
Citation: Stanovov, V.; Akhmedova,

S.; Semenkin, E. Dual-Population

Adaptive Differential Evolution

Algorithm L-NTADE. Mathematics

2022, 10, 4666. https://doi.org/

10.3390/math10244666

Academic Editors: Yu Xue, Chunlin

He and Ferrante Neri

Received: 21 November 2022

Accepted: 6 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dual-Population Adaptive Differential Evolution
Algorithm L-NTADE
Vladimir Stanovov 1,2,* , Shakhnaz Akhmedova 3 and Eugene Semenkin 1,2

1 School of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
2 Institute of Informatics and Telecommunication, Reshetnev Siberian State University of

Science and Technology, 660037 Krasnoyarsk, Russia
3 Independent Researcher, 12489 Berlin, Germany
* Correspondence: vladimirstanovov@yandex.ru

Abstract: This study proposes a dual-population algorithmic scheme for differential evolution and
specific mutation strategy. The first population contains the newest individuals, and is continuously
updated, whereas the other keeps the top individuals throughout the whole search process. The
proposed mutation strategy combines information from both populations. The proposed L-NTADE
algorithm (Linear population size reduction Newest and Top Adaptive Differential Evolution) follows
the L-SHADE approach by utilizing its parameter adaptation scheme and linear population size
reduction. The L-NTADE is tested on two benchmark sets, namely CEC 2017 and CEC 2022, and
demonstrates highly competitive results compared to the state-of-the-art methods. The deeper
analysis of the results shows that it displays different properties compared to known DE schemes.
The simplicity of L-NTADE coupled with its high efficiency make it a promising approach.

Keywords: differential evolution; population size; parameter adaptation

MSC: 65K10; 68W50

1. Introduction

Currently, the area of evolutionary algorithms (EA) is rapidly developing along with
other computational intelligence methods (CI) methods, such as neural networks (NN)
and fuzzy logic systems (FL). The heuristic optimization approaches proposed within EA
and swarm intelligence (SI) frameworks are aimed at finding the best possible algorithmic
schemes capable of solving complex global optimization problems [1]. Specific versions of
algorithms are developed for constrained, multi-objective, many-objective, Boolean, integer
and bilevel optimization [2]. Nevertheless, the algorithms proposed for single-objective
numerical problems often serve as a fundament for other directions of studies and are often
applied for solving complex engineering problems [3,4].

In recent years, differential evolution (DE) [5] has attracted the attention of many
researchers as, unlike other EA and swarm intelligence methods, such as genetic algorithms
(GA) [6], evolutionary strategies (ES) [7], particle swarm optimization (PSO) [8] and many
others [9,10], it is characterized by high efficiency and simplicity in implementation. This
is reflected in the number of participants in the recent optimization competitions, such
as the IEEE Congress on Evolutionary Computation (CEC), where most of the submitted
algorithms and winners are DE-based methods [11].

The studies on differential evolution are mainly concentrated on the problem of param-
eter adaptation as DE is known to be highly sensitive [12,13] to the three main parameters,
namely scaling factor, crossover rate and population size. Various adaptation schemes were
proposed, starting with the SaDE [14] algorithm, where the scaling factor was sampled
with normal distribution, while crossover rate was learned based on experience. Other
approaches, such as [15–17], used a predefined pool of parameter values. A relatively

Mathematics 2022, 10, 4666. https://doi.org/10.3390/math10244666 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244666
https://doi.org/10.3390/math10244666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1695-5798
https://orcid.org/0000-0003-2927-1974
https://orcid.org/0000-0002-3776-5707
https://doi.org/10.3390/math10244666
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244666?type=check_update&version=1

Mathematics 2022, 10, 4666 2 of 20

simple randomization of parameter values has been shown to perform well, as jDE [18]
has demonstrated, followed by similar approaches. The development of the JADE algo-
rithm [19], where memory cells were used to store successful values, was followed by
SHADE [20] as the most popular and the L-SHADE [21] with population size reduction, as
well as many others, such as [22]. Recent studies on differential evolution have resulted in
many approaches, such as TVDE (with time-varying strategy) [23], CSDE (with combined
mutation strategies) [24], qlDE (with Q-learning based parameter tuning strategy) [25],
MPPCEDE (with multi-population and multi-strategy) [26] and RL-HPSDE (with adap-
tation based on reinforcement learning) [27]. Attempts have been also made to realize
the automatic design of parameter adaptation in DE using genetic programming [28] and
neuroevolution [29].

However, the main algorithmic scheme of DE remains the same. In most studies, it
has a single population and an optional external archive, and the replacement occurs only
if an offspring is better than a parent. In some studies, there have been attempts to deviate
from the prevalent schemes by introducing hierarchical archives in HARD-DE [30], big and
small populations in j21 [31], junior and senior individuals in a DE-like AGSK [32], and
global replacement in GRDE [33]. Recently, the Unbounded DE (UDE) has been proposed
in [34], where the population may infinitely grow, and specific selection mechanisms are
applied to drive the search.

In this study, we further develop the ideas of UDE and propose a two-population DE
algorithm, with the first population called newest and the second population called top.
The newest population has a specific update rule, keeping the last good solutions, and
the top population keeping best found solutions during the entire search. The resulting
L-NTADE algorithm (Linear population size reduction Newest and Top Adaptive Differen-
tial Evolution) is considered in several modifications with various mutation strategies. The
algorithm is tested on the CEC 2017 [35] and CEC 2022 [36] benchmark sets and demon-
strates high efficiency and specific properties on some of the functions. The main features
of this study can be outlined as follows:

1. The new dual-population DE scheme with a version of the current-to-pbest mutation
strategy using individuals from the top population as one of the p% best is superior
compared to other strategies;

2. The new selection (replacement) rule for the newest population allows the algorithm
to significantly improve performance, compared to the case when classical selection
is used;

3. The proposed L-NTADE algorithm performs better on complex multimodal test problems.

The Section 2 contains an overview of related work, the Section 3 describes the pro-
posed approach, the Section 4 contains the experimental setup and results, then a discussion
of the results is provided, and the Section 5 concludes the paper.

2. Related Work
2.1. Differential Evolution

Differential evolution is a popular heuristic numerical optimization method, origi-
nally proposed by Storn and Price [37]. DE is a population-based method, so it starts by
randomly initializing a set of N individuals xi = (xi,1, xi,2, . . . , xi,D), i = 1, . . . , N within the
search range:

S = {xi ∈ RD|xi = (xi,1, xi,2, . . . , xi,D) : xi,j ∈ [xlb,j, xub,j]} (1)

where j = 1, . . . , D and D is the search space dimensionality. Each individual is generated
using uniform distribution:

xi,j = xlb,j + rand× (xub,j − xlb,j). (2)

Although DE was proposed for numerical single-objective unconstrained problems, it
can by modified for other types of problems [12]. The main feature of DE is the difference-

Mathematics 2022, 10, 4666 3 of 20

based mutation operator, which is a key component of the search process. There exist
several variants of mutation strategies, including rand/1, rand/2, best/1, best/2, current-to-
best/1 and current-to-pbest/1 [13]. The original version, rand/1, generates new a solution
as follows:

vi,j = xr1,j + F× (xr2,j − xr3,j), (3)

where vi is called the mutant or donor vector, xi,j, is the j-th coordinate of the i-th candidate
solution, the indexes i, r1, r2 and r3 are all mutually different, and F is the scaling factor
chosen from [0, 2] . The scaling factor parameter is one of the most important for DE as the
algorithm was shown to be highly sensitive to its values [5].

After the mutation, the crossover step is performed, which combines the generated
donor vector and the target vector used as a baseline in the mutation, i.e., the i-th individual
in the population. The resulting trial vector ui is usually generated with a binomial
crossover operator:

ui,j =

{
vi,j, if rand(0, 1) < Cr or j = jrand
xi,j, otherwise

. (4)

In this formula, Cr ∈ [0, 1] is the crossover rate, and jrand is a randomly chosen
index from [1, D]. The jrand index is required to make sure that at least one component
is inherited from the donor vector. Otherwise, evaluating a copy of an individual would
be a waste of computational resources. A recent study has shown that despite this fix, the
problem of duplicate individuals may still occur in DE [38].

Applying a mutation operator may result in solutions that are outside of the search
space boundaries. Hence, a specific bound constraint handling method (BCHM) should
be applied in DE. In particular, a popular method for this is called midpoint-target, where
each j-th (j = 1, . . . , D) coordinate of the i-th (i = 1, . . . , N) vector is returned to the interval
[xlb,j, xub,j] as follows:

ui,j =

{ xlb,j+xi,j
2 , if vi,j < xlb,j

xub,j+xi,j
2 , if vi,j > xub,j

. (5)

Here, if the j-th component of the mutant vector is greater than the upper boundary or
smaller than the lower boundary of the corresponding interval [xlb,j, xub,j], then its parent
vector xi is used to set the new value for this component. Note that this step can be applied
after mutation or after crossover.

The last step in the classical DE scheme is called selection, but unlike selection in a
genetic algorithm, it plays the role of a replacement operator. If the newly generated trial
vector ui is better than the corresponding target vector, then the replacement occurs:

xi =

{
ui, if f (ui) ≤ f (xi)

xi, if f (ui) > f (xi)
. (6)

Although this selection mechanism is known to be simple and efficient, there have been
some attempts to improve it, for example, by using the information about neighborhoods [39].

2.2. DE Modifications

Due to the high popularity of DE variants on evolutionary computation and the
huge number of studies, a comprehensive survey of all existing methods here would be
impractical. Interested readers are therefore advised to refer to surveys such as [12,13,40],
specialized studies about certain types of DE, for example [22] or operators [41], as well
as some of our previous studies on selective pressure [42] and parameter adaptation [43].
Nevertheless, here we will focus on some studies that are of particular interest for the
current work.

One of the important milestones of DE development was the JADE algorithm, pro-
posed by Zhang and Sanderson [44]. JADE introduced one of the most efficient mutation

Mathematics 2022, 10, 4666 4 of 20

strategies current-to-pbest/1, which is used in most DE variants today, and can be described
as follows:

vi,j = xi,j + F× (xpbest,j − xi,j) + F× (xr1,j − xr2,j), (7)

where pbest is the index of one of the pb ∗ 100% best individuals, different from i, r1
and r2. The two brackets containing differences implement two main features, namely
exploitation by moving towards one of the best solutions, and exploitation by adding a
difference vector between two randomly chosen solutions. Moreover, increasing F to 1
means generating solutions closer to the best and at the same time making a larger step
with a second difference, while smaller F values mean exploration close to the target vector.
JADE has also introduced the concept of an external archive A, a set of solutions that
were replaced by better ones during selection. The solutions from the archive are used
in current-to-pbest/1 instead of the last vector xr2. The archive was shown to be of major
importance for improving the search efficiency, and archive handling techniques are an
important field of studies [30,45].

The efficiency of JADE has inspired other researchers to develop its improved versions.
In particular, the SHADE algorithm proposed by Tanabe and Fukunaga [20] has improved
the parameter adaptation of JADE by introducing a set of H memory cells (MF,h, MCr,h),
each containing a couple of F and Cr values. For every mutation and crossover operator,
the parameter values are sampled as follows:{

F = randc(MF,k, 0.1)
Cr = randn(MCr,k, 0.1)

. (8)

Here, randc is a Cauchy distributed random value, randn is a normally distributed
random number, and k is chosen from [1, H] for each individual. If the generated Cr value
is outside the [0, 1] range, it is truncated to this range. If F is larger than 1, it is set to 1, and
if F is smaller than 0, it is generated again until it becomes positive. At the end of every
generation, the memory cell with the index h (iterated from 1 to H every generation) is
updated using the successful F and Cr values. The successful parameter values are the
ones which delivered an improvement in terms of fitness, i.e., if an offspring replaced a
parent, then F and Cr are stored in the SF and SCr arrays, and the improvement value
∆ f = | f (uj)− f (xj)| is stored in S∆ f . The update of the memory cell is performed by first
calculating the weighted Lehmer mean [46]:

meanwL =
∑
|S|
j=1 wjS2

j

∑
|S|
j=1 wjSj

, (9)

where wj =
S∆ f j

∑
|S|
k=1 S∆ f k

, S is either SCr or SF.

The values in the memory cell are updated as follows:{
Mt+1

F,k = 0.5(Mt
F,k + mean(wL,F))

Mt+1
Cr,k = 0.5(Mt

Cr,k + mean(wL,Cr))
, (10)

where t is the current iteration number.
In [43], the biased parameter adaptation was proposed, modifying the Lehmer mean

by introducing an additional parameter pm:

meanwL =
∑
|S|
j=1 wjS

pm
j

∑
|S|
j=1 wjS

pm−1
j

, (11)

The additional parameter allows the adaptation of either F or Cr to be skewed towards
smaller or larger values. The standard setting in L-SHADE is pm = 2, and in [43], it is

Mathematics 2022, 10, 4666 5 of 20

shown that increasing this value and generating a larger F may lead to much better results
in high-dimensional problems.

Another important modification of SHADE was L-SHADE [21], which introduced a
simple control strategy for population size, called Linear Population Size Reduction (LPSR).
The algorithm starts with NPmax individuals in the population, and gradually reduces their
number to NPmin individuals:

NPg+1 = round
(

NPmin − NPmax

NFEmax
NFE

)
+ NPmax, (12)

where NPmin = 4, NFE and NFEmax are the current and total number of available function
evaluations, respectively. At the end of every generation, the worst solutions are removed
from the population if it is required, and the archive size is also decreased. Some recent
studies have proposed L-SHADE variants with a very large population initialized by
orthogonal design [47].

In [42], the effects of selective pressure on DE performance were studied, and it was
shown that adding tournament or rank-based selection strategies may be beneficial. The
exponential rank-based selection was implemented by selecting an individual depending
on its fitness in a sorted array, with the ranks assigned as follows:

ranki = e
−kp·i

NP , (13)

where kp is the parameter controlling the pressure, and i is the individual number. Larger
ranks are assigned to better individuals, and a discrete distribution is used for selection.

The importance of the L-SHADE algorithm is proved by the number of modifications
proposed for it. For example, jSO [48] proposed a modified mutation strategy and specific
rules for parameter adaptation depending on the stage of the search, L-SHADE-RSP [49] in-
troduced rank-based selective pressure, LSHADE-SPACMA [50] used a hybridization with
CMA-ES, NL-SHADE-RSP [51] proposed non-linear population size reduction, crossover
rate sorting and adaptive archive usage, MLS-LSHADE [52] added multi-start local search,
and DB-LSHADE proposed distance-based parameter adaptation [53]. Although all these
studies have shown different possibilities of modern DE methods, according to a recent
study on Unbounded DE [34], “The notion of a population with individuals which are
replaced by newly generated individuals is a pervasive idea in differential evolution”. In
the next section, an algorithmic scheme that deviates from this concept is proposed.

3. Proposed Approach

Inspired by the experiments with unbounded population in UDE and supported
by several preliminary tests with this setup, the L-NTADE algorithm is proposed. The
L-NTADE maintains two populations, the first called the newest population, and the
second named the top population. Unlike UDE, both populations are limited in size as
the preliminary tests have shown that handling very large populations requires significant
computational efforts.

The L-NTADE algorithm starts by initializing a population of Nmax individuals xnew
i ,

i = 1, . . . , Nmax. After that, the individuals in this population are copied to the top popula-
tion xtop.

The L-NTADE uses variants of the current-to-pbest mutation strategy and the param-
eter adaptation from SHADE algorithm, but without an external archive. The mutation
strategies considered in this study are the following:

1. r-new-to-ptop/t/t: vi,j = xnew
r1,j + F× (xtop

pbest,j − xnew
i,j) + F× (xtop

r2,j − xtop
r3,j),

2. r-new-to-ptop/t/n: vi,j = xnew
r1,j + F× (xtop

pbest,j − xnew
i,j) + F× (xtop

r2,j − xnew
r3,j),

3. r-new-to-ptop/n/t: vi,j = xnew
r1,j + F× (xtop

pbest,j − xnew
i,j) + F× (xnew

r2,j − xtop
r3,j),

4. r-new-to-ptop/n/n: vi,j = xnew
r1,j + F× (xtop

pbest,j − xnew
i,j) + F× (xnew

r2,j − xnew
r3,j).

Mathematics 2022, 10, 4666 6 of 20

Here, the following notation is used. The terms r-new and r-top stand for the choice of a
random individual from the newest population or top population as a target solution, pnew
and ptop for the choice of one of the pb% best individuals in the newest or top populations,
and /t/n indicates the usage of individuals from either the top or new population in the
second difference. Note that the target vector is not the i-th vector as in most DE, but a
randomly chosen vector from one of the populations. These mutation strategies were chosen
as they represent different scenarios of applying individuals from one of the populations,
and here the two last variants are the extreme cases, when only one of the populations
is used, and the others are intermediate. The number of possible combinations here
is significant, and we only consider the cases for which the efficiency level is unclear.
Additionally, note that as the indexes are chosen from different populations, equal indexes
should be checked only if they are from the same population.

The control of the pb parameter is performed in the following way. At the beginning
of the search, pb is set to pbmax and it is linearly reduced down to pbmin:

pbg+1 = round(
pbmin − pbmax

NFEmax
NFE) + pbmax (14)

where g is the current generation number, and will be omitted further for simplicity.
Additionally, if the number of best individuals to choose from is less than 2, then it is set to
2. The linear decrease of pb during the search leads to increased greediness closer to the
end of the search.

The crossover step in L-NTADE is unchanged, i.e., the classical binomial crossover is
used to generate ui as in the L-SHADE algorithm. The bound constraint handling method
used is the midpoint target, described in the previous subsection.

The selection step, however, is one of the main features of the L-NTADE algorithm.
The main idea here is to imitate the behavior of the unbounded population from which the
newest and best individuals are chosen by maintaining two populations. The selection step
depends on the mutation strategy, in particular, if the target solution was chosen from the
top or newest population. The main idea for an update is still the same: if the trial vector is
better than the target, it should be saved. However, the new solutions are always saved to
the newest population. The index of an individual nc to which the trial vector is copied is
iterated from 1 to Ncur after every successful solution, and reset to 1 once it reaches Ncur.
The selection step can be described as follows:

xnc =

{
ui, if f (ui) ≤ f (xt|n

r1)

xnc, if f (ui) > f (xt|n
r1)

. (15)

Here, t|n means that the target vector can be chosen from either the top or newest
population according to the used mutation strategy. The successful trial vectors are copied
to the current newest population immediately, and due to the random choice of solutions for
mutation, can be used for generating other vectors within the same generation. Although
the choice of the pb% best individuals’ indexes is performed only once a generation, we
believe that there is not much sense in sorting and finding best solutions after every
successful selection. Moreover, this could possibly be a problem only for the 5th mutation
variant. All successful solutions are additionally stored in a temporary pool xtemp, and
at the end of the generation xtop and xtemp are joined, sorted and only Ncur individuals
are saved to xtop, where Ncur is the current size of both populations. In this way, the top
population always contains Ncur individuals from the whole search.

The population size control strategy is the same as in L-SHADE, with the only differ-
ence being that the newest and top populations are both linearly decreasing their size, and
with the same initial and final size. The following equation is true for both populations,
with Nmax and Nmin:

Ng
cur = round(

Nmin − Nmax

NFEmax
NFE) + Nmax (16)

Mathematics 2022, 10, 4666 7 of 20

The pseudocode of the L-NTADE algorithm is shown in Algorithm 1.

Algorithm 1 L-NTADE

1: Input: D, NFEmax, Nmax, goal function f (x)
2: Output: xtop

best, f (xtop
best)

3: Set N0
cur = Nmax, Nmin = 4, H = 5, MF,r = 0.3, MCr,r = 1

4: Set pb = 0.3, k = 1, g = 0, nc = 1, kp = 0, pm = 2
5: Initialize population (xnew

1,j , ..., xnew
Nmax ,j) randomly, calculate f (xnew)

6: Copy xnew to xtop, f (xnew) to f (xtop) NFE < NFEmax
7: SF = ∅, SCr = ∅, S∆ f = ∅
8: Rank either xnew by f (xnew) i = 1 to Ng

cur
9: r1 = randInt(Ng

cur)
10: Current memory index r = randInt[1, H + 1]
11: Crossover rate Cri = randn(MCr,r, 0.1)
12: Cri = min(1, max(0, Cr))
13: Fi = randc(MF,r, 0.1) Fi ≥ 0
14: Fi = min(1, Fi)
15: pbest = randInt(1, Ng

cur · pb)
16: r2 = randInt(1, Ng

cur) or with rank-based selection
17: r3 = randInt(1, Ng

cur) indexes r1, r2, r3 and pbest are different
18: Apply mutation to produce vi with Fi
19: Apply binomial crossover to produce ui with Cri
20: Apply bound constraint handling method
21: Calculate f (ui) f (ui) < f (xnew

r1)
22: ui → xtemp

23: F → SF, Cr → SCr
24: ∆ f = f (xnew

r1)− f (ui)
25: ∆ f → S∆ f
26: xnew

nc = ui
27: nc = mod(nc + 1, Ng

cur)

28: Get Ng+1
cur with LPSR

29: Join together xtop and xtemp, sort and copy best Ng+1
cur to xtop Ng

cur > Ng+1
cur

30: Remove worst individuals from xnew

31: Update MF,k, MCr,k
32: k = mod(k + 1, H)
33: g = g + 1
34: Return xtop

best, f (xtop
best)

The algorithm requires a goal function, problem dimension, total computational
resource and initial population size to run, and returns the best solution along with its
value, as the first two lines of Algorithm 1 show. After this, the main parameters are set in
lines 3 and 4. Line 5 describes the initialization step, where the newest population is filled
with random individuals. In line 6, the new population is copied to the top population,
together with goal function values. Next, the main loop is started, where at the beginning
of each generation in line 8, the sets of successful F, Cr and ∆ f values are emptied. In
line 9, the population of new individuals is sorted according to the fitness values, and the
ranks are assigned to the individuals. After this, the loop over individuals is started in
line 10. As the mutation strategy requires random indexes, in line 11 the first of them is
generated. Next, the current memory index is randomly chosen in line 12, and this index is
used to generate Cr and F values in lines 13–14 and 15–18, respectively. In lines 19–23, the
rest of the indexes for mutation are generated until they are mutually different. In line 21,
the r2 index can be generated randomly or by using ranks calculated in line 9 depending
on the mutation strategy used. Lines 24, 25 and 26 implement the main search operators
of DE, such as mutation and crossover, as well as a bound-constraint handling method.

Mathematics 2022, 10, 4666 8 of 20

After this, once the trial vector is generated, its fitness value is calculated in line 27. In
lines 28–35, the selection is performed, i.e., if the trial vector is better than the randomly
chosen one with index r1, then it is saved in the temporary population, and the current F
and Cr values are saved together with ∆ f . Additionally, in line 33, one of the individuals
from the new population is replaced by a trial vector, and the index of the individual to be
replaced is updated in line 34. Line 36 finishes the loop over individuals, and in line 37 the
population size is updated according to LPSR. Before shrinking the populations in lines
39–41, the top population and temporary population are joined together, sorted so that the
best individuals are saved in the top population in line 38. At the end of the generation, in
line 42 the memory cells are updated using SF, SCr and ∆ f , in line 43 the memory cell index
to be updated is incremented, and the generation number in line 44 does the same. Finally,
line 45 finishes the main loop over function evaluations, and line 45 returns the result.

The flow chart of the L-NTADE algorithm is shown in Figure 1.

Rank new population

Computational
resource spent?

Set algorithm parameters,
Initialize populations

Start

Start loop over individuals

Loop over
individuals finished?

Generate random indexes

Generate parameter values

Mutation, crossover

New solution is
better?

Save new solution

Save parameter values

Terminate

Return best solution

Update population size

Remove worst individuals

Update memory cells
No

Yes

Yes

No

No

Yes

Figure 1. Flow chart of the L-NTADE algorithm.

4. Experimental Setup and Results
4.1. Benchmark Functions and Parameters

The main idea of this study is to propose a different algorithmic scheme for DE, so the
experiments with L-NTADE are aimed at evaluating the sensitivity to the newest and top
populations’ size as well as to the used mutation strategy. The experiments are performed
on two benchmark suites, namely the CEC 2017 [35] and 2022 [36] Single Objective Bound
Constrained Numerical Optimization problems. These two benchmarks were chosen as
they have different settings, in particular, the available number of function evaluations
in CEC 2017 is smaller compared to CEC 2022, which makes it possible to evaluate the
efficiency of the proposed algorithm in different usage scenarios.

The CEC 2017 benchmark consists of 30 test functions with dimensions 10, 30, 50 and
100, the computational resource is set to 10,000D function evaluations (1× 105, 3× 105,
5× 105 and 1× 106 correspondingly), and 51 independent runs are made for every dimen-
sion and function.

The CEC 2022 benchmark consists of 12 test functions with dimensions 10 and 20,
with computational resource set to 2× 105 and 1× 106 evaluations, and 30 independent
runs are made for every test function and dimension.

The proposed algorithm was implemented in C++, compiled with GCC, and ran on
8 AMD Ryzen 3700 PRO and 7 AMD Ryzen 1700 with 8 cores each under Ubuntu Linux
20.04. The computations were paralleled using OpenMPI 4.0.3, and the network file system
(NFS) was used to store the results. The post-processing of the results, statistical tests and
visualizations were performed in Python 3.6.

Mathematics 2022, 10, 4666 9 of 20

4.2. Numerical Results

To test the L-NTADE algorithm, the initial population size Nmax, mutation strategy,
selective pressure parameter kp and scaling factor adaptation bias pm were changed. Nmax
changed from 15D to 25D with step 5D, four mutation strategies were considered, which
resulted in 150 to 250 individuals for D = 10 and 1500 to 2500 individuals for D = 100.
Further increase of the population size parameter resulted in performance deterioration in
most cases. The selective pressure was applied to the r2 index in all mutation strategies,
the ranking procedure was applied to the top population in r-new-to-ptop/t/t and r-new-to-
ptop/t/n, and to the newest population in two other mutations. The selective pressure was
applied only to r2 as the preliminary tests have shown that applying it to other indexes
does not bring any benefits. Two controlling values were used, kp = 0 and kp = 3, with the
former resulting in zero selective pressure (uniform distribution). The biased parameter
adaptation was applied only for scaling factor F as previous studies have shown that it has
little effect on the Cr. The tested values are pm = 2, the same as in L-SHADE, and pm = 4,
resulting in larger F values.

To compare the efficiency of different variants of L-NTADE, two main instruments
were used, the Mann–Whitney rank sum statistical test with normal approximation and tie-
breaking to compare a pair of variants. The normal approximation in the Mann–Whitney
test means that the resulting statistics is the standard score (Z-score). This simplifies
reasoning and allows Z-scores to be used directly to evaluate the level of difference between
a pair of algorithms. As the number of experiments for every function and dimension is
relatively large, 51 for CEC 2017 and 30 for CEC 2022, the usage of normal approximation is
justified. Therefore, in later tables and figures the standard score values and total standard
score over all test functions will be used to compare the efficiency of two algorithms
along with the number of wins, ties and/or losses. In cases where a conclusion about
the significance of the difference is required, the significance level will be set to 0.01. In
Table 1, each cell contains the number of wins/ties/losses and the total standard score
summed over all test functions when comparing L-NTADE and NL-SHADE-LBC, which
took second place in the CEC 2022 competition.

The comparison in Table 1 shows that the proposed L-NTADE algorithm can be better
or worse than the NL-SHADE-LBC depending on the used parameters. For example,
applying biased parameter adaptation always gives much worse performance, while the
selective pressure has a positive effect if the population size and problem dimension is
larger. As for the mutation strategies, in the 10D case, the r-new-to-ptop/t/n have shown the
best results, but other strategies have shown similar efficiency with and without selective
pressure. In the 20D case, the best strategy is r-new-to-ptop/n/t combined with selective
pressure and increased population size. However, without both modifications, it also
performs better than other strategies.

Tables 2 and 3 contain the results of testing L-NTADE on the CEC 2017 benchmark. The
competitor chosen for L-NTADE is the L-SHADE-RSP algorithm, the second-best approach
in the CEC 2018 competition, which used the same benchmark. The same combinations of
parameters were tested as in Table 1.

The results in Tables 2 and 3 show that the r-new-to-ptop/n/t strategy combined with
selective pressure and biased parameter adaptation has the best performance in most cases.
However, in the 10D case, the r-new-to-ptop/t/t strategy has the best performance with
Nmax = 20D, and the difference between variants with smaller and larger population sizes
is rather small. Other strategies here have much worse results. Nevertheless, the L-NTADE
is mostly superior compared to the L-SHADE-RSP algorithm. In the 30D case, the r-new-to-
ptop/n/t with Nmax = 20D, selective pressure and pm = 4 has the best performance, winning
L-SHADE-RSP on 17 functions out of 30, and losing in only two cases. The second-best
strategy here is r-new-to-ptop/n/n, which uses individuals only from the newest population
in the second difference. For other mutation strategies, it can be observed that biased
parameter adaptation significantly increases the performance of the L-NTADE.

Mathematics 2022, 10, 4666 10 of 20

Table 1. L-NTADE vs. NL-SHADE-LBC, CEC 2022, Mann–Whitney tests and total standard score.

D = 10
Selective pressure kp = 0 kp = 3

Scaling factor adaptation bias pm = 2 pm = 4 pm = 2 pm = 4

Nmax = 15D

r-new-to-ptop/t/t 6/3/3 0/5/7 6/2/4 0/6/6
19.8 −45.2 20.2 −44.5

r-new-to-ptop/t/n 6/4/2 1/4/7 5/4/3 1/4/7
21.9 −40.2 19.9 −42.5

r-new-to-ptop/n/t 6/2/4 1/2/9 6/3/3 1/3/8
18.4 −42.6 17.4 −41.1

r-new-to-ptop/n/n 6/3/3 1/3/8 6/3/3 1/4/7
19.4 −40.3 20.4 −42.2

Nmax = 20D

r-new-to-ptop/t/t 4/5/3 0/4/8 4/5/3 0/6/6
3.9 −48.7 3.7 −40.7

r-new-to-ptop/t/n 3/6/3 0/5/7 3/5/4 0/4/8
2.7 −44.8 3.8 −44.9

r-new-to-ptop/n/t 3/3/6 0/3/9 5/4/3 1/4/7
−20.3 −48.0 14.8 −40.2

r-new-to-ptop/n/n 3/4/5 0/5/7 5/5/2 0/5/7
−13.4 −43.3 15.9 −39.1

Nmax = 25D

r-new-to-ptop/t/t 0/4/8 0/4/8 0/4/8 0/5/7
−41.7 −47.9 −39.5 −44.0

r-new-to-ptop/t/n 0/6/6 0/5/7 0/5/7 0/4/8
−38.1 −44.3 −40.5 −49.3

r-new-to-ptop/n/t 0/3/9 0/4/8 2/2/8 0/3/9
−51.0 −52.3 −28.3 −50.4

r-new-to-ptop/n/n 0/6/6 0/4/8 2/6/4 0/4/8
−42.3 −50.2 −25.4 −46.3

D = 20
Selective pressure kp = 0 kp = 3

Scaling factor adaptation bias pm = 2 pm = 4 pm = 2 pm = 4

Nmax = 15D

r-new-to-ptop/t/t 5/4/3 4/4/4 5/5/2 4/4/4
8.8 −4.8 13.1 −2.9

r-new-to-ptop/t/n 5/5/2 2/5/5 6/3/3 3/4/5
18.8 −17.9 18.0 −17.1

r-new-to-ptop/n/t 6/5/1 3/4/5 5/6/1 4/4/4
25.6 −18.0 21.8 −6.2

r-new-to-ptop/n/n 5/5/2 4/3/5 6/3/3 3/4/5
19.5 −10.1 20.8 −8.2

Nmax = 20D

r-new-to-ptop/t/t 5/4/3 3/4/5 5/4/3 3/4/5
15.0 −16.3 10.4 −14.5

r-new-to-ptop/t/n 6/3/3 3/4/5 6/3/3 2/5/5
21.0 −15.8 23.0 −18.1

r-new-to-ptop/n/t 6/4/2 3/4/5 5/5/2 3/4/5
25.0 −13.0 26.7 −13.4

r-new-to-ptop/n/n 7/2/3 4/3/5 6/3/3 4/3/5
24.4 −10.9 25.5 −7.5

Nmax = 25D

r-new-to-ptop/t/t 5/4/3 3/4/5 5/4/3 3/4/5
10.1 −14.1 7.0 −14.6

r-new-to-ptop/t/n 5/4/3 3/4/5 7/2/3 3/4/5
21.3 −14.3 24.7 −16.0

r-new-to-ptop/n/t 4/5/3 3/4/5 6/4/2 3/5/4
3.9 −11.9 27.5 −12.1

r-new-to-ptop/n/n 6/4/2 4/3/5 5/5/2 4/3/5
23.1 −7.5 25.4 −5.4

Mathematics 2022, 10, 4666 11 of 20

Table 2. L-NTADE vs. L-SHADE-RSP, CEC 2017, 10D and 30D, Mann–Whitney tests and total
standard score.

D = 10
Selective pressure kp = 0 kp = 3

Scaling factor adaptation bias pm = 2 pm = 4 pm = 2 pm = 4

Nmax = 15D

r-new-to-ptop/t/t 8/16/6 9/16/5 7/18/5 9/15/6
8.9 20.5 5.9 16.9

r-new-to-ptop/t/n 7/16/7 8/13/9 6/17/7 6/15/9
−6.2 −5.0 −7.4 −9.7

r-new-to-ptop/n/t 5/19/6 7/15/8 4/18/8 5/14/11
−2.2 1.5 −20.2 −24.0

r-new-to-ptop/n/n 7/18/5 6/19/5 7/18/5 7/16/7
0.7 8.4 −0.9 0.2

Nmax = 20D

r-new-to-ptop/t/t 7/18/5 9/16/5 9/16/5 10/14/6
18.4 27.2 20.7 28.9

r-new-to-ptop/t/n 7/17/6 8/13/9 7/16/7 8/15/7
0.4 4.6 −0.3 9.2

r-new-to-ptop/n/t 7/17/6 7/15/8 8/14/8 8/12/10
12.2 5.3 −7.3 −12.8

r-new-to-ptop/n/n 7/19/4 7/18/5 5/20/5 7/16/7
2.6 16.3 5.9 3.7

Nmax = 25D

r-new-to-ptop/t/t 8/17/5 9/16/5 9/16/5 9/17/4
20.5 22.1 24.2 25.1

r-new-to-ptop/t/n 8/17/5 7/16/7 7/19/4 7/14/9
14.3 8.7 14.4 4.7

r-new-to-ptop/n/t 8/18/4 8/15/7 7/17/6 8/13/9
17.7 11.1 4.6 −11.2

r-new-to-ptop/n/n 8/20/2 6/19/5 8/14/8 6/20/4
13.4 12.4 6.3 7.1
D = 30

Selective pressure kp = 0 kp = 3
Scaling factor adaptation bias pm = 2 pm = 4 pm = 2 pm = 4

Nmax = 15D

r-new-to-ptop/t/t 15/5/10 17/9/4 15/5/10 17/10/3
45.1 118.8 43.5 117.0

r-new-to-ptop/t/n 14/7/9 17/10/3 15/7/8 17/10/3
33.5 108.2 33.7 109.8

r-new-to-ptop/n/t 17/6/7 18/10/2 18/7/5 18/10/2
84.4 120.8 103.4 121.2

r-new-to-ptop/n/n 15/8/7 19/8/3 16/8/6 19/8/3
57.3 117.7 76.7 124.0

Nmax = 20D

r-new-to-ptop/t/t 15/5/10 17/10/3 15/6/9 17/10/3
47.5 118.0 45.8 116.5

r-new-to-ptop/t/n 14/8/8 17/10/3 15/6/9 17/10/3
39.5 104.9 44.0 102.2

r-new-to-ptop/n/t 17/6/7 18/9/3 18/8/4 17/11/2
85.0 119.9 112.6 124.7

r-new-to-ptop/n/n 16/7/7 19/8/3 16/8/6 19/8/3
69.1 119.4 87.2 123.2

Nmax = 25D

r-new-to-ptop/t/t 15/4/11 16/11/3 15/6/9 17/10/3
49.0 106.3 52.8 116.7

r-new-to-ptop/t/n 15/6/9 16/11/3 16/5/9 17/10/3
43.7 94.0 43.1 102.1

r-new-to-ptop/n/t 18/5/7 16/11/3 18/8/4 17/11/2
91.4 111.1 110.6 117.0

r-new-to-ptop/n/n 17/6/7 17/10/3 17/8/5 17/10/3
74.7 109.2 93.8 114.7

Mathematics 2022, 10, 4666 12 of 20

Table 3. L-NTADE vs. L-SHADE-RSP, CEC 2017, 50D and 100D, Mann–Whitney tests and total
standard score.

D = 50
Selective pressure kp = 0 kp = 3

Scaling factor adaptation bias pm = 2 pm = 4 pm = 2 pm = 4

Nmax = 15D

r-new-to-ptop/t/t 13/3/14 17/8/5 13/2/15 16/8/6
−2.0 94.4 −2.2 94.1

r-new-to-ptop/t/n 12/1/17 16/6/8 13/0/17 16/6/8
−25.9 68.4 −26.1 67.2

r-new-to-ptop/n/t 13/6/11 19/7/4 15/5/10 21/7/2
18.6 119.2 48.0 140.3

r-new-to-ptop/n/n 13/1/16 17/7/6 12/4/14 17/7/6
−12.2 82.7 −0.5 98.2

Nmax = 20D

r-new-to-ptop/t/t 13/4/13 18/8/4 13/4/13 18/8/4
3.4 103.1 3.6 98.5

r-new-to-ptop/t/n 13/2/15 16/6/8 13/2/15 16/7/7
−17.5 69.4 −16.9 71.1

r-new-to-ptop/n/t 13/7/10 19/7/4 15/7/8 20/8/2
33.5 122.3 54.2 141.8

r-new-to-ptop/n/n 13/3/14 17/7/6 12/5/13 18/7/5
−8.5 87.4 4.9 105.9

Nmax = 25D

r-new-to-ptop/t/t 13/3/14 17/10/3 13/4/13 16/10/4
1.8 96.2 7.3 94.9

r-new-to-ptop/t/n 13/3/14 16/7/7 13/3/14 15/7/8
−10.5 72.2 −13.4 71.2

r-new-to-ptop/n/t 13/6/11 19/7/4 16/5/9 21/7/2
33.4 112.6 62.8 141.5

r-new-to-ptop/n/n 13/2/15 18/5/7 12/7/11 18/6/6
−6.3 87.4 6.0 106.5
D = 100

Selective pressure kp = 0 kp = 3
Scaling factor adaptation bias pm = 2 pm = 4 pm = 2 pm = 4

Nmax = 15D

r-new-to-ptop/t/t 11/0/19 14/7/9 11/0/19 14/7/9
−65.8 50.7 −66.2 46.1

r-new-to-ptop/t/n 11/0/19 12/2/16 10/1/19 12/3/15
−68.7 −2.5 −73.1 1.3

r-new-to-ptop/n/t 11/1/18 16/6/8 11/3/16 19/5/6
−49.8 77.2 −37.3 107.3

r-new-to-ptop/n/n 10/1/19 14/3/13 10/1/19 15/5/10
−67.2 26.0 −63.5 54.6

Nmax = 20D

r-new-to-ptop/t/t 11/0/19 15/6/9 11/0/19 16/5/9
−64.8 62.4 −63.7 60.8

r-new-to-ptop/t/n 10/1/19 12/5/13 10/1/19 13/4/13
−69.1 11.4 −69.9 13.4

r-new-to-ptop/n/t 12/1/17 19/3/8 12/1/17 20/4/6
−40.3 86.6 −31.6 120.5

r-new-to-ptop/n/n 10/1/19 14/6/10 10/1/19 15/7/8
−68.2 32.8 −63.1 65.1

Nmax = 25D

r-new-to-ptop/t/t 11/0/19 17/4/9 11/0/19 17/4/9
−64.5 63.1 −65.5 64.5

r-new-to-ptop/t/n 10/1/19 13/5/12 10/1/19 12/5/13
−70.5 19.4 −67.1 14.1

r-new-to-ptop/n/t 12/1/17 18/4/8 12/0/18 22/3/5
−43.3 88.7 −32.8 126.3

r-new-to-ptop/n/n 10/1/19 14/6/10 10/0/20 17/5/8
−66.7 32.4 −66.1 76.8

In the 50D case, the best-performing variant is exactly the same, i.e., r-new-to-ptop/n/t
with Nmax = 20D, selective pressure and pm = 4. Here, it can be observed that the effect
of the population size is minor, unlike experiments on the CEC 2022 benchmark. The

Mathematics 2022, 10, 4666 13 of 20

exponential rank-based selective pressure improves the performance in most cases, but
this improvement is rather limited, unlike the improvement due to the biased parameter
adaptation. In the 100D case, the same conclusions are applicable, although the selective
pressure here has a much larger effect, especially for the r-new-to-ptop/n/t mutation strategy.

Considering the results above, for the next experiments, the following parameters
were chosen. For CEC 2022, Nmax = 15D, kp = 0, pm = 2, and the mutation strategy is
r-new-to-ptop/n/t. For CEC 2017, the population size is changed to Nmax = 20D, kp = 3,
pm = 4, and the mutation strategy is r-new-to-ptop/n/t. Table 4 shows the comparison of
L-NTADE with alternative approaches on the CEC 2022 benchmark, including the top three
algorithms (EA4eig [54], NL-SHADE-LBC [55] and NL-SHADE-RSP-MID [56]). The values
in the table are the number of wins/ties/losses (total standard score).

Table 4. Mann–Whitney tests of L-NTADE against the competition top 3, CEC 2022, and other
approaches, number of wins/ties/losses and total standard score.

Algorithm 10D 20D
L-NTADE 0/12/0 (0.0) 0/12/0 (0.0)

EA4eig [54] 6/2/4 (6.94) 6/2/4 (9.38)
NL-SHADE-LBC [55] 6/2/4 (18.40) 6/5/1 (25.63)

NL-SHADE-RSP-MID [56] 5/3/4 (8.69) 8/1/3 (36.29)
L-SHADE-RSP [49] 7/1/4 (25.19) 5/5/2 (17.71)

NL-SHADE-RSP [51] 7/2/3 (26.78) 8/3/1 (39.26)
MLS-LSHADE [52] 8/1/3 (31.93) 6/2/4 (20.11)

APGSK-IMODE [57] 7/3/2 (38.99) 9/1/2 (47.44)
MadDE [58] 9/2/1 (46.54) 8/2/2 (37.17)

As Table 4 shows, L-NTADE is capable of outperforming the best algorithms partici-
pating in the CEC 2022 competition as well as other approaches. The summed standard
score gives additional information, allowing different performance levels to be observed
with similar numbers of wins and losses. Table 5 shows the comparison on the CEC 2017
benchmark, and the same notation is used.

Table 5. Mann–Whitney tests of L-NTADE against other approaches, CEC 2017, number of
wins/ties/losses and total standard score.

Algorithm 10D 30D
L-NTADE 0/30/0 (0.0) 0/30/0 (0.0)

L-SHADE-RSP [49] 8/12/10 (-12.81) 17/11/2 (124.67)
LSHADE-SPACMA [50] 9/12/9 (-17.63) 13/10/7 (50.41)

jSO [48] 7/13/10 (-14.98) 18/11/1 (133.69)
EBOwithCMAR [59] 6/13/11 (-46.46) 15/9/6 (66.78)

Algorithm 50D 100D
L-NTADE 0/30/0 (0.0) 0/30/0 (0.0)

L-SHADE-RSP [49] 20/8/2 (141.76) 20/4/6 (120.46)
LSHADE-SPACMA [50] 13/5/12 (2.26) 11/3/16 (-33.34)

jSO [48] 21/7/2 (158.53) 24/2/4 (147.53)
EBOwithCMAR [59] 19/6/5 (114.56) 19/4/7 (94.46)

The performance of L-NTADE in the 10D case, according to Table 5, is inferior com-
pared to other approaches, while for other dimensions it is much better. This can be
explained by the fact that the best mutation strategy for 10D is not the one used in the
experiments in Table 5. This is done for versatility. In the 30D case, L-NTADE outperforms
all other methods, but in 50D it has similar performance to LSHADE-SPACMA. In 100D,
the only algorithm with better performance is again LSHADE-SPACMA, probably due to
the hybridization with CMA-ES.

To evaluate the computational efficiency of L-NTADE, the CEC 2022 benchmark
was used, for which the time complexity is estimated by calculating the time required
to calculate a set of mathematical expressions (T0), evaluate the first test function (T1)

Mathematics 2022, 10, 4666 14 of 20

and run the algorithm on this test function five times to obtain the average (T2). The
resulting value is calculated as (T2− T1)/T0 [36]. The comparison results of L-NTADE
with NL-SHADE-RSP and NL-SHADE-LBC are given in Table 6.

Table 6. Computational complexity of L-NTADE compared with NL-SHADE-LBC and NL-SHADE-
RSP on CEC 2022 benchmark.

L-NTADE

D T0 T1 T2 (T2− T1)/T0

D = 10 8× 10−6 2.4× 10−5 1.268× 10−4 12.85
D = 20 8× 10−6 7.2× 10−5 2.052× 10−4 16.65

NL-SHADE-LBC

D T0 T1 T2 (T2− T1)/T0

D = 10 8× 10−6 2.4× 10−5 1.330× 10−4 13.63
D = 20 8× 10−6 7.2× 10−5 2.570× 10−4 23.15

NL-SHADE-RSP

D T0 T1 T2 (T2− T1)/T0

D = 10 8× 10−6 2.3× 10−5 1.110× 10−4 11.00
D = 20 8× 10−6 7.3× 10−5 1.774× 10−4 13.05

The comparison in Table 6 demonstrates that the complexity of L-NTADE is compa-
rable with other similar approaches, and the usage of an additional population does not
result in significant additional effort.

The presented results of the experiments have shown that the algorithmic scheme
of L-NTADE has a certain potential, but for a better understanding of the reasons of its
performance, several additional tests were performed. For a deeper dive into the algorithm,
the histograms of pairwise Euclidean distances between all individuals were built on every
generation for both the top and the newest population. These histograms were color-
coded and built on a heatmap together with the average distance. Figure 2 show these
histograms on F5, CEC 2017, shifted and rotated Rastrigin’s Function, 10D, Figure 3 shows
F17, hybrid Function (7) (Katsuura, Ackley’s, Expanded Griewank’s plus Rosenbrock’s,
Modified Schwefel’s, Rastrigin’s) and Figure 4 shows F29, composition Function (9) (hybrid
Function (5), hybrid Function (8), hybrid Function (9)) [35].

The distance histograms in Figure 2 demonstrate a significant difference between the
top and newest populations. In particular, the top population after the initial convergence
process remains in a relatively steady state, as can be seen by many horizontal lines, each
corresponding to a point near a local minimum (which are intrinsic for Rastrigin’s function).
The newest population, on the other hand, is continuously updated, resulting in a noise-like
image. After the first third, when populations are relatively similar, they split their roles
into keeping the information about potentially interesting solutions and actively searching
for better ones. At the end of the search, it can be observed that the top population stays
with four best solutions, while the newest continues attempts to improve.

Figure 3 shows a similar situation, where both populations tend to converge in the
first 500 generations and then split into many groups corresponding to local optima. At
around generation 900, one of the areas of local search dominates the other ones, which are
deleted, and another phase of active convergence begins. At a certain point after generation
1300, the top population is stuck, which is again seen by horizontal lines, but the newest
population continues the search, giving a similar noise-like picture in the second half of the
search process.

In Figure 4, similar trends can be observed. However, now there are stages when even
the newest population may get stuck, for example around generation 1700. Nevertheless,
the search process continues further, generating different solutions in the newest population
and transferring them into the top population.

Mathematics 2022, 10, 4666 15 of 20

Figure 2. Heatmap of pairwise distance histograms on every generation, F5, CEC 2017, 10D.

Figure 3. Heatmap of pairwise distance histograms on every generation, F17, CEC 2017, 10D.

Mathematics 2022, 10, 4666 16 of 20

Figure 4. Heatmap of pairwise distance histograms on every generation, F29, CEC 2017, 10D.

5. Discussion

The experimental results in the previous section have demonstrated that the concepts
proposed in the UDE algorithm [34] can be efficiently utilized, for example, in the way it
is done in L-NTADE. The proposed approach uses a specific update rule for the newest
population, which constantly replaces solutions with more efficient ones, but unlike classical
DE selection, there is a chance that a better solution will be replaced by a worse one. At
the same time, all solutions with high fitness are always stored in the top population. The
ongoing update of the newest population is probably one of the reasons for the different
behavior of L-NTADE compared to NL-SHADE-LBC, L-SHADE-RSP and other methods,
which was observed in distance histograms. Additionally, utilizing two populations instead
of one allows L-NTADE to solve some of the problems more efficiently, especially relatively
complex hybrid and composition functions.

As for the mutation strategies tested, r-new-to-ptop/n/t, r-new-to-ptop/t/n and r-new-to-
ptop/n/n are of interest. Combining the top and new vectors in the second difference appears
to have a positive effect on the final efficiency. Additionally, the r-new-to-ptop/n/t strategy,
which performed best overall, uses a directed second difference. The first difference
between the randomly chosen newest and one of the pb% top vectors is in fact a point on
a line connecting these two vectors, and the position of this point is controlled by F. The
second difference does a similar thing, i.e., it makes a step from the newest vector to one of
the top vectors, i.e., towards better solutions. In the experiments with rank-based selective
pressure in L-SHADE-RSP, NL-SHADE-RSP and NL-SHADE-LBC, a similar structure of

Mathematics 2022, 10, 4666 17 of 20

mutation strategy was used, i.e., in the second difference, the direction of step is mainly
towards better solutions. This statement can also be supported by the fact that r-new-to-
ptop/n/t was able to perform better than most other methods in the 100D case of CEC 2017
functions, and in a study on selective pressure effects [42], it was shown that larger selective
pressure has a positive effect in high-dimensional cases. At the same time, going in the
opposite direction, from better solutions to randomly chosen ones when using r-new-to-
ptop/t/n does not bring any benefits. Of course, other mutation strategies can be proposed
for L-NTADE, but testing all possible variants is beyond the scope of the current study.

One of the disadvantages of L-NTADE is that it can be very sensitive to the population
size, as the experiments on CEC 2022 have shown. However, for CEC 2017 this was not the
case. Moreover, for CEC 2017, the selective pressure and biased scaling factor F adaptation
worked well, but failed for CEC 2022. Considering the fact that these benchmarks mainly
differ in the amount of computational resources available, a conclusion can be drawn. If
the computational resource is relatively small, around 10000D, then selective pressure
and biased parameter adaptation should be used. Otherwise, the population size should
be chosen carefully, but selective pressure may help to achieve better results with a large
population size. The tested version of L-NTADE is a baseline, and it can be further improved
by introducing modifications proposed for other DE-based approaches. For example:

1. Adding an archive set and a specifically developed update strategies for it;
2. Adding crossover rate sorting;
3. Introducing a control strategy for the pb% parameter;
4. Developing new parameter adaptation strategies, suitable for L-NTADE;
5. Developing adaptive mechanisms for switching between mutation strategies during

the algorithm run;
6. Creating hybrids of L-NTADE with other approaches.

The mentioned possible ways of improving L-NTADE are subjects for further studies.

6. Conclusions

This study proposed a new algorithmic scheme for differential evolution, which
uses two populations and new mutation strategies. The performed experiments have
shown that the developed L-NTADE is a highly competitive approach, which is able to
outperform some of the state-of-the-art algorithms on popular benchmarks CEC 2017
and CEC 2022, especially on complex multi-modal functions. The proposed algorithm is
relatively easy to implement as it is a non-hybrid method, and it can be further improved
by adding modifications proposed for other DE methods. Unlike most of the DE versions,
L-NTADE does not use the greedy selection strategy, but instead maintains two populations,
one keeping the best solutions, with the other continuously updating. The results and
analysis of algorithm behavior have demonstrated the advantages of such a scheme, i.e., the
algorithm keeps the search process running all the time. One of the drawbacks of L-NTADE
is its sensitivity to the population size parameter. However, all known DE algorithms
have the same problem. Further studies of the proposed algorithmic scheme may include
experimenting with replacement strategies in the population of new individuals and setting
a different size for the new and top populations with specific control strategies.

Author Contributions: Conceptualization, V.S. and S.A.; methodology, V.S., S.A. and E.S.; software,
V.S. and E.S.; validation, V.S., S.A. and E.S.; formal analysis, S.A.; investigation, V.S.; resources, E.S.
and V.S.; data curation, E.S.; writing—original draft preparation, V.S. and S.A.; writing—review
and editing, V.S.; visualization, S.A. and V.S.; supervision, E.S.; project administration, E.S. funding
acquisition, S.A. and V.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, Grant No. 075-15-2022-1121.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 4666 18 of 20

Abbreviations

The following abbreviations are used in this manuscript:

CI Computational Intelligence
NN Neural Networks
FL Fuzzy Logic
SI Swarm Intelligence
EA Evolutionary Algorithms
GA Genetic Algorithms
ES Evolutionary Strategies
PSO Particle Swarm Optimization
DE Differential Evolution
CEC Congress on Evolutionary Computation
SHADE Success-History Adaptive Differential Evolution
LPSR Linear Population Size Reduction
NLPSR Non-Linear Population Size Reduction
LBC Linear Bias Change
UDE Unbounded Differential Evolution
L-NTADE Linear population size reduction Newest and Top Adaptive Differential Evolution

References
1. Sloss, A.N.; Gustafson, S. 2019 Evolutionary Algorithms Review. In Proceedings of the Genetic Programming Theory and

Practice, East Lansing, MI, USA, 16–19 May 2019.
2. Sinha, A.; Malo, P.; Deb, K. A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications.

IEEE Trans. Evol. Comput. 2018, 22, 276–295. [CrossRef]
3. Alkayem, N.F.; Cao, M.; Shen, L.; Fu, R.; Sumarac, D. The combined social engineering particle swarm optimization for real-world

engineering problems: A case study of model-based structural health monitoring. Appl. Soft Comput. 2022, 123, 108919. [CrossRef]
4. Alkayem, N.F.; Shen, L.; Al-hababi, T.; Qian, X.; Cao, M. Inverse Analysis of Structural Damage Based on the Modal Kinetic

and Strain Energies with the Novel Oppositional Unified Particle Swarm Gradient-Based Optimizer. Appl. Sci. 2022, 12, 11689.
[CrossRef]

5. Price, K.; Storn, R.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Springer: Berlin/Heidelberg,
Germany, 2005.

6. Ali, M.; Awad, N.H.; Suganthan, P.; Shatnawi, A.; Reynolds, R. An improved class of real-coded Genetic Algorithms for numerical
optimization. Neurocomputing 2018, 275, 155–166. [CrossRef]

7. Maheswaranathan, N.; Metz, L.; Tucker, G.; Sohl-Dickstein, J. Guided Evolutionary Strategies: Escaping the Curse of Dimension-
ality in Random Search. 2018. Available online: https://openreview.net/forum?id=B1xFxh0cKX (accessed on 5 November 2022).

8. Bonyadi, M.; Michalewicz, Z. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review. Evol.
Comput. 2017, 25, 1–54. [CrossRef] [PubMed]

9. Beyer, H.; Sendhoff, B. Simplify your covariance matrix adaptation evolution strategy. IEEE Trans. Evol. Comput. 2017, 21, 746–759.
[CrossRef]

10. Kar, A. Bio inspired computing—A review of algorithms and scope of applications. Expert Syst. Appl. 2016, 59, 20–32. [CrossRef]
11. Skvorc, U.; Eftimov, T.; Korosec, P. CEC Real-Parameter Optimization Competitions: Progress from 2013 to 2018. In Proceedings

of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 3126–3133.
12. Das, S.; Suganthan, P. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [CrossRef]
13. Das, S.; Mullick, S.; Suganthan, P. Recent advances in differential evolution—An updated survey. Swarm Evol. Comput. 2016,

27, 1–30. [CrossRef]
14. Qin, A.; Suganthan, P. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the IEEE

Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; pp. 1785–1791. [CrossRef]
15. dos Santos Coelho, L.; Ayala, H.V.H.; Mariani, V.C. A self-adaptive chaotic differential evolution algorithm using gamma

distribution for unconstrained global optimization. Appl. Math. Comput. 2014, 234, 452–459. [CrossRef]
16. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and

mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [CrossRef]
17. Gong, W.; Fialho, Á.; Cai, Z.; Li, H. Adaptive strategy selection in differential evolution for numerical optimization: An empirical

study. Inf. Sci. 2011, 181, 5364–5386. [CrossRef]
18. Brest, J.; Greiner, S.; Boškovic, B.; Mernik, M.; Žumer, V. Self-adapting control parameters in differential evolution: A comparative

study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]
19. Zhang, J.; Sanderson, A.C. JADE: Self-adaptive differential evolution with fast and reliable convergence performance. In

Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2251–2258.

http://doi.org/10.1109/TEVC.2017.2712906
http://dx.doi.org/10.1016/j.asoc.2022.108919
http://dx.doi.org/10.3390/app122211689
http://dx.doi.org/10.1016/j.neucom.2017.05.054
https://openreview.net/forum?id=B1xFxh0cKX
http://dx.doi.org/10.1162/EVCO_r_00180
http://www.ncbi.nlm.nih.gov/pubmed/26953883
http://dx.doi.org/10.1109/TEVC.2017.2680320
http://dx.doi.org/10.1016/j.eswa.2016.04.018
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1016/j.swevo.2016.01.004
http://dx.doi.org/10.1109/ CEC.2005.1554904
http://dx.doi.org/10.1016/j.amc.2014.01.159
http://dx.doi.org/10.1016/j.asoc.2010.04.024
http://dx.doi.org/10.1016/j.ins.2011.07.049
http://dx.doi.org/10.1109/TEVC.2006.872133

Mathematics 2022, 10, 4666 19 of 20

20. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the IEEE
Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; IEEE Press: Piscataway, NJ, USA, 2013; pp. 71–78.
[CrossRef]

21. Tanabe, R.; Fukunaga, A. Improving the search performance of SHADE using linear population size reduction. In Proceedings of
the IEEE Congress on Evolutionary Computation, CEC, Beijing, China, 6–11 July 2014; pp. 1658–1665. [CrossRef]

22. Piotrowski, A.P.; Napiorkowski, J.J. Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm
Evol. Comput. 2018, 43, 88–108. [CrossRef]

23. Sun, G.; Xu, G.; Jiang, N. A simple differential evolution with time-varying strategy for continuous optimization. Soft Comput.
2020, 24, 2727–2747. [CrossRef]

24. Sun, G.; Yang, B.; Yang, Z.; Xu, G. An adaptive differential evolution with combined strategy for global numerical optimization.
Soft Comput. 2020, 24, 6277–6296. [CrossRef]

25. Huynh, T.N.; Do, D.T.T.; Lee, J. Q-Learning-based parameter control in differential evolution for structural optimization. Appl.
Soft Comput. 2021, 107, 107464. [CrossRef]

26. Song, Y.; Wu, D.; Deng, W.; Zhi Gao, X.; Li, T.; Zhang, B.; Li, Y. MPPCEDE: Multi-population parallel co-evolutionary differential
evolution for parameter optimization. Energy Convers. Manag. 2021, 228, 113661. [CrossRef]

27. Tan, Z.; Tang, Y.; Li, K.; Huang, H.; Luo, S. Differential evolution with hybrid parameters and mutation strategies based on
reinforcement learning. Swarm Evol. Comput. 2022, 75, 101194. [CrossRef]

28. Stanovov, V.; Akhmedova, S.; Semenkin, E. The automatic design of parameter adaptation techniques for differential evolution
with genetic programming. Knowl. Based Syst. 2022, 239, 108070. [CrossRef]

29. Stanovov, V.; Akhmedova, S.; Semenkin, E. Neuroevolution for parameter adaptation in differential evolution. Algorithms 2022,
15, 122. [CrossRef]

30. Meng, Z.; Pan, J.S. HARD-DE: Hierarchical ARchive Based Mutation Strategy With Depth Information of Evolution for the
Enhancement of Differential Evolution on Numerical Optimization. IEEE Access 2019, 7, 12832–12854. [CrossRef]

31. Brest, J.; Maucec, M.S.; Boškovic, B. Self-adaptive Differential Evolution Algorithm with Population Size Reduction for Single
Objective Bound-Constrained Optimization: Algorithm j21. In Proceedings of the 2021 IEEE Congress on Evolutionary
Computation (CEC), Krakow, Poland, 28 June–1 July 2021; pp. 817–824.

32. Mohamed, A.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the Performance of Adaptive GainingSharing Knowledge
Based Algorithm on CEC 2020 Benchmark Problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

33. Zhu, Z.; Chen, L.; Yuan, C.; Xia, C. Global replacement-based differential evolution with neighbor-based memory for dynamic
optimization. Appl. Intell. 2018, 48, 3280–3294. [CrossRef]

34. Kitamura, T.; Fukunaga, A. Differential Evolution with an Unbounded Population. In Proceedings of the 2022 IEEE Congress on
Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022.

35. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and
Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapore, 2016.

36. Kumar, A.; Price, K.; Mohamed, A.; Hadi, A.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2022 Special
Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report; Nanyang Technological
University: Singapore, 2021.

37. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

38. Kitamura, T.; Fukunaga, A. Duplicate Individuals in Differential Evolution. In Proceedings of the 2022 IEEE Congress on
Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022.

39. Kumar, A.; Biswas, P.P.; Suganthan, P.N. Differential evolution with orthogonal array-based initialization and a novel selection
strategy. Swarm Evol. Comput. 2022, 68, 101010. [CrossRef]

40. Al-Dabbagh, R.D.; Neri, F.; Idris, N.; Baba, M.S.B. Algorithmic design issues in adaptive differential evolution schemes: Review
and taxonomy. Swarm Evol. Comput. 2018, 43, 284–311. [CrossRef]

41. Biedrzycki, R.; Arabas, J.; Jagodziński, D. Bound constraints handling in Differential Evolution: An experimental study. Swarm
Evol. Comput. 2019, 50, 100453. [CrossRef]

42. Stanovov, V.; Akhmedova, S.; Semenkin, E. Selective Pressure Strategy in differential evolution: Exploitation improvement in
solving global optimization problems. Swarm Evol. Comput. 2019, 50, 100463. [CrossRef]

43. Stanovov, V.; Akhmedova, S.; Semenkin, E. Biased Parameter Adaptation in Differential Evolution. Inf. Sci. 2021, 566, 215–238.
[CrossRef]

44. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009,
13, 945–958. [CrossRef]

45. Stanovov, V.; Akhmedova, S.; Semenkin, E. Archive update strategy influences differential evolution performance. Adv. Swarm
Intell. 2020, 12145, 397–404.

46. Bullen, P. Handbook of Means and Their Inequalities; Springer: Dordrecht, The Netherlands, 2003. [CrossRef]

http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1109/CEC.2014.6900380
http://dx.doi.org/10.1016/j.swevo.2018.03.007
http://dx.doi.org/10.1007/s00500-019-04159-0
http://dx.doi.org/10.1007/s00500-019-03934-3
http://dx.doi.org/10.1016/j.asoc.2021.107464
http://dx.doi.org/10.1016/j.enconman.2020.113661
http://dx.doi.org/10.1016/j.swevo.2022.101194
http://dx.doi.org/10.1016/j.knosys.2021.108070
http://dx.doi.org/10.3390/a15040122
http://dx.doi.org/10.1109/ACCESS.2019.2893292
http://dx.doi.org/10.1007/s10489-018-1147-9
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.swevo.2021.101010
http://dx.doi.org/10.1016/j.swevo.2018.03.008
http://dx.doi.org/10.1016/j.swevo.2018.10.004
http://dx.doi.org/10.1016/j.swevo.2018.10.014
http://dx.doi.org/10.1016/j.ins.2021.03.016
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1007/978-94-017-0399-4

Mathematics 2022, 10, 4666 20 of 20

47. Biswas, P.P.; Suganthan, P.N. Large Initial Population and Neighborhood Search incorporated in LSHADE to solve CEC2020
Benchmark Problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK,
19–24 July 2020; pp. 1–7. [CrossRef]

48. Brest, J.; Maučec, M.; Boškovic, B. Single objective real-parameter optimization algorithm jSO. In Proceedings of the IEEE Congress
on Evolutionary Computation, San Sebastian, Spain, 5–8 June 2017; IEEE Press: Piscataway, NJ, USA, 2017; pp. 1311–1318.
[CrossRef]

49. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC
2017 Benchmark Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil,
8–13 July 2018; pp. 1–8.

50. Mohamed, A.; Hadi, A.A.; Fattouh, A.; Jambi, K. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving
CEC 2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia-San
Sebastián, Spain, 5–8 June 2017; pp. 145–152.

51. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC
2021 Numerical Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland,
28 June–1 July 2021; pp. 809–816. [CrossRef]

52. Cuong, L.V.; Bao, N.N.; Binh, H.T.T. Technical Report: A Multi-Start Local Search Algorithm with L-SHADE for Single Objective Bound
Constrained Optimization; Technical Report; SoICT, Hanoi University of Science and Technology: Hanoi, Vietnam, 2021.

53. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for Success-History based
Differential Evolution. Swarm Evol. Comput. 2019, 50, 100462. [CrossRef]

54. Bujok, P.; Kolenovsky, P. Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Ob-
jective Numerical Optimisation. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

55. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC
2022 Numerical Optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

56. Biedrzycki, R.; Arabas, J.; Warchulski, E. A Version of NL-SHADE-RSP Algorithm with Midpoint for CEC 2022 Single Objective
Bound Constrained Problems. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

57. Mohamed, A.W.; Hadi, A.A.; Agrawal, P.; Sallam, K.M.; Mohamed, A.K. Gaining-Sharing Knowledge Based Algorithm with
Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems. In Proceedings of the 2021
IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July 2021; pp. 841–848.

58. Biswas, S.; Saha, D.; De, S.; Cobb, A.D.; Das, S.; Jalaian, B. Improving Differential Evolution through Bayesian Hyperparameter
Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July
2021; pp. 832–840.

59. Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix
Adapted Retreat Phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia-San Sebastián,
Spain, 5–8 June 2017; pp. 1835–1842.

http://dx.doi.org/10.1109/CEC48606.2020.9185547
http://dx.doi.org/10.1109/CEC.2017.7969456
http://dx.doi.org/10.1109/CEC45853.2021.9504959
http://dx.doi.org/10.1016/j.swevo.2018.10.013

	Introduction
	Related Work
	Differential Evolution
	DE Modifications

	Proposed Approach
	Experimental Setup and Results
	Benchmark Functions and Parameters
	Numerical Results

	Discussion
	Conclusions
	References

