matrix A is arbitrary and with entries
given as rational functions with an arbitrary number of variables with coefficients over
complex numbers. This paper contributes to resolving these issues. Recall that in [33],
the authors have developed effective formulae for calculating infinitely many solutions
using finite-precision arithmetic. Nevertheless, those methods do not perform well when
A is an ill-conditioned or a matrix with multivariate rational functional entries.

The global organization is based on the following sections. Main generalized inverses
and corresponding matrix equations that define them are surveyed in Section 2. Some nota-
tions, notions, and motivations are also introduced and discussed therein. Next, in Section 3,
we provide a theoretical basis for determining a specific variety of {2,5} generalized inverses
in terms of inner inverses. The required inner inverses can be generated as solutions of an
appropriate couple of linear matrix equations. Then in Section 4, we set up a correlation
between the explicit solutions to the YB-like matrix equation and {2,5}-inverses of some
appropriate matrix. Algorithms for solving the matrix Equation (1) are developed based on
introduced results in the previous section. These algorithms are easily implementable in
the programming language MATHEMATICA. Numerical experiments are given in Section 5 to
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support the claims given in this work. Finally, the conclusions of this paper will be drawn
in Section 6.

2. Preliminaries and Motivation

Let C(z) be the set of multivariate rational functions with complex coefficients in the
unknown variables z = (z1, . . . , zp). As usual, Cm×n (resp. C(z)m×n) denotes the set of
m× n matrices over C (resp. over C(z)), while Cm×n

r (resp. C(z)m×n
r ) stands for the subset

of Cm×n (resp. of C(z)m×n) which includes matrices of rank r. The symbol I stands for
the identity matrix of an appropriate order. By M∗, rank(M),R(M) and N (M), we mean
the conjugate-transpose, the rank, the range and the null space of a matrix M ∈ C(z)m×n,
respectively. The index of a square matrix M is defined as ind(M) = min{k|R(Mk) =
R(Mk+1)}. The following matrix equations

(1) MXM = M (2) XMX = X (3) MX = (MX)∗

(4) XM = (XM)∗ (1k) Mk+1X = Mk, k ≥ ind(M) (5) MX = XM

define different classes of generalized inverses of a nonzero matrix M ∈ C(z)m×n; see [34–38].
In fact, if Γ ⊆ {1, 2, 3, 4, 1k, 5}, then a complex matrix X is called a Γ-inverse of M if X sat-
isfies equation (n), for each n ∈ Γ. The notation M{i, j, . . . , k} stands for the set of all
Γ-inverses if Γ = {i, j, . . . , k}. Any matrix from M{i, j, . . . , k} is always denoted by M(i,j,...,k).
Particularly, M(1,2,3,4) = M†, called the Moore–Penrose inverse of M, which always exists
and is unique. Furthermore, there is a unique inverse M(2,5,1k) of a square matrix M called
the Drazin inverse, and MD is its label. The Drazin inverse coincides with the group inverse
X = M# if ind(A) = 1.

A selected X ∈ M{i, j, . . . , k} which fulfils R(X) = R(E) as well as N (X) = N (F)
will be termed as M(i,j,...,k)

R(E),N (F). A matrix is said to be an outer generalized inverse of M if it
belongs to M{2}. The fundamental result that describes the existence of outer inverse with
prescribed range and null space of M ∈ Cm×n

r is restated in Lemma 1.

Lemma 1 ([34], Theorem 2.14). Let M ∈ Cm×n
r , let T be a subspace of Cn of dimension t ≤ r,

and let S be a subspace of Cm of dimension m− t. Then, M has a {2}-inverse (or outer inverse) X
such that R(X) = T and N(X) = S if and only if MT

⊕
S = Cm, in which case X is unique and

is denoted by M(2)
T,S.

There exist a number of representations for outer inverses with determined range and
null space in the literature [39–45]. Now we revisit an important lemma for determining
M(2)

T,S.

Lemma 2 ([42]). For the same M, T, and S as in Lemma 1, the {2}-inverse M(2)
T,S exists if and

only if there exists G ∈ Cn×m such that R(G) = T, N (G) = S and rank(GMG) = rank(G).
Furthermore,

M(2)
T,S = (GM)#G = G(MG)# = G(GMG)(1)G.

Our main intention in this paper is the development of algorithms for finding the
solutions to the rational YB-like matrix equation XAX = AXA. These algorithms are
based on newly derived solution representations to the desired matrix equation. Towards
this aim, we generate a unique approach with the help of the class of {2,5}-inverses of a
nonzero matrix M = αI + βA, for appropriate α, β ∈ C. Such matrix inverses will be
named as commuting outer inverses of M. Developed algorithms are based on solving a
suitable system of linear matrix equations under exact rank conditions. The underlying
matrix equations are considered as minimization problems and can be solved using various
methods. We use exact and numerical solutions to these matrix equations in a computer
algebra system. In further steps, commuting outer inverses of M are used to define a
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relevant projector P and two appropriate choices of a matrix B. Each choice of B is finally
used in defining a collection of solutions to the YB-like matrix equation. This central goal is
developed through the following primary outcomes of this research.

(a) Several equivalent characterizations and initiated representations of M(2,5)
R(E),N (F)

are given.
(b) Necessary and sufficient conditions when M(2)

R(E),N (F) becomes M(2,5)
R(E),N (F) are investigated.

(c) Proposed results about the requirement M(2)
R(E),N (F) ∈ M{2, 5} as well as compu-

tational procedures for obtaining M(2,5)
R(E),N (F) are applied with the aim of deriving

explicit formulae to solve the YB-like Equations (1).
(d) Algorithms for solving YB–like matrix equation with constant entries or entries given

as rational functions with several variables are presented.
(e) Implementation of the proposed algorithms in the MATHEMATICA computer Alge-

bra system is developed, and illustrative examples are executed.

3. Existence, Characterizations and Representations of {2,5}-Inverses

This section will examine some crucial properties of {2,5}-inverses with the prescribed
range and null space of a square matrix M.

The forthcoming Theorem 1 and Corollary 1 provide equivalent conditions for the
existence and representations of M(2,5)

R(E),N (F) as well as M(2,5)
R(G),N (G)

. Domain of obtained
representations are complex square matrices and utilize solutions of a particular pair of
linear matrix equations. Consequently, some new relationships are established between
solutions to the linear matrix equations and obtaining {2,5}-inverses with determined range
and null space.

Theorem 1. Let M ∈ C(z)n×n, E ∈ C(z)n×k, and F ∈ C(z)l×n.

(a) The subsequent statements are mutually equivalent:

(i) M(2,5)
R(E),N (F) exists;

(ii) There exists U ∈ C(z)k×l satisfying E = MEUFE, and F = FEUFM;
(iii) There exist U, V ∈ C(z)k×l satisfying E = MEUFE, and F = FEVFM;
(iv) There exist U ∈ C(z)k×n and V ∈ C(z)n×l satisfying E = MEUE, F = FVFM,

and EU = VF;
(v) There exist U ∈ C(z)k×n and V ∈ C(z)n×l satisfying E = MVFE, F = FEUM,

and EU = VF;
(vi) E = ME(FME)(1)FE, and F = FE(FME)(1)FM, for some (equivalently every) inner

inverse (FME)(1) ∈ (FME){1}.
(b) If an arbitrary of the statements (i)–(vi) is valid, then

M(2,5)
R(E),N (F) = E(FME)(1)F = EUF,

for arbitrary (FME)(1) ∈ (FME){1} and an arbitrary U ∈ C(z)k×l satisfying E = MEUFE,
and F = FEUFM.

Proof. (a) (i)⇒ (ii): Let X = M(2,5)
R(E),N (F) be such that XMX = X, XM = MX,R(X) = R(E)

and N (X) = N (F). Then there exists U ∈ C(z)k×l which determines X by X = EUF. In
addition, E and F fulfill the conditions E = XW and F = VX, for some W ∈ C(z)n×k,
V ∈ C(z)l×n. This further implies

E = XW = (XMX)W = XM(XW) = XM(E) = (MX)E = M(X)E = MEUFE,

F = VX = V(XMX) = (VX)MX = (F)MX = F(XM) = F(X)M = FEUFM.
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(ii)⇒ (iii): This implication is clear.
(iii) ⇒ (vi): Assume the existence of U, V ∈ C(z)k×l such that E = MEUFE and

F = FEVFM. In that case

E = MEUFE = MEU(F)E = MEU(FEVFM)E = (MEUFE)VFME = EVFME.

It further yields

E = EVFME = EV(FME)

= EV
(

FME(FME)(1)FME
)
= (EVFME)(FME)(1)FME

= E(FME)(1)FME.

Hence,
E = MEUFE = M(E)UFE = M(E(FME)(1)FME)UFE

= ME(FME)(1)F(MEUFE) = ME(FME)(1)FE.

Similarly we can prove F = FE(FME)(1)FM.

(vi)⇒ (i): If (vi) holds, one obtains

E = ME(FME)(1)FE = ME(FME)(1)(F)E

= ME(FME)(1)(FE(FME)(1)FM)E = (ME(FME)(1)FE)(FME)(1)FME

= E(FME)(1)FME.

Thus, E = E(FME)(1)FME. Similarly, F = FME(FME)(1)F. Therefore, by ([41],
[Theorem 6]) and ([43], [Corollary 2.5]), M(2)

R(E),N (F) exists and M(2)
R(E),N (F) = E(FME)(1)F.

Notice that

M(2)
R(E),N (F)M = (E(FME)(1)F)M = (E)(FME)(1)FM

= (ME(FME)(1)FE)(FME)(1)FM = ME(FME)(1)(FE(FME)(1)FM)

= ME(FME)(1)(F) = M(E(FME)(1)F)

= MM(2)
R(E),N (F).

(ii)⇒ (iv): Suppose existence of U ∈ C(z)k×l satisfying E = MEUFE and F = FEUFM.
Such assumptions initiate

E = MEUFE = ME(UF)E,

F = FEUFM = F(EU)FM,

E(UF) = (EU)F,

which confirms (iv).
(iv)⇔ (v): This equivalence is evident.
(v)⇒ (i): Let the equations E = MVFE, F = FEUM and EU = VF are fulfilled for

some U ∈ C(z)k×n and V ∈ C(z)n×l . Consider X = EU = VF. Such conditions initiate

MVF = MV(F) = MV(FEUM) = (MVFE)UM = EUM,

which gives MX = XM. Also

XMX = (EU)M(EU) = (EUM)EU = (MVF)EU = (MVFE)U = EU = X.
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Now E = MVFE = (MVF)E = (EUM)E = (EU)ME = XME, which impliesR(X) =
R(E). In addition, based on F = FEUM = F(EUM) = F(MVF) = FM(VF) = FMX, it fol-
lows N (X) = N (F). Therefore, X = M(2,5)

R(E),N (F).

(b) From the proof of (i)⇒ (ii), we can see that X = M(2,5)
R(E),N (F) = EUF for U ∈ C(z)k×l .

Next from the proof of (vi)⇒(i), if E = ME(FME)(1)FE, and F = FE(FME)(1)FM, for some
(equivalently every) (FME)(1) ∈ (FME){1}, then M(2,5)

R(E),N (F) exists. Since the statements
(ii) and (vi) are equivalent, therefore E = MEUFE, and F = FEUFM imply U ∈ (FME){1}.
All these facts imply

M(2)
R(E),N (F) = EUF = E(FME)(1)F.

Hence, the proof is completed.

The following corollary is obtained as a consequence of Theorem 1.

Corollary 1. Let M, G ∈ C(z)n×n.

(a) The subsequent statements are mutually equivalent:

(i) M(2,5)
R(G),N (G)

exists;

(ii) There exists U ∈ C(z)n×n satisfying G = MGUG2 = G2UGM;
(iii) There exist U, V ∈ C(z)n×n satisfying G = MGUG2 = G2VGM;
(iv) There exist U, V ∈ C(z)n×n satisfying G = MGUG = GVGM, and GU = VG;
(v) There exist U, V ∈ C(z)n×n satisfying G = MVG2 = G2UM, and GU = VG;
(vi) G = MG(GMG)(1)G2 = G2(GMG)(1)GM, for some (equivalently every) (GMG)(1) ∈

(GMG){1}.
(b) If an arbitrary of the statements (i)-(vi) is valid, then

M(2,5)
R(G),N (G)

= G(GMG)(1)G = GUG,

for arbitrary fixed (GMG)(1) ∈ (GMG){1} and an arbitrary U ∈ C(z)n×n such that the
matrix equations G = MGUG2 = G2UGM are solvable.

Theorem 6 in [41] and Corollary 2.5 in [43] can be used for finding M(2)
R(E),N (F). In the

following Theorem 2, we examine specific conditions on ranges and null spaces which
provide commutativity of M(2)

R(E),N (F) with M.

Theorem 2. Let M ∈ C(z)n×n, E ∈ C(z)n×k, and F ∈ C(z)l×n be such that M(2)
R(E),N (F) exists,

i.e., rank(FME) = rank(E) = rank(F). Then the following statements are equivalent:

(i) M(2)
R(E),N (F) ∈ M{5};

(ii) E = MM(2)
R(E),N (F)E, and F = FM(2)

R(E),N (F)M;

(iii) R(E) ⊆ R(MM(2)
R(E),N (F)), and N (M(2)

R(E),N (F)M) ⊆ N (F);

(iv) R(E) = R(MM(2)
R(E),N (F)), and N (M(2)

R(E),N (F)M) = N (F);

(v) rank(E) = rank(MM(2)
R(E),N (F)), and rank(F) = rank(M(2)

R(E),N (F)M);

(vi) R(E) ⊆ R(ME), and N (FM) ⊆ N (F).

Proof. (i)⇒ (ii): Using E = M(2)
R(E),N (F)ME and F = FMM(2)

R(E),N (F) in conjunction with
(i), we obtain (ii).

(ii)⇒ (iii): This implication is obvious.
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(iii) ⇒ (i): Using R(E) ⊆ R(MM(2)
R(E),N (F)) and N (M(2)

R(E),N (F)M) ⊆ N (F), we

obtain E = MM(2)
R(E),N (F)E as well F = FM(2)

R(E),N (F)M. Since R(M(2)
R(E),N (F)) = R(E)

and N (M(2)
R(E),N (F)) = N (F), then M(2)

R(E),N (F) = EU = VF, for some U ∈ C(z)k×n and

V ∈ C(z)n×l . Therefore,

M(2)
R(E),N (F) = EU =

(
MM(2)

R(E),N (F)E
)

U = MM(2)
R(E),N (F)(EU) = MM(2)

R(E),N (F)M(2)
R(E),N (F),

and similarly M(2)
R(E),N (F) = M(2)

R(E),N (F)M(2)
R(E),N (F)M. Thus

MM(2)
R(E),N (F) = M

(
M(2)
R(E),N (F)M(2)

R(E),N (F)M
)
=
(

MM(2)
R(E),N (F)M(2)

R(E),N (F)

)
M

= M(2)
R(E),N (F)M.

(i)⇔ (iv): Since MM(2)
R(E),N (F) and M(2)

R(E),N (F)M are idempotents, then

MM(2)
R(E),N (F) = M(2)

R(E),N (F)M

⇔ R(MM(2)
R(E),N (F)) = R(M(2)

R(E),N (F)M) and N (MM(2)
R(E),N (F)) = N (M(2)

R(E),N (F)M)

⇔ R(MM(2)
R(E),N (F)) = R(M(2)

R(E),N (F)) and N (M(2)
R(E),N (F)) = N (M(2)

R(E),N (F)M)

⇔ R(MM(2)
R(E),N (F)) = R(E) and N (F) = N (M(2)

R(E),N (F)M).

(iv)⇔ (v): This implication is obvious.
(iv) ⇒ (vi): Using M(2)

R(E),N (F) = E(FME)(1)F from ([41], [Theorem 6]) or ([43],
[Corollary 2.5]), this part is evident.

(vi) ⇒ (ii): Based on R(M(2)
R(E),N (F)) = R(E) it is noticed from ([41], [Theorem 3])

and ([43], [Corollary 2.1]) that

M(2)
R(E),N (F) = E(ME)(1), (2)

for some (ME)(1) ∈ (ME){1}. Similarly, from Theorem 4 in [41] and Corollary 2.3 in [43],

M(2)
R(E),N (F) = (FM)(1)F, (3)

for some (FM)(1) ∈ (FM){1}. From Equations (2) and (3), it is concluded that M(2)
R(E),N (F) =

E(ME)(1) = (FM)(1)F. A further consequence of the inclusion R(E) ⊆ R(ME) =
R(ME(ME)(1)) = N (I −ME(ME)(1)) is

E = ME(ME)(1)E = M(E(ME)(1))E = MM(2)
R(E),N (F)E.

In the same way, N (FM) ⊆ N (F) yields F = FM(2)
R(E),N (F)M.

The upcoming result can be verified using Theorem 2.

Corollary 2. Let M, G ∈ C(z)n×n be such that M(2)
R(G),N (G)

exists. Then the following statements
are equivalent:

(i) M(2)
R(G),N (G)

∈ M{5};

(ii) G = MM(2)
R(G),N (G)

G = GM(2)
R(G),N (G)

M;

(iii) R(G) ⊆ R(MM(2)
R(G),N (G)

), and N (M(2)
R(G),N (G)

M) ⊆ N (G);
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(iv) R(G) = R(MM(2)
R(G),N (G)

), and N (M(2)
R(G),N (G)

M) = N (G);

(v) rank(G) = rank(MM(2)
R(G),N (G)

) = rank(M(2)
R(G),N (G)

M);

(vi) R(G) ⊆ R(MG), and N (GM) ⊆ N (G).

4. Commuting Outer Inverse-Based Solutions to Yang–Baxter-like Matrix Equation

Following the intention of the previous section, in this section we investigate the
possibility of solving the YB-like equation using obtained results about {2, 5}-inverses.
Before proceeding, we require results included in Lemma 3.

Lemma 3. Assume A, B ∈ C(z)n×n. Then, for arbitrary Y ∈ C(z)n×n,

X = A†B + (I − A† A)BAB† + (I − A† A)Y
(

I − BB†) (4)

is a solution to the YB-like matrix equation (1) iff B satisfies

ABA = B2, AA†B = B, BAB†B = BA. (5)

Proof. Due to ([33], [Lemma 2.3]), it is well-known that

AX = B, XB = BA, (6)

is consistent if and only if (iff) B satisfies (5). Moreover, corresponding to each B satisfy-
ing (5), the general solution to (6) is equal to (4).

Furthermore, in ([33], [Lemma 3.1]), it was shown that X0 solves (1) iff there exists an
appropriate matrix B which ensures that X0 is a solution to (6). This proves the lemma.

Corollary 3. Let A, B ∈ C(z)n×n and A be the nonsingular matrix. Then

X = A−1B (7)

is a solution to (1) iff B satisfies ABA = B2.

Proof. Since A is nonsingular, then, N (BB†) = N (B) = N (BA). Now using the fact
that BB† is idempotent, it follows that BAB†B = BA in (5) holds. Furthermore, by
A† = A−1, Equation (4) reduces to X = A−1B and AA†B = B in (5) is valid. This completes
the proof.

We define an infinite collection C(A) of complex numbers by

C(A) = {α, β ∈ C : αI + βA 6= 0}.

At this point, we prove the following existence result for the YB-like matrix equation
corresponding to an arbitrary square matrix A.

Theorem 3. Let A ∈ C(z)n×n be a given arbitrary matrix. Consider a nonzero matrix M =
αI + βA, where α, β ∈ C(A). Suppose E ∈ C(z)n×k, and F ∈ C(z)l×n be such that any of the
following assumptions (A1)–(A2) holds:

(A1) One of the statements (i)–(vi) of part (a) in Theorem 1 is true;

(A2) One of statements (i)–(vi) of part (a) in Theorem 2 is true and M(2)
R(E),N (F) exists.

Then P := PR(ME),N (F) = MM(2,5)
R(E),N (F) is an idempotent and commutes with A. Moreover,

for B ∈
{

A2P, A2(I − P)
}

, the matrix X defined by (4) (resp. (7)) is a solution to the singular
(resp. nonsingular) YB-like Equation (1).
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Proof. Suppose the assumption (A1) holds. Then it follows from part (a)(i) of Theorem 1
that M(2,5)

R(E),N (F) exists. Using the facts M(2,5)
R(E),N (F)MM(2,5)

R(E),N (F) = M(2,5)
R(E),N (F) and

MM(2,5)
R(E),N (F) = M(2,5)

R(E),N (F)M, it is clear that P is an idempotent and commutes with
M and hence with A. The first statement is verified. For the given choice of B, it follows
from [33] (Lemma 4.1) that the matrix B satisfies the conditions in (5). So by Lemma 3 (resp.
Corollary 3), the second assertion follows. The remaining proof under the assumption (A2)
is immediate.

In the same way, we can present the following conclusion.

Corollary 4. Let A ∈ C(z)n×n be arbitrary. Consider a nonzero matrix M = αI + βA, where
α, β ∈ C(A). Suppose G ∈ C(z)n×n be such that any of the following assumptions (AS1)–(AS2)
holds:

(AS1) One of the statements (i)–(vi) of part (a) in Corollary 1 is true;

(AS2) One of statements (i)–(vi) of part (a) in Corollary 2 is true, provided M(2)
R(G),N (G)

exists.

Then P := PR(MG),N (G) = MM(2,5)
R(G),N (G)

is an idempotent and commutes with A. Moreover,

for the matrix B ∈
{

A2P, A2(I − P)
}

, the matrix X obtained as in (4) (resp. (7)) is a solution to
the singular resp. nonsingular YB-like matrix Equation (1).

Remark 1. Let the matrix B be suggested by Theorem 3 or Corollary 4. Then,

(a) X represented by (4) will be an infinite family of solutions of the singular YB-like Equation (1),
since the involved matrix Y is arbitrary. In addition, the entries of X consist of yi,j’s if Y is
taken in the form Y =

[
yi,j
]
. According to (4.1) in singular case, unevaluated symbols yi,j’s

are incorporated into the elements of the resulting matrix X.
(b) X represented by (7) will be a unique solution to the nonsingular YB-like Equation (1).

Theorem 1 provides not only criteria for the existence of M(2,5)
R(E),N (F), but also a method

for detecting such an inverse. More precisely, the problem of determining {2,5}-inverse X
of M satisfying R(X) = R(E) and N (X) = N (F) reduces to finding a solution U to the
system E = MEUFE or F = FEUFM under specific constraints. Then {2, 5}-inverse X of
M satisfyingR(X) = R(E) andN (X) = N (F) can be obtained as X = EUF. On the other
hand, Theorem 3 is based on the usage of M(2,5)

R(E),N (F) to spot the solutions of the equation

XAX = AXA for a suitable matrix M ∈ C(z)n×n.

Remark 2. Since M(2,5)
R(E),N (F) ∈ M{2}R(E),N (F), it is clear from Corollary 2.5. in [43] that the

existence of M(2,5)
R(E),N (F) requires rank(FME) = rank(E) = rank(F). This condition will be

exploited when making a selection of matrices E and F.

Thus, we can state the Algorithm 1 for generating solutions to (1), according to the
results presented in Theorems 1 and 3.
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Algorithm 1 Solving the singular (resp. nonsingular) YB-like matrix Equation (1) using
Theorem 1 in conjunction with Theorem 3.

Require: The matrix A ∈ C(z)n×n.
1: Construct a matrix M = αI + βA, in which α, β ∈ C(A).
2: Choose suitable matrices E ∈ C(z)n×k and F ∈ C(z)l×n so that rank(FME) =

rank(E) = rank(F).
3: If the matrix equation E = MEUFE is consistent with respect to the unknown

U ∈ C(z)k×l , then continue, else go to Step 2:.
4: Compute the output M(2,5)

R(E),N (F) = EUF.

5: Calculate P := PR(ME),N (F) = MM(2,5)
R(E),N (F).

6: For each B ∈
{

A2P, A2(I − P)
}

, return X determined by (4) or (7), taking Y = [yi,j]n×n
in symbolic form.

7: End.

We recall that Theorem 6 in [41] and Corollary 2.5 in [43] deliver two frameworks
for computing M(2)

R(E),N (F) = E(FME)(1)F, in case rank(FME) = rank(E) = rank(F). The

first approach is based on the direct computation of (FME)(1) and the second one is enabled
in which (FME)(1) is calculated by solving a matrix equation EUFME = E or FMEUF = F.
On the other hand, Theorem 2 investigates equivalent axioms when M(2)

R(E),N (F) becomes

M(2,5)
R(E),N (F).

These consequences in association with Theorem 3 make it possible to present the
Algorithm 2 for producing solutions to (1).

Algorithm 2 Solving the singular (resp. nonsingular) YB-like matrix Equation (1) using
Theorem 2 in conjunction with Theorem 3.

Require: The matrix A ∈ C(z)n×n.
1: Construct a matrix M = αI + βA, in which α, β ∈ C(A).
2: Choose the suitable matrices: E ∈ C(z)n×k and F ∈ C(z)l×n so that rank(FME) =

rank(E) = rank(F).
3: Compute M(2)

R(E),N (F) = E(FME)(1) F.

4: If rank(E) = rank(F) = rank(MM(2)
R(E),N (F)) then continue, otherwise, go to step 2:.

5: Calculate P := PR(ME),N (F) = MM(2)
R(E),N (F).

6: For each B ∈
{

A2P, A2(I − P)
}

, return X determined by (4) or (7), taking Y = [yi,j]n×n
in symbolic form.

7: End.

5. Implementation Details and Illustrative Experiments

This section aims to describe main implementation details and develop test examples
to verify the practical applicability of theoretical findings discussed in the above sections.
The key point in implementing Algorithm 1 is to solve E = MEUFE, required in Step 3:.
On the other hand, the solution M(2)

R(E),N (F) = E(FME)(1) F based on an arbitrary inner

inverse (FME)(1) in Step 4: of Algorithm 2 can be calculated by ([41], [Theorem 6]) or ([43],
[Corollary 2.5]) using the following steps 3.1: and 3.2:
3.1: Solve the matrix equation EUFME = E with respect to unknown matrix U ∈ C(z)k×l .
3.2: Compute M(2)

R(E),N (F) = EUF.
So, the implementation Algorithm 2 is based on the matrix equation EUFME = E.
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Step 3: in Algorithm 1 and Step 3: in Algorithm 2 in the constant matrix environment
can be considered as the minimization problems

min ε(t) =


‖MEU(t)FE−E‖2

F
2 , in Algorithm 1

‖EU(t)FME−E‖2
F

2 , in Algorithm 2,
(8)

where t ≥ 0 is the time and U(t) is unknown state variables matrix. The Gradient Neural
Network (GNN) evolution from [41] based on the goal function (8) is defined by the
following GNN dynamical flow:

dU(t)
dt

= U̇(t) =

{
−γ(ME)T(MEU(t)FE− E)(FE)T, in Algorithm 1
−γET(EU(t)FME− E)(FME)T, in Algorithm 2.

The implementation of Step 3: in Algorithm 1 and Step 3: in Algorithm 2 in the
general multivariate case was proposed in [43], and it is based on symbolic capabilities of
programming package MATHEMATICA [46].

For a given matrix A and a suitable matrix B, the explicit formula (4) involves the
computation of generalized inverses A† and B†. It is worth mentioning that the Moore–
Penrose inverse of an arbitrary matrix can be evaluated in MATHEMATICA through the
built-in function PseudoInverse, whose implementation is based on its singular value
decomposition.

Example 1. Let us consider three-variable singular rational YB-like Equation (1), where

A =


z1 0 0 1− z1 z2 − z1
0 z3 0 1− z3 z2 − z3
z1 0 0 −z1 −z1
0 0 0 1 0
0 0 0 0 z2

 ∈ C(z1, z2, z3)
5×5.

This example is based on Algorithm 1 for the singular case, where M = A + I. Furthermore,
we take the following matrices E and F in conjunction with M:

E =


0 0 2 z2 + 1
0 z3 + 1 1− z3 z2 − z3
−1 0 1 1
0 0 2 0
0 0 0 z2 + 1

, F =


1 0 −1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

.

Here the matrices E and F are generated according to the rank conditions rank(FME) =
rank(E) = rank(F) The expression U = Table[Subscript[u,i,j], {i,4}, {j,4}] gener-
ates the 4× 4 matrix U = [ui,j] with unassigned symbols ui,j as entries. Let vars = Flatten[U];
then the general solution U is obtained using the MATHEMATICA command Solve[MEUFE==E,
vars]//Simplify or Solve[FEUFM==F, vars]//Simplify and it is as follows:

U =


1 0 − 3

4
−z2

2−2z2
(z2+1)2

0 1
(z3+1)2

(z3−1)(z3+3)
4(z3+1)2

−z2
2−2z2+z2

3+2z3
(z2+1)2(z3+1)2

0 0 1
4 0

0 0 0 1
(z2+1)2

.
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Therefore it is justifiable to apply Theorem 1, which produces the output

M(2,5)
R(E),N (F) = EUF =


0 0 0 1

2
1

z2+1
0 1

z3+1 0 z3−1
2(z3+1)

z3−z2
(z2+1)(z3+1)

−1 0 1 1 1
0 0 0 1

2 0
0 0 0 0 1

z2+1

.

Further, simple calculations confirm that

PR(ME),N (F) = MM(2,5)
R(E),N (F) =


0 0 0 1 1
0 1 0 0 0
−1 0 1 1 1
0 0 0 1 0
0 0 0 0 1


is idempotent and commutes with A. Since A is singular, X is given by (4); assuming Y =

[
yi,j
]

5×5,
for the matrix B = A2P, with P := PR(ME),N (F). Then one calculates

X =


0 0 0 1 z2
0 z3 0 1− z3 z2 − z3

1
3 (y3,1 − y3,4 − y3,5) 0 y3,3

1
3 (−y3,1 + y3,4 + y3,5)

1
3 (−y3,1 + y3,4 + y3,5)

0 0 0 1 0
0 0 0 0 z2

.

Finally, it is possible to show that X is a solution to (1). It should be observed that the elements
of X depend upon y3,1, y3,4 and y3,5 and hence X represents an infinite solution to (1). This certifies
Remark 1 (a). Similarly, X will be a solution when B = A2(I − P).

On the other hand, if we denote P′ := PR(ME′),N (F′) for

E′ =


z1 + 1 0

0 z3 + 1
z1 + 1 0

0 0
0 0

, F′ =
[

1 0 0 −1 −1
0 1 0 −1 −1

]
,

and choose B ∈
{

A2P′, A2(I − P′)
}

, it can be verified that X given by (4) is a solution to (1).

Example 2 ([29]). Let us suppose the one-variable nonsingular YB-like Equation (1) for

A =

[
sin t + 2 cos t
− cos t sin t + 3

]
∈ C(t)2×2.

Let M = A. The goal of this example is again to illustrate Algorithm 1 for the nonsingular
case in the situation E = F = G, where

G =

[ 1
2 (−1 + f (t)) cos t
− cos t 1

2 (1 + f (t))

]
with f (t) =

√
−1− 2 cos 2t. For this choice of G, the solution U =

[
ui,j
]

2×2 to the system
MGUG2 = G2UGM = G can be obtained similarly as in above example. As a confirmation, it is
equal to
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U =


u1,1 u1,2

u2,1

sec2 t((cos 4t + cos 2t(−2 f (t) sin t− 3 f (t) + 11)

+2 sin 3t + f (t) + 6)u1,1 + 2 cos t(( f (t) + 4) cos 2t

+ f (t) sin t + sin 3t + 3 f (t) + 2)(u1,2 − u2,1)−2 f (t) + 2)
−4 cos 2t + 4 f (t) sin t + 10 f (t)− 2

.

So, with the help of Corollary 1, we deduce

M(2,5)
R(G),N (G)

= GUG =

 −1+ f (t)
−1+5 f (t)−2 cos 2t+2 f (t) sin t − 2 cos t

1−5 f (t)+2 cos 2t−2 f (t) sin t
2 cos t

1−5 f (t)+2 cos 2t−2 f (t) sin t
1+ f (t)

−1+5 f (t)−2 cos 2t+2 f (t) sin t

.

Therefore, the matrix

PR(MG),N (G) = MM(2,5)
R(G),N (G)

=

 1
2
(−1+ f (t)

f (t)

) cos t
f (t)

− cos t
f (t)

1
2
( 1+ f (t)

f (t)

)


is an idempotent and commutes with A. Since A is nonsingular, let X be the singleton matrix of
the form (7). If P := PR(MG),N (G), then X = AP when B = A2P. In this situation, simplifica-
tions give

X =

 ( f (t)−1)(sin t+2)−2 cos2 t
2 f (t)

cos t(2 sin t+ f (t)+5)
2 f (t)

− cos t(2 sin t+ f (t)+5)
2 f (t)

( f (t)+1)(sin t+3)−2 cos2 t
2 f (t)

.

It can be checked that X is a solution to the matrix Equation (1). Likewise, X = A(I − P) by
putting B = A2(I − P) is also a solution.

If we choose the matrix

G′ =
[ 1

2 (−1− f (t)) cos t
− cos t 1

2 (1− f (t))

]
,

we can show that X is a different solution to (1), whenever B ∈
{

A2P′, A2(I − P′)
}

in which
P′ := PR(MG′),N (G′).

Example 3. Let n ∈ {100, 200, 300, . . . , 1000}. We deal with the constant YB-like matrix equa-
tions, where the complex matrix A[n] ∈ C(z)n×n is defined by

A[n] = (ai,j) =

{
− 2

n i, if i 6= j, i, j = 1, . . . , n,
2(n−j+1)

n i, if i = j, i, j = 1, . . . , n,

and i =
√
−1 is imaginary unit.

For a given n, here, it is easy to confirm that A[n] is nonsingular. We implemented the
Algorithm 2 in machine precision arithmetic to spot the solution to Equation (1) in A[n] for the
nonsingular case.

Let n be fixed. To illustrate the script, we take M = A[n] corresponding to the choice
E = F = G. In this example, G is taken as a singular matrix of index one commuting with M.

Since M is nonsingular, it is easy to verify that the declaration rank(GMG) = rank(G)

in Step 2 of the algorithm is satisfied. Consequently, by Lemma 2, M(2)
R(G),N (G)

exists. Notice

that rank(MM(2)
R(G),N (G)

) = rank(M(2)
R(G),N (G)

) = rank(G). This observation shows that the
condition in Step 4: of Algorithm 2 also holds.

Observe P := PR(MG),N (G) = MM(2,5)
R(G),N (G)

. Then by the representation (7), the required

approximation X[n] = A[n]P can be located, with the choice B = A2[n]P. Here we use the
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expression estabs(X[n]) = ‖A[n]X[n]A[n]− X[n]A[n]X[n]‖F to measure the absolute error and
to estimating the quality of X[n].

The results are displayed in Table 1. According to data involved in the table, X[n] is a nontrivial
solution because ‖X[n]‖F and ‖A[n]− X[n]‖F are nonzero. From the value of estabs(X[n]), it is
straightforward that X[n] is a reliable estimation of the solution from the point of accuracy.

The numerical reports and evidence in this section clearly show a good agreement with the
theoretical aspects of the paper.

Table 1. Frobenius-norm errors in Example 3.

n ‖X[n]‖F ‖A[n]− X[n]‖F estabs(X[n])

100 16.3841 114.985 3.22656× 10−10

200 23.1327 230.457 3.29207× 10−9

300 28.316 345.928 9.57585× 10−9

400 32.6874 461.398 3.06278× 10−8

500 36.5395 576.868 5.71372× 10−8

600 40.0225 692.339 1.12476× 10−7

700 43.2258 807.809 1.9046× 10−7

800 46.2075 923.279 2.71205× 10−7

900 49.0082 1038.75 3.48133× 10−7

1000 51.6572 1154.22 4.3975× 10−7

6. Conclusions

The Yang–Baxter-like matrix equation has been widely studied and utilized in numer-
ous fields of mathematics and physics. This research presents a valuable application of
{2.5}-inverses in solving the Yang–Baxter matrix equation. In order to achieve this aim, we
have described the set of {2, 5}-inverses (termed commuting outer inverses) with prede-
fined image and kernel as auxiliary results. Then the application of the given approach in
developing the solution structures for constant as well as rational YB-like matrix equations
is pointed out. In this way, algorithms defined on rational matrices are constructed based
on the correlation between the symbolic calculation of the aforementioned inverses and
derived explicit solutions of the matrix equation. The algorithm based on any proposed
formula can be implemented in some computer algebra systems. Implementing those
computational procedures in symbolic form, in the form of exact arithmetic and double-
precision arithmetic is also a concern. Thus, this paper has greatly extended the previous
work of [33].

Finally, some numerical experiments are performed to manifest the superiority of the
proposed methods.

The results obtained in this paper are another confirmation that generalized inverses
are closely related to solving the Yang–Baxter matrix equation. It is logical to assume that
generalized inverses can be used in many new ways in solving this complex problem. In
addition, it can be expected that other classes of generalized inverses are also included at
the basis of solutions to YB-like equations. One exciting area for research may be solving
the minimization problem (8) instead of finding the exact solution to embedded matrix
equations employing a symbolic programming package. In addition, the rank optimization
problem minAXA=B rank(B− XAX) could be solved in a number of different ways.

Author Contributions: Conceptualization: A.K.; Data curation: P.S.S. and G.S.; Formal analysis:
A.K., D.M., P.S.S. and G.S.; Funding acquisition: L.A.K.; Investigation: A.K., D.M., P.S.S. and G.S.;
Methodology: P.S.S.; Project administration, L.A.K.; Resources: L.A.K.; Software, A.K.; Supervision,
P.S.S. and G.S.; Validation, D.M.; Writing—original draft, D.M.; Writing—review and editing, L.A.K.
All authors have read and agreed to the published version of the manuscript.



Mathematics 2022, 10, 2738 15 of 16

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Ashim Kumar acknowledges the I. K. Gujral Punjab Technical University Ja-
landhar, Kapurthala for providing research support to him. Dijana Mosić and Predrag Stanimirović
are supported from the Ministry of Education, Science and Technological Development, Republic of
Serbia, Grants 451-03-68/2022-14/200124. Predrag Stanimirović is supported by the Science Fund of
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