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Abstract: Engineering design optimization problems are difficult to solve because the objective
function is often complex, with a mix of continuous and discrete design variables and various design
constraints. Our research presents a novel hybrid algorithm that integrates the benefits of the sine
cosine algorithm (SCA) and artificial bee colony (ABC) to address engineering design optimization
problems. The SCA is a recently developed metaheuristic algorithm with many advantages, such as
good search ability and reasonable execution time, but it may suffer from premature convergence.
The enhanced SCA search equation is proposed to avoid this drawback and reach a preferable balance
between exploitation and exploration abilities. In the proposed hybrid method, named HSCA, the
SCA with improved search strategy and the ABC algorithm with two distinct search equations are
run alternately during working on the same population. The ABC with multiple search equations
can provide proper diversity in the population so that both algorithms complement each other to
create beneficial cooperation from their merger. Certain feasibility rules are incorporated in the
HSCA to steer the search towards feasible areas of the search space. The HSCA is applied to fifteen
demanding engineering design problems to investigate its performance. The presented experimental
results indicate that the developed method performs better than the basic SCA and ABC. The HSCA
accomplishes pretty competitive results compared to other recent state-of-the-art methods.

Keywords: sine cosine algorithm; artificial bee colony; hybrid algorithm; constrained design
optimization

MSC: 68T20

1. Introduction

Design optimization problems thrive in diverse engineering areas. Some examples
are structural design problems in civil engineering, synthesis problems in chemical engi-
neering, and mechanical problems in mechanical engineering [1]. Most engineering design
optimization problems are hard to solve due to the complicated objective function and
different types of constraints. An additional difficulty is that these problems might have
objective functions with continuous and discrete variables.
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An engineering design optimization problem tries to minimize or maximize an objec-
tive function with respect to design variables while satisfying the constraints established
on the search space. This problem can be formulated as follows:

minimize f (x), x = (x1, x2, . . . , xD) (1)

with respect to

li ≤ xi ≤ ui, i = 1, 2, ..., D

subject to

gj(x) ≤ 0, j = 1, . . . , l

hj(x) = 0, j = l + 1, . . . , m.

In Equation (1), a problem solution is denoted as xi, f (x) is the objective function, the
number of design variables is denoted as D, inequality constraints are indicated as gj(x),
while hj(x) denote equality constraints. In this problem, formulation design variables are
discrete or continuous.

Diverse accurate and approximate algorithms have been proposed to solve constrained
engineering design problems [2]. The efficacy of accurate optimization algorithms is solid
for some design problems. However, these methods have to make certain presumptions
that can not be justified in some cases. For instance, gradient-based algorithms belong to the
group of exact algorithms, and these methods require the functions to be smooth enough.
Exact methods are often inefficient when solving non-linear optimization problems which
possess multiple local optima, since these problems are demanding to solve [3].

Since features of objective and constraint functions, such as modality, convexity, and
smoothness, have limited the applicability of exact methods, numerous approximate al-
gorithms have been developed in the last few decades [4–6]. Two groups of approximate
algorithms are specific heuristics and metaheuristics. Specific heuristics are developed to
solve a particular problem. Metaheuristics are applicable to a wide range of optimization
problems. These algorithms use randomness in their search equations to help them avoid
local optima and effectively explore the search space. Even though it is not guaranteed
that the global optimum solution could be reached, metaheuristics can tackle optimization
problems by finding solutions of sufficient quality in a reasonable time.

Many metaheuristic algorithms mimic natural metaphors to solve diverse challenging
optimization problems. An essential class of these methods includes population-based
metaheuristic algorithms, which reach appropriate solutions by iteratively choosing and
combining solutions from the population. These algorithms are separated into five cate-
gories: evolutionary-based, swarm-based, physic-based, human-based, and maths-based
metaheuristics [5]. Evolutionary algorithms, such as genetic and differential evolution algo-
rithms, draw inspiration from nature and employ selection, recombination, and mutation
search operators. Swarm intelligence methods are inspired by the collective behavior of an-
imal societies. There are numerous prominent metaheuristic algorithms that belong to this
category and some notable representatives include artificial bee colony (ABC) algorithm [7],
particle swarm optimization (PSO) [8], cuckoo search (CS) [9], bat algorithm (BA) [10],
firefly algorithm (FA) [11]. Human-based techniques, such as teaching learning-based
algorithms, are motivated by distinct human-made happenings. Metaheuristics that mimic
rules in physics, such as gravitational search algorithm (GSA) [12], fall into the category of
physics-based algorithms. Math-based metaheuristics emulate mathematical rules. One
of the popular recently proposed maths-based algorithms is the sine cosine algorithm
(SCA) [13]. Additionally, in recent years applying machine learning to develop efficient
metaheuristic algorithms has been studied [14,15]. Basic metaheuristic algorithms, after
their creation, are often modified or hybridized with some other methods to enhance their
performances for some problem classes.



Mathematics 2022, 10, 4555 3 of 21

The Sine Cosine Algorithm (SCA), proposed by Mirjalili, is inspired by the properties
of trigonometric cosine and sine functions. This technique has several modified and
hybridized variants that are used to solve various optimization problems. In [5] it was
noticed that the SCA has to be combined with some other metaheuristic algorithm to
solve specific real-world optimization problems. Even though this algorithm has many
advantages, such as simplicity, adaptability, robustness, and reasonable execution time, it
has been pointed out that the SCA may suffer from premature convergence. To escape from
a local optimum point, the SCA should maintain a suitable diversity in the population.
Hybridization has been a broadly established approach to produce differences among
individuals during the search process [16].

Motivated by the above observations, a hybrid method (HSCA) is developed to solve
complex engineering optimization problems. The foundations of this method are modified
SCA and ABC metaheuristics. The proposed approach is collaborative hybrid algorithms
with a sequential structure. In the HSCA, both methods, the modified SCA and ABC with
two distinct search equations, execute alternatively until the convergence criterion is met.
To arrive at a preferable equilibrium in the middle of exploitation and exploration abilities,
a modified SCA search equation is proposed. In the developed SCA strategy, the base
vector is selected randomly from the population and another difference vector is added
to the base vector. Since the ABC metaheuristic has superior exploration ability, the ABC
method with two search strategies was combined with the modified SCA. In the employed
ABC variant, both ABC search equations are engaged in generating candidate solutions to
provide suitable diversity in the population. Additionally, a mechanism to deal with the
constraints based on the three feasibility rules is incorporated in the proposed HSCA. The
proposed HSCA is tested on 15 challenging engineering design optimization problems. The
achieved experimental results are compared to the basic ABC, SCA and recent prominent
metaheuristics developed to tackle design problems.

The structure of this paper is as follows. A brief review of the SCA and ABC is
presented in Section 2. Section 3 describes a novel hybrid sine cosine algorithm. Section 4
presents fifteen engineering design optimization problems. The experimental design and
the reached results are given in Section 5. Concluding remarks are provided in Section 6.

2. A brief Literature Review
2.1. Sine Cosine Algorithm

The search strategy of the SCA is based on the cyclic pattern of cosine and sine
functions [13]. The search equation employed to update the positions of solutions in the
population is given as follows:

xt+1
i,j =

{
xt

i,j+r1 sin(r2) |r3 yt
j − xt

i,j|, r4 < 0.5

xt
i,j+r1 cos(r2) |r3 yt

j − xt
i,j|, r4 ≥ 0.5

(2)

where i = 1, . . . , SP, j = 1, . . . , D, such that SP is the size of population and D is the number
of design variables. In the Equation (2), xi,j is jth component of solution xi at iteration t, yj
is jth component of the best achieved solution at iteration t. Specific control parameters, r1,
r2, r3 and r4, are randomly chosen.

The parameter r1 regulates the location of the novel solution. If r1 < 1, the new
solution will be located in the space between the current solution and the best solution
reached so far. On the other hand, if r1 > 1, the novel solution will be positioned outside
that space. The distance towards or outwards the best-reached solution is determined by
the parameter r2, which has to be chosen from the range [0, 2π]. The value of r3 represents
a randomly chosen weight for the best-reached solution. The random parameter r4 takes
values from [0, 1] and changes among the sine and cosine components in the Equation (2).

In the SCA, the optimization process starts with randomly created solutions. The
method updates other solutions from the population using the Equation (2). The optimiza-
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tion process of the SCA is finished when the iteration counter exceeds the maximal number
of iterations (MNI).

Exploration, the process of generating solutions with a great deal of diversity, and
exploitation, the process of searching a local area for good solutions found, are essential
components of any metaheuristic algorithm. These two processes have to be well-balanced
to achieve quality results. To balance the impact of the exploration and exploitation in the
SCA, the r1 value is updated during the search by the equation

r1 = a− t
a

MNI
, (3)

where t is the present cycle and a is the constant. The pseudocode of the SCA is given as
Algorithm 1.

Algorithm 1 The pseudocode of the SCA

1: Initialize parameters SP, MNI, r1, r2, r3, r4
2: Generate a population of individuals xi, i = 1, 2, . . . , SP randomly
3: t = 1
4: while t <= MNI do
5: Record the best solution y reached so far
6: for i = 1 to SP do
7: Generate a new solution by employing the Equation (2) and evaluate it
8: end for
9: Update control parameters r1, r2, r3, r4

10: t = t + 1
11: end while

The basic SCA is proposed to solve continuous optimization problems. After its devel-
opment, several modified variants have been developed to enhance its performance [5].
These modified versions are divided into nine categories: binary, chaotic, opposition-based
learning, orthogonal-based learning, Lévy flight, mutation, fuzzy, adaptive, and improved.
For instance, binary SCA is proposed to discover the beneficial features [17]. The S-shaped
and V-shaped transfer functions were employed to convert the continuous form of SCA
into the respective binary algorithm. The chaotic oppositional SCA that uses an opposition-
based learning mechanism was proposed to improve the performance of the SCA for
solving global optimization in [18]. In [19], an original band selection method based on the
SCA and Lévy flight was proposed.

The SCA algorithm is also combined with other metaheuristic methods to improve
its performance in general or for a specific group of problems. For example, a hybrid
metaheuristic method that combines the Lévy flight distribution, PSO, and SCA, for uncon-
strained numerical function optimization and constrained engineering design problems
was proposed in [20]. This algorithm incorporates the death penalty technique to handle
constraints. A joint procedure arising from SCA and ABC for solving thresholds at several
levels has recently been developed [21]. In the proposed approach, the SCA was employed
to achieve the global optimal solution, while ABC was used to shorten the search area.
In general, the SCA method is used to solve optimization models from various fields, for
instance, electrical engineering, image processing, computer engineering, classification,
and control engineering [5].

2.2. Artificial Bee Colony Algorithm

The behavior of a honey bee swarm in search of food influenced the emergence of the
ABC metaheuristic [7]. Three types of individuals exist in the swarm of ABC: employed,
onlooker, and scout bees. Employed bees try to find sources of food. Onlookers search
around the previously found sources of food. The scout bees are created from certainly
employed bees that leave unfavorable sources to search for novel ones. The framework of
the ABC is described as Algorithm 2.
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Algorithm 2 The framework of the ABC algorithm

1: Initialization stage
2: t = 1
3: while t <= MNI do
4: Employed bee stage
5: Onlooker bee stage
6: Scout bee stage
7: t = t + 1
8: end while

In the initialization part of the ABC, the control parameters of the algorithm are
initialized as well as a population of solutions xi, i = 1, 2, . . . , SP is randomly generated
in the search space. The ABC employed two standard control parameters, the maximum
number of iterations (MNI) and the size of the population (SP), and the specific parameter
limit which defines the number of attempts to abandon the food source. There are three
main phases in the ABC algorithm. In both the employed and onlooker stages, the same
search strategy is used to generate a candidate solution vi from the current one xi. This
strategy is described by the equation

vij = xij + ϕ (xij − xkj), (4)

where j is a randomly selected index, xi,j is jth component of current solution xi, xk is
a randomly picked solution that is distinct from xi and ϕ is a random number between
(−1, 1). After a candidate solution is created, the boundary constraint-handling mechanism
is used to vi, and the greedy selection process is applied among xi and vi. In the employed
stage, each solution from the population is subjected to the update process described by
the Equation (4).

The same search strategy is used in the onlooker stage as in the employed stage. Also,
the proportionate fitness selection is used to determine solutions that will be subjected
to the update process. The greedy selection among candidates and the current solution
decides whether the current solution will be updated. In the scouting phase, a solution
that does not change over a predetermined number of trials is replaced with a randomly
generated solution.

The ABC algorithm is one of the most notable swarm intelligence techniques. Many
modified and hybridized ABC algorithms for continuous optimization problems have been
developed since its invention. For instance, in [22], the ABC algorithm incorporated the
constraint handling method which is based on three feasibility rules into its selection step
with the intention to solve engineering optimization problems. A modified variant of the
ABC algorithm for solving constrained design optimization problems, which included the
crossover operator in the scout bee stage and the modified ABC search equation in the
onlooker stage, was presented in [23]. A variant of the ABC algorithm combined with a dual-
search mechanism and differential self-perturbation for solving engineering optimization
problems was presented in [24]. A novel ABC variant, named I-ABC greedy, has recently
been developed for solving mechanical engineering design problems. The I-ABC greedy
algorithm integrates three modifications in the basic ABC: the use of an opposition-based
learning concept, a modified ABC search equation, and a constraint-handling technique
based on Deb’s rules [25].

Despite the fact that the standard ABC algorithm was developed to tackle optimization
problems in the continuous domain, nowadays, there are a lot of ABC variants for com-
binatorial, binary, and integer programming problems [26–28]. To be suitable for solving
these types of problems, diverse encoding types, search equations, and selection operators
are incorporated into the ABC algorithm.
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3. Proposed Approach: HSCA

The performance of the SCA relies on its solution-seeking strategy which has char-
acteristics that ensure exploration and exploitation abilities. The use of cosine and sine
functions allows an agent to be created near another agent. This strategy ensures the ex-
ploitation of the space bounded among two agents. According to Equation (2), exploration
is guaranteed since the algorithm can search outside the space bounded by the current
solution and the best solution reached so far. Even though the SCA has good search ability,
simple implementation, a small number of control parameters, and good execution time, it
lacks the accuracy of the final solution in solving specific real-world optimization problems.

The problem of premature convergence is related to maintaining the solution variety
during the search [16]. The diversity between the agents of a population is a prerequisite
for exploration, and it is often high in the initial part of a search. It is expected that these
differences among agents decrease as specific individuals find favorable search areas and
the population progress towards the global optimum [29].

Since the search strategy of the ABC algorithm has a strong exploration ability, an
approach that combines the SCA and ABC could efficiently sustain diversity in the pop-
ulation. Hence, a collaborative hybrid method is developed with a sequential structure
based on the SCA and ABC. In the proposed HSCA, the SCA with an enhanced search
strategy and the ABC algorithm with two distinct search equations are run alternately by
working on the same population until the MNI is reached. The SCA with a modified search
equation and the multi-strategy ABC algorithms employ a selection mechanism based on
three feasibility rules for handling constraints.

A novel mutation operator is proposed and used in the SCA to achieve a better ratio
between exploitation and exploration and thus a more productive search. This search
strategy generates the candidate solution vi from the current solution xi according to the
following equation:

vt+1
i,j =

{
xt

n1,j + r1 sin(r2) · |yt
j − xt

i,j|+ randi · (yt
j − xt

n2,j), Ri,j < 0.5

xt
n1,j + r1 cos(r2) · |yt

j − xt
i,j|+ randi · (yt

j − xt
n2,j), Ri,j ≥ 0.5

(5)

where xn1 and xn2 are two neighbourhood solutions chosen randomly from the population,
y is the best solution achieved so far, randi is a random number from (0, 1] and j = 1, . . . , D.
As in the Equation (2), r1 regulates the location of the candidate solution and is updated
by the Equation (3), the parameter r2 determines the distance towards or outwards to
the best-reached solution and takes value from the range [0, 2π] and parameter Ri,j takes
the value from range [0, 1] and changes among the sine and cosine components in the
Equation (5). In the proposed mutation strategy, the two vectors, xn1 and xn2 are picked
randomly from the population, and the base vector is then chosen at random between these
two solutions. In Equation (5), two difference vectors are added to the base vector. The
second term of the Equation (5) is the same as the corresponding term of the Equation (2),
except for the use of a random weight for the best-found solution. In the Equation (5) this
parameter is not used since it may provide too much exploration and inefficient search.
The best solution found and the randomly picked neighborhood solution forms the third
term of the Equation (5). The use of the third term and the randomly picked base vector
might lead to better perturbation.

The selection process based on three feasibility rules is incorporated in the proposed
approach to steer the search toward feasible areas. Hence, after the candidate solution vi is
created by Equation (5) these rules are applied to determine the acceptability of the new
solution vi in the population.

Deb developed the feasibility rules using the following criteria to compare two solu-
tions [30]: (1) if both solutions are feasible, the one which has a better objective function
value is chosen, (2) any feasible solution is favored over any infeasible solution, (3) between
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two infeasible solutions, the one with the lowest sum of constraint violations (CV) is chosen.
This sum is calculated by

CV(x) =
l

∑
j=1

max{0, gj(x)}+
m

∑
j=l+1

|hj(x)| (6)

In the proposed ABC algorithm, two search strategies with a superior mixing ability
coexist through the search process. The proposed ABC algorithm does not include three
distinct phases, i.e., only the employed bee stage is performed. Each agent randomly
chooses a search strategy for creating a candidate solution in this stage. After generating a
potential new solution, Deb’s rules are conducted to determine whether a novel solution
will join the population.

Both search operators used in the developed ABC approach were previously used in
the ABC variants for constrained optimization [22,23]. The first search strategy creates a
candidate solution vi from the current solution xi according to the following equation:

vt+1
i,j =

{
xt

i,j + ϕi (xt
i,j − xt

k,j), if Rj <MR

xt
i,j, otherwise

(7)

where ϕi is a uniform random number which takes value from [−1, 1], t is current iteration
number, xk is another agent picked randomly from the population, Rj is a real number
picked in a random way from [0, 1], such that j = 1, 2, . . . , D.

The quantity MR in Equation (7) is a modification rate control parameter that controls
the potential changes of design parameters. The MR value is increased from 0.1 to the
user-specified value MRmax in the first P ·MNI cycles to reduce the chances of skipping to
exploit current agents from the population. This parameter is set to MRmax in the lasting
cycles. Hence the MR value is updated by

MRt+1=

{
MRt+ (MRmax−0.1)

P·MNI , if MRt <MRmax

MRmax, otherwise
(8)

where the control parameter P takes values from (0, 1) and it regulates the number of
starting cycles in which lower values of MR are employed.

The second search strategy used in the proposed multi-strategy ABC algorithm is
described by

vt+1
i,j = xt

i,j + ϕi (xt
v,j − xt

k,j), (9)

where xv and xk are different neighbourhood solutions chosen randomly from the popula-
tion, ϕi is a uniform random number from the range [−1, 1] and j = 1, 2, . . . , D.

Let us denote the Equation (7) as S1 and the Equation (9) as S2. The pseudocode of the
HSCA is given as Algorithm 3.

In each iteration of the HSCA, one of the three search strategies described by Equation
(5), Equation (7), or Equation (9) is applied to each solution from the population with the
intention to create a potential new solution. Each time when a candidate solution oversteps
the boundaries of design variables, various values are created by the well-known boundary
constraint handling technique described in [31]. Discrete design variables are addressed as
though they were continuous. Each time when a novel solution is generated, these values
are then rounded to the closest accessible discrete values.
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Algorithm 3 The pseudocode of the HSCA

1: Initialize parameters SP,MNI,a, r2, MRmax, P
2: Generate a random population of individuals xi, i = 1, 2, . . . , SP
3: t = 1
4: r1 = a
5: MR = 0.1
6: while t <= MNI do
7: Record the best solution y reached so far
8: Randomly assign strategy Si, i = 1, 2 to solution xi, i = 1, 2, . . . , SP
9: if (t mod 2 == 0) then

10: for i = 1 to SP do
11: Produce new solution vi by employing the Equation (5) and evaluate it
12: Apply selection process based on Deb’s method among xi and vi
13: end for
14: else
15: for i = 1 to SP do
16: Produce new solution vi by assigned strategy Si and evaluate it
17: Apply selection process based on Deb’s method among xi and vi
18: end for
19: end if
20: Update r1 by using Equation (3)
21: Update MR by using Equation (8)
22: t = t + 1
23: end while

The HSCA employs four specific control parameters: the parameter a which represent
the initial value of parameter r1, the parameter r2, the MRmax and P. Control parameters a
and r2 are used in the search strategy of the modified SCA algorithm, while parameters
MRmax and P are employed in the Equation (7) of the proposed multi-strategy ABC al-
gorithm. Also, two standard control parameters for algorithms with population, size of
population SP, and the maximum number of iterations MNI are used in the HSCA. It can
be seen from Algorithm 3 that in each cycle of the HSCA each agent is updated at most
once. Hence, the computational time complexity of the proposed HSCA is O(MNI · SP · f ),
where O( f ) is the computational time complexity of evaluating the objective function value
for a specific problem f .

The performance of the HSCA relies on the employed three search strategies and
the incorporated constrained handling technique. The good exploitation capacity of the
modified SCA strategy is reached by using the current best solution in both difference
vectors. In the second term of the Equation (5) the value of parameter r1 is in the range [0,
a], where a is a non-negative constant. Since the lower values of this parameter encourage
the exploitation ability of this search equation, the value of parameter a is set to 0.75. The
exploitation is further increased by gradually reducing the parameter r1 during the search
by using Equation (3). The control parameter r2 takes value from the range [0, 2π], as in the
basic SCA [13]. The exploration capacity of the modified SCA search equation is guided
by selecting the base vector randomly from the population and adding another difference
vector to the base vector. To better maintain diversity in the population, the modified SCA
optimizer is combined with the multi-strategy ABC algorithm. In the ABC search operator
given by the Equation (7), the higher value of MRmax and lower value of P parameters are
needed during the search, to produce excessive diversity in a solution. The ABC search
strategy given by the Equation (9) does not use the MRmax parameter, i.e., by using this
equation each component of an old solution is updated to create a potential new solution.

4. Design Problems

The performance of the proposed HSCA is evaluated on fifteen challenging structural
and engineering design problems. These problems are: speed reducer, tension/compression
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spring, pressure vessel, welded beam, gear train, stepped cantilever beam, multiple disk
clutch brake, cantilever beam, helical compression spring, hollow shaft, hydro-static thrust
bearing, Belleville spring, car side impact, gas transmission compressor, and reinforced
concrete beam. A brief description of these problems is given as follows.

The speed reducer problem aims to optimize the weight. This problem has six contin-
uous and one integer optimization variable and eleven inequality constraints. The most
precise recorded rounded value to achieve (VTA) for this problem is 2994.470166, while its
mathematical description can be found in [32].

Tension/compression spring problem tries to optimize the weight. This problem has
three continuous optimization variables and four inequality constraints. The best recorded
rounded VTA is 0.012665 [33]. The mathematical definition of this problem is presented
in [22]. Optimization of materials, forming and welding costs are the goal of the pressure
vessel problem. This problem has two design variables which have to be integer multiples
of 0.0625, two continuous variables, and three inequality constraints. The global optimum
for this problem is 6059.714335048436 [34]. The mathematical description of this problem is
given in [22].

The target of the welded beam problem is to minimize the fabrication cost of the
beam. This problem involves a non-linear objective function of four continuous variables
and seven inequality restrictions. The best recorded rounded VTA for this problem is
1.724852 [33]. The mathematical description of this problem is given in [22].

The target of the gear train problem is to optimize the cost of the gear ratio of a gear
train. This problem has four integer optimization variables. The optimal solution for this
problem is 2.700857 × 10−12. The model of this problem is presented in [22].

The target of the stepped cantilever beam problem is to minimize the volume of
a stepped cantilever beam. This problem has four continuous and six discrete design
variables and eleven inequality constraints. Value 63,893.43 is the best reported rounded
VTA for this problem [35]. The mathematical description of this problem is given in [36].

Multiple disk clutch brake problem aims to optimize the mass. This problem has
five integer variables and eight inequalities. The best achieved VTA for this problem is
2.3524245790 × 10−1, while its mathematical description can be found in [37].

The cantilever beam problem tries to optimize the overall weight of a cantilever beam.
This problem has five continuous variables and one inequality constraint. The global
optimal solution is 1.339956367 [34]. The mathematical description of this problem is
presented in [34].

The helical compression spring design problem tries to optimize the volume of spring
steel. This problem has one continuous variable and two discrete variables, and eight
inequality restrictions. The best reported rounded VTA for this problem is 2.658559, while
its mathematical description can be found in [4].

The hollow shaft problem tries to minimize the weight of a hollow shaft. This problem
has two continuous variables and two non-linear constraints. The best recorded rounded
VTA is 2.370398, while its mathematical description can be found in [4].

The hydro-static thrust bearing problem tries to optimize bearing power loss. This
problem has four continuous decision variables and seven inequality restrictions. The
best-known VTA for this problem is 1.6254428092 × 103 [37]. A mathematical description
of this problem is presented in [38].

The Belleville spring design problem aims to reach the minimum volume. It includes
four continuous variables and seven non-linear constraints. The most precise recorded
rounded VTA is 1.979675 [35]. In [38] the mathematical definition of this problem can
be found.

The goal of the car side impact problem is to minimize the weight. This problem
has nine continuous and two discrete variables and ten inequality constraints. The best
calculated VTA is 22.84297, while its mathematical description is presented in [38].
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The mathematical description of the gas transmission compressor problem is presented
in [37]. The best known VTA for this problem is 2.9648954173 × 106. This problem has four
design variables and one inequality constraint.

In the problem reinforced concrete beam the target is to design the beam for min-
imum cost. There are three discrete decision variables and two inequality constraints.
Value 359.2080 is the best reported rounded VTA for this problem [35]. The mathematical
description of this problem is presented in [36].

5. Experimental Study

This section presents the computational results achieved by the proposed HSCA for
the considered fifteen structural and mechanical engineering design problems. Since the
HSCA is based on the combination of SCA and ABC, these optimizers are compared with
our developed method. A direct comparison, where the results achieved by the HSCA
are compared with the results obtained by our implementation of the SCA and ABC is
conducted. These algorithms have been implemented in the Java programming language.
To promote a fair comparison, the same changes as those described in the original paper [22]
are employed in our implementation of the ABC algorithm. Also, in our implementation of
the SCA, Deb’s rules are employed to favor feasible areas of total search space. Additionally,
results obtained by the HSCA are compared with the results recently achieved for the same
design problems employing other optimizers in preceding research studies. The results
obtained by these metaheuristic optimizers are taken from the specialized literature.

The fixed control parameter values utilized by HSCA are the following: SP = 30,
a = 0.75, P = 0.3, and MRmax = 0.8. Also, r2 is a random number from [0, 2π] [13].

The ABC algorithm used identical parameter values as those reported in the respective
paper [22] (SP = 30, MR = 0.9, SPP = 400, limit = SP · D · 5).

In the SCA, the parameter SP was also set to 30, while this algorithm used identical
specific parameter values as those reported in the original paper [13]. The number of
function evaluations (NFEs) used by ABC, SCA, and HSCA was specified in each test case.
For each design optimization problem, 50 runs were carried out.

5.1. Computational Results

In Tables 1–15, “Best”, “Mean”, “Worst”, “SD”, and “NFEs” symbolize, respectively,
the best-found value, the average result, the worst-reached result, standard deviation
values, and the number of function evaluations. The best results among the compared
optimizers are shown in bold in these tables. The capacity of an optimizer to accomplish the
best-known solution is decided by the best results. Algorithmic robustness or algorithmic
stability is the capability of an algorithm to constantly converge to low values of objective
functions without depending on the search space and initial solutions. Average and
standard deviation results decide the stability or robustness of an optimizer. The NFEs
represent the measure of the convergence rate. In Tables 1–4, NA denotes that results are
not available in the respective paper.

Table 1. Performance of HSCA and other optimizers for the speed reducer design problem.

Algo. Best Mean Worst SD NFEs

MBA 2994.482453 2996.769019 2999.652444 1.56 6300
EJAYA 2994.471066 2994.471070 2994.471097 7.1926 × 10−6 17,000
IAPSO 2994.47106614598 2994.47106614777 2994.47106615489 2.65 × 10−9 6000
I-ABC greedy 2994.4710 2994.6631 2994.902 1.87 × 10−12 6500
CB-ABC 2994.471066 2994.471066 NA 2.48 × 10−7 15,000
ABC 2994.47109 2994.471237 2994.471467 9.36 × 10−5 6000
SCA 3051.055341 3182.229260 3360.733265 8.25 × 101 6000
HSCA 2994.471066 2994.471066 2994.471066 2.14 × 10−8 6000
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The speed reducer design problem was lately solved by the mine blast algorithm
(MBA) [39], enhanced Jaya (EJAYA) [40], improved accelerated PSO (IAPSO) [32], crossover-
based ABC (CB-ABC) [23] and I-ABC greedy [25]. The experimental results achieved by
the HSCA, SCA, and ABC, and these optimizers are presented in Table 1.

The results given in Table 1 indicate that the HSCA is capable of greatly enhancing
the capacity of the SCA and ABC to reach the optimal result, as well as the stability of
these algorithms. In addition, exclusively, the IAPSO and HSCA could accomplish the
best-rounded VTA in all runs. The HSCA converges faster to the optimal solution than all
the compared optimizers, except for the IAPSO algorithm. The IAPSO and HSCA used the
same NFEs to achieve these results.

The tension/compression spring design problem was lately solved by using the follow-
ing optimizers: the MBA [39], elephant clan optimization (ECO) [41] atomic orbital search
(AOS) [42], queuing search algorithm (QSA) [43], IAPSO [32], improved SCA (ISCA) [44],
CB-ABC [23] and I-ABC greedy [25]. The statistical results achieved by the HSCA, SCA,
ABC, and other metaheuristic algorithms are given in Table 2.

From the results presented in Table 2 it can be observed that only the HSCA reached
the best-rounded VTA in all runs. The number of function evaluations needed by the HSCA
to solve the tension/compression spring design problem is less or equal to that of the six
optimizers (AOS, QSA, EJAYA, CB-ABC, ABC, and SCA), and higher compared to the
MBA, ECO, IAPSO, and IABC-greedy. For the ISCA optimizer, the number of function
evaluations is not reported in the respective paper.

Table 2. Performance of HSCA and other optimizers for the tension/compression spring design
problem.

Algo. Best Mean Worst SD NFEs

MBA 0.012665 0.012713 0.012900 6.30 × 10−5 7650
ECO 0.012665 0.012709 0.01278 4.36 × 10−5 11,484
AOS 0.012665233 0.012737649 0.013596859 0.000121146 200,000
QSA 0.01266523279 0.01266666921 0.01267436276 2.5895 × 10−6 18,000
EJAYA 0.012665 0.012668 0.012687 4.6331 × 10−6 15,000
IAPSO 0.01266523 0.013676527 0.01782864 1.573 × 10−3 2000
ISCA 0.012667 NA NA NA NA
I-ABC greedy 0.012665 0.013731147 0.012665 1.12× 10−6 2000
CB-ABC 0.012665 0.012671 NA 1.42 × 10−5 15,000
ABC 0.012665 0.0129644 0.01344 2.09 × 10−4 30,000
SCA 0.012724 0.012855 0.0130922 7.6976 × 10−5 15,000
HSCA 0.012665 0.012665 0.012665 3.49 × 10−7 15,000

Table 3. Performance of HSCA and other optimizers for the pressure vessel design problem.

Algo. Best Mean Worst SD NFEs

ECO 6059.71448 6325.50262 7466.4068 398.99839 21,750
QSA 6059.7143350484 6078.3193234831 6370.7797127298 61.5629 25,000
IAPSO 6059.7143 6068.7539 6090.5314 14.0057 7500
ISCA 6059.7489 NA NA NA NA
I-ABC greedy 6059.7142 6067.816 6086.982 19.044 8000
CB-ABC 6059.714335 6126.623676 NA 1.14 × 102 15,000
ABC 6060.974518 6282.680193 7017.127406 2.43 × 102 30,000
SCA 6119.1385 6379.0104 7101.9145 2.22 × 102 7500
HSCA 6059.7143 6060.2669 6068.3329 1.61 7500
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Table 4. Performance of HSCA and other optimizers for the welded beam design problem.

Algo. Best Mean Worst SD NFEs

FA 1.7312065 1.8786560 2.3455793 0.2677989 50,000
MBA 1.724853 1.724853 1.724853 6.94 × 10−19 47,340
ECO 1.724856 1.72509 1.7256 4.0663 × 10−4 21,924
AOS 1.724852309 1.725673538 1.732516334 0.024786984 200,000
QSA 1.7248523085973 1.7248523085973 1.7248523085973 1.1215× 10−15 18,000
EJAYA 1.7248523086 1.7248523093 1.7248523105 5.5631 × 10−10 24,000
IAPSO 1.7248523 1.7248528 1.7248624 2.02 × 10−6 12,500
I-ABC greedy 1.724852 1.724865 1.724910 1.92 × 10−5 14,500
CB-ABC 1.724852 1.724852 NA 2.38 × 10−11 15,000
ABC 1.724852 1.757544 1.896621 4.1 × 10−2 30,000
SCA 1.7371620826 1.7571107369 1.7904976725 1.24 × 10−2 12,000
HSCA 1.7248523086 1.7248523086 1.7248523086 1.46 × 10−12 12,000

The pressure vessel design problem was lately solved by the following optimizers:
ECO [41], QSA [43], IAPSO [32], ISCA [44] CB-ABC [23] and I-ABC greedy [25]. The
statistical results reached by the HSCA, SCA, ABC, and other optimizers are presented
in Table 3. As it can be noticed from Table 3, the best-rounded VTA was obtained by all
compared optimizers, except for the ECO, ISCA, ABC, and SCA. It can also be observed
that the HSCA achieved the smallest average and standard deviation results among all
compared optimizers with the smallest number of NFEs.

The welded beam design problem was lately examined by employing diverse meta-
heuristic algorithms, including the use of the FA [36], MBA [39], ECO [41], AOS [42],
QSA [43], EJAYA [40], IAPSO [32], CB-ABC [23] and I-ABC greedy [25]. The statistical
results achieved by the HSCA, SCA, ABC, and other optimizers are given in Table 4. In
Table 4, NA denotes that results are not available in the respective paper.

Table 5. Performance of HSCA and other optimizers for the gear train design problem.

Algo. Best Mean Worst SD NFEs

MBA 2.700857 × 10−12 2.471635 × 10−9 2.062904× 10−8 3.94 × 10−9 1120
IAPSO 2.700857 × 10−12 5.492477 × 10−9 1.827380× 10−8 6.36 × 10−9 800
I-ABC greedy 2.702 × 10−12 6.452 × 10−9 1.68 × 10−8 5.29 × 10−10 60
ABC 2.700857 × 10−12 1.402023 × 10−8 1.239641 × 10−7 2.07 × 10−8 750
SCA 2.700857 × 10−12 3.771823 × 10−8 5.041463 × 10−7 7.97 × 10−8 750
HSCA 2.700857 × 10−12 1.50506 × 10−9 1.312515 × 10−8 2.30 × 10−9 750

Table 6. Performance of HSCA and other optimizers for the stepped cantilever beam problem design
problem.

Algo. Best Mean Worst SD NFEs

FA 63,893.52578 64,144.75312 64,262.99420 175.91879 50,000
diversity-guided PSO 63,893.43 63,893.43080 63,893.43080 0.00000 50,000
I-ABC greedy 64,599.65 68,263.83 69,877.91 5.97 × 103 9700
ABC 63,893.430796 64,362.230828 68,333.430795 1.15 × 103 45,000
SCA 64,143.539011 64,640.851769 65,275.647478 2.57 × 102 45,000
HSCA 63,893.430796 63,893.430796 63,893.430796 2.18 × 10−11 45,000
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Table 7. Performance of HSCA and other optimizers for the multiple disc clutch brake design
problem.

Algo. Best Mean Worst SD NFEs

Rao-1 0.313657 0.321780 0.392071 0.009985 600
Rao-2 0.313657 0.315413 0.339999 0.00668 600
Rao-3 0.313657 0.319783 0.392071 0.016399 600
AOS 0.235242480 2.35 × 10−1 2.35 × 10−1 6.45 × 10−25 200,000
IAPSO 0.313656 0.313656 0.313656 1.13 × 10−16 400
I-ABC greedy 0.313656 0.313656 0.313656 1.27 × 10−16 750
ABC 0.2352424579 0.2362422383 0.2440640500 2.16 × 10−3 600
SCA 0.2352424579 0.2403031112 0.2547234739 4.79 × 10−3 600
HSCA 0.2352424579 0.2352424579 0.2352424579 1.38 × 10−16 600

Table 8. Performance of HSCA and other optimizers for the cantilever beam design problem.

Algo. Best Mean Worst SD NFEs

AOS 1.339957 1.351954 1.491711 0.02499743 100,000
ABC 1.3399770 1.3400402 1.3403453 6.25 × 10−5 12,000
SCA 1.3406087 1.3431266 1.3467008 1.57 × 10−3 12,000
HSCA 1.3399564 1.3399565 1.3399568 9.21 × 10−8 12,000

From Table 4 it can be seen that all considered optimizers obtain the best-rounded
VTA, except the FA, ECO, and SCA. The HSCA, EJAYA, QSA, and MBA reached the mean
results, equal to the best-rounded VTA among all compared techniques. Even though
the HSCA obtained a worse standard deviation value than the QSA and MBS, the HSCA
obtained these statistical results with the minimal of NFEs between considered optimizers.

The gear train design problem was solved by applying the MBA [39], IAPSO [35] and
I-ABC greedy [25]. The comparative results obtained by the HSCA, SCA, ABC, and other
approaches are presented in Table 5. From Table 5 it can be observed that all considered
optimizers obtain the optimal solution, except the I-ABC greedy algorithm. The SCA,
ABC, and HSCA reached the optimal solution with fewer NFEs than the MBA and IAPSO.
Additionally, the proposed HSCA obtained the smallest average and standard deviation
results of the remaining five considered optimizers.

The stepped cantilever beam problem was lately solved by employing the FA [36],
diversity-guided PSO [35] and I-ABC greedy [25] approaches. The results reached by the
HSCA, SCA, ABC, and other optimizers are presented in Table 6. The presented results
show that only the HSCA, ABC, and diversity-guided PSO could obtain the best-rounded
VTA. The ABC and HSCA reached the best-rounded VTA with fewer NFEs than the
diversity-guided PSO. Also, only the HSCA and diversity-guided PSO accomplished the
best-rounded VTA in all runs.

Table 9. Performance of HSCA and other optimizers for the helical compression spring design
problem.

Algo. Best Mean Worst SD NFEs

FA 2.658575665 4.3835958 7.8162919 4.6076313 75,000
diversity-guided PSO 2.658559 2.658890 2.660784 0.000611 50,000
Rao-1 2.658559 2.658675 2.659211 1.41 × 10−4 75,000
Rao-2 2.658559 2.666750 2.699494 1.67 × 10−2 75,000
Rao-3 2.658559 2.665386 2.699494 1.55 × 10−2 75,000
ABC 2.658559 2.658910 2.673552 2.12 × 10−3 75,000
SCA 2.658560 2.658636 2.659086 1.09 × 10−4 75,000
HSCA 2.658559 2.658559 2.658559 2.66 × 10−15 75,000
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Table 10. Performance of HSCA and other optimizers for the hollow shaft design problem.

Algo. Best Mean Worst SD NFEs

Rao-1 2.370398 2.370398 2.370398 0 5000
Rao-2 2.370398 2.370398 2.370398 0 5000
Rao-3 2.370398 2.370398 2.370398 0 5000
ABC 2.370398244 2.370443611 2.370652102 6.17 × 10−5 3000
SCA 2.382173022 2.429340456 2.510303871 2.89 × 10−2 3000
HSCA 2.37039813 2.37039813 2.37039813 1.59 × 10−10 3000

Table 11. Performance of HSCA and other optimizers for the hydrostatic thrust bearing design
problem.

Algo. Best Mean Worst SD NFEs

EJAYA 1625.442764498248 1631.509586823626 1767.660483606390 26.27208859624 150,000
ABC 1723.9870064 1967.02318543 2351.79562005 1.34 × 102 75,000
SCA 1833.12880218 2085.518614380 2268.47587046 1.05 × 102 75,000
HSCA 1625.44275908 1625.44275908 1625.44275908 1.99 × 10−11 75,000

The multiple-disc clutch brake design problem was lately solved by the Rao-1, Rao-1,
Rao-3 [4], AOS [42], IAPSO [32], I-ABC greedy [25] algorithms. The comparative results
obtained by the HSCA, SCA, ABC, and other methods are presented in Table 7. From
Table 7 it can be seen that the best-known rounded VTA were obtained only by the ABC,
SCA, and HSCA with the same number of NFEs. Moreover, the HSCA reached smaller
average and standard deviation values concerning the other eight optimizers.

For the cantilever beam design problem, the global optimum result 1.339956367 was
found in [34]. This design problem was lately solved by the AOS algorithm [45]. The
statistical results of the AOS, ABC, SCA, and HSCA are given in Table 8. Results arranged
in Table 8 confirm that only the proposed HSCA can find the best-rounded solution.
Additionally, the HSCA obtained smaller average and standard deviation values than the
other compared optimizers with the smallest NFEs.

Table 12. Performance of HSCA and other optimizers for the Belleville spring design problem.

Algo. Best Mean Worst SD NFEs

MBA 1.9796747 1.984698 2.005431 7.7800 × 10−3 10,600
diversity-guided PSO 1.979675 1.979675 1.979675 0.000000 50,000
ABC 1.9904011 2.0234035 2.1194233 2.77 × 10−2 15,000
SCA 2.0130731 2.1238541 2.2075343 3.63 × 10−2 15,000
HSCA 1.9796747 1.9796747 1.9796748 3.84 × 10−9 15,000

Table 13. Performance of HSCA and other optimizers for the car side impact design problem.

Algo. Best Mean Worst SD NFEs

FA 22.84298 22.89376 24.06623 0.16667 20,000
EJAYA 22.8429707 22.9439823 23.2619126 1.7098 × 10−1 27,000
ABC 22.8437697 22.86236564 23.0056316 2.38 × 10−2 24,000
SCA 23.0621090 23.3790495 23.7173399 1.44 × 10−1 24,000
HSCA 22.8429702 22.8429744 22.8429845 3.12 × 10−6 24,000

Table 14. Performance of HSCA and other optimizers for the gas transmission compressor design
problem.

Algo. Best Mean Worst SD NFEs

AOS 2,964,895.417 2,965,102.327 2,966,483.832 251.8360974 200,000
ABC 2,964,954.101 2,965,486.819 2,966,916.960 4.79 × 102 8000
SCA 2,965,653.755 2,972,099.03 2,983,981.646 3.52 × 103 8000
HSCA 2,964,895.4173 2,964,895.4173 2964895.4173 2.46 × 10−7 8000
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Table 15. Performance of HSCA and other optimizers for the reinforced concrete beam design
problem.

Algo. Best Mean Worst SD NFEs

FA 359.2080 460.706 669.150 80.73870 25,000
diversity-guided PSO 359.2080 359.2080 359.2080 0.0000 20,000
QSA 359.20800 359.20800 359.20800 5.74205 × 10−14 10,000
ABC 359.2080 359.34379 362.6340 5.22 × 10−1 4500
SCA 359.2116 360.5925 363.0331 1.13 4500
HSCA 359.2080 359.2080 359.2080 5.82 × 10−12 4500

The helical compression spring design problem was lately solved by FA method [36],
diversity-guided PSO [35], Rao-1, Rao-1, and Rao-3 [4]. Table 9 presents the comparative
results obtained by the FA, diversity-guided PSO, Rao-1, Rao-1, Rao-3, ABC, SCA, and
HSCA. From these statistical results, it can be noticed that most optimizers reached the
best-rounded VTA. The only exceptions are the FA and SCA approaches which found
slightly worse best results. The diversity-guided PSO converges to the best VTA faster than
other compared optimizers. On the other hand, the proposed HSCA produced minimal
mean and standard deviation results concerning the other seven metaheuristic algorithms.

The comparative results reached by the Rao-1, Rao-1, Rao-3 [4], ABC, SCA, and
HSCA for the hollow shaft design problem are given in Table 10. It can be observed that
each metaheuristic approach, except the SCA, was capable to obtain the best-rounded
VTA. Between these optimizers, only Rao-1, Rao-1, Rao-3, and HSCA accomplished the
best-rounded VTA in each run. The HSCA used the smallest NFEs to achieve these results.

Results reached by the EJAYA [40], ABC, SCA, and HSCA for the hydrostatic thrust
bearing design problem are presented in Table 11. From Table 11 it can be observed
that HSCA found the best-rounded VTA and the best average and standard deviation
results among all compared optimizers. Also, the HSCA reached these results with the
smallest NFEs.

The Belleville spring design problem was lately solved by the MBA [39] and diversity-
guided PSO [35]. Table 12 presents the comparative results obtained by the MBA, diversity-
guided PSO, ABC, SCA, and HSCA. The best VTA was obtained by the MBA, diversity-
guided PSO, and HSCA optimizers. The MBA obtained the best VTA with the smallest
NFEs, but only the diversity-guided PSO and HSCA reached the best-rounded solution in
each run among all compared optimizers.

The car side impact design problem was lately solved by the FA [36] and EJAYA [40].
The statistical results achieved by the FA, EJAYA, SCA, ABC, and HSCA are arranged in
Table 13. From Table 13 it is observable that only the HSCA can find the best-rounded
solution. Also, the proposed HCSA obtained smaller average and standard deviation
values than the other compared optimizers. The HSCA outperforms the EJAYA, ABC, and
SCA in computational efficiency.

The gas transmission compressor design problem was lately solved by the AOS
algorithm [45]. The comparative results of the AOS, ABC, SCA, and HSCA are presented
in Table 14. From Table 14 it can be observed that the HSCA and AOS can find the best-
rounded solution. Also, the HSCA performs more stable and converges faster to the optimal
solution than the other compared optimizers.

The comparative results obtained by the FA method [36], diversity-guided PSO [35],
QSA [43], ABC, SCA, and HSCA for the reinforced concrete beam design problem are
presented in Table 15. From Table 15, it can be noticed that just the proposed HSCA,
diversity-guided PSO, and QSA obtained the best-rounded solution in each run. The HSCA
achieved the best VTA with the smallest NFEs in comparison with the other five optimizers.

Figure 1 demonstrates six convergence curves of the average solutions achieved by the
ABC, SCA, and HSCA through 50 runs for specific design problems. This figure indicates
that the proposed HSCA converges faster than the ABC and SCA on the chosen design
problems. The statistical analysis derived by Wilcoxon’s test among HSCA and SCA and
among HSCA and ABC for these fifteen design problems at the 0.05 significance level
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obtained the p value 0.001. A summary of the results obtained by HSCA shows that our
proposed approach can significantly enhance the performance of SCA and ABC concerning
the quality of the reached results, stability, and computational efficiency for all fifteen
design problems.

(a) (b) (c)

(d) (e) (f)

Figure 1. Convergence curves of the average solutions achieved by the ABC, SCA, and HSCA through
50 runs for some design problems: (a) Speed reducer, (b) Tension/compression spring, (c) Pressure
vessel, (d) Welded beam, (e) Belleville spring, (f) Car side impact.

Table 16 presents results based on the performance of metaheuristic optimizers for
fifteen design problems. In Table 16 “Best”, “Mean” and “Worst” symbolize, respectively,
optimizers which achieved the “best” best, the “best” mean and the “best” worst solutions,
while “NFEs” represent optimizers that reached the “best” best solution for the smallest
NFEs. From Table 16 it can be observed that the HSCA optimizer reached the “best“ best,
mean and worst solutions for twelve problems (speed reducer, pressure vessel, welded
beam, gear train, stepped cantilever beam, multiple disc clutch brake, cantilever beam,
hollow shaft, hydrostatic thrust bearing, car side impact, gas transmission compressor, and
reinforced concrete beam) with the smallest NFEs. For the tension/compression spring
problem, the IAPSO and I-ABC greedy obtained the “best” best solution with the lower
NFEs than the HSCA. For the helical compression spring problem, the diversity-guided
PSO reached the “best” best solution with the lower NFEs than the HSCA, while for the
Belleville spring problem, the MBA obtained the “best“ best solution with the lower NFEs
than the HSCA. However, the HSCA showed good performance in solving these three
design problems, since it reached the best-rounded VTA in each run with acceptable NFEs.
It can be concluded that the comparative results with the other metaheuristic optimizers
showed that the HSCA has efficient performance regarding the quality and stability of the
results, and convergence speed.

5.2. Analyses

In this section, the behavior of the HSCA, ABC, and SCA when solving design prob-
lems is analyzed with regard to the diversity of a population. Diversity indicates differences
between agents and preserving the proper amount of diversity during the search is an
essential factor in avoiding local optimums and balancing exploration and exploitation.
The exploration and exploitation are intertwined in the three mutation operators employed
in the HSCA, and it is expected that these strategies can produce a suitable amount of
diversity when it is needed.
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To measure the diversity of the entire population, we employ the dimension-wise
diversity metric, which is described by the next equations [46]:

Divj =
1

SP

SP

∑
i=1

medianj − xi,j (10)

Div(t) =
1
D

D

∑
i=1

Divj (11)

Table 16. Results based on the performance of metaheuristic optimizers for fifteen design problems.

Problem Best Mean Worst NFEs

Speed EJAYA/IAPSO/ IAPSO/ IAPSO/ IAPSO/
reducer I-ABC greedy/ CB-ABC/ HSCA HSCA

CB-ABC/HSCA HSCA

Tension/ MBA/ECO/AOS/ HSCA HSCA IAPSO/
compress QSA/EJAYA/IAPSO/ I-ABC greedy/
spring I-ABC greedy/ MBA/ECO

CB-ABC/ABC/HSCA

Pressure QSA/IAPSO/ HSCA HSCA IAPSO/
vessel I-ABC greedy/ HSCA

CB-ABC/HSCA

Welded MBA/AOS/QSA/ MBA/QSA/ MBA/QSA/ HSCA
beam EJAYA/IAPSO/ EJAYA/ EJAYA/

I-ABC greedy/ CB-ABC/ HSCA/
CB-ABC/ HSCA
ABC/HSCA

Gear MBA/IAPSO/ABC/ HSCA HSCA ABC/SCA/
train SCA/HSCA/ HSCA

Stepped divers-guided PSO/ divers-guided divers-guided ABC/
cantilever ABC/HSCA PSO/ PSO/ HSCA
beam HSCA HSCA

Multi. disc ABC/SCA/ HSCA HSCA ABC/SCA/
clutch brake HSCA HSCA

Cantilever HSCA HSCA HSCA HSCA
beam

Helical divers-guided PSO/ HSCA HSCA divers-guided
compress Rao-1/Rao-2/Rao-3/ PSO
spring ABC/ HSCA

Hollow Rao-1/Rao-2/Rao-3/ Rao-1/Rao-2/ Rao-1/Rao-2/ ABC/HSCA
shaft ABC/HSCA Rao-3/HSCA Rao-3/HSCA

Hydr. HSCA HSCA HSCA HSCA
thrust
bearing

Belleville divers-guided PSO/ divers-guided divers-guided MBA
spring MBA/HSCA PSO/HSCA PSO/HSCA

Car side HSCA HSCA HSCA HSCA
impact

Gas trans. AOS/ HSCA HSCA HSCA
compressor HSCA

Reinforced FA/QSA/ divers-guided divers-guided ABC/HSCA
concrete divers-guided PSO/ PSO/ PSO/
beam ABC/HSCA QSA/HSCA QSA/HSCA

In the Equation (10), medianj is the median of jth element in the entire population,
xi,j is jth component of ith agent, SP is the total number of agents in the population. The
calculated value Divj represents the diversity of jth dimension. The Equation (11) is used
to calculate the population diversity in tth iteration.
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The diversity behavior of the ABC, SCA, and HSCA for the six design problems, speed
reducer, tension/compression spring, pressure vessel, welded beam, Belleville spring, and
car side-impact, is presented in Figure 2.

(a) (b) (c)

(d) (e) (f)

Figure 2. Diversity behavior of the ABC, SCA, and HSCA for some design problems: (a) Speed
reducer, (b) Tension/compression spring, (c) Pressure vessel, (d) Welded beam, (e) Belleville spring,
(f) Car side impact

From Figure 2 it can be seen that the diversity of the HSCA is high in the first part of
the search process, and then it gradually decreases for all selected problems. High diversity
in the initial iterations indicates that the HSCA may be capable of searching for a global
optimum solution with greater accuracy. Further, low diversity in the final iterations may
signify that promising areas are found and that fine adjustment of the reached results is
provided. The population diversity of ABC and SCA is also higher in the initial generations,
but decreases very slowly or remains on a similar level in later iterations for most of the
chosen problems. Since encouraging high diversity in each stage of the search process
might be inefficient, this diversity behavior may point to slow convergence and deficiency
of precision of the ultimate solution.

The fact that HSCA outperformed ABC and SCA in tackling design problems and the
presented diversity behavior of these algorithms indicates that the HSCA can maintain
appropriate diversity through the search. Hence it can be concluded that the use of three
mutation operators and Deb’s rules in the HSCA enables a preferable balance between
exploration and exploitation.

6. Conclusions

This paper proposes a hybridization of the sine cosine algorithm, called HSCA, for
solving structural and mechanical engineering design optimization problems. The HSCA is
a collaborative hybrid algorithm with a sequential structure. The modified SCA and ABC
with two different search strategies execute alternately until the convergence criterium is
met in the proposed method. The modified SCA search strategy is developed to reach a
suitable balance between local exploitation and global exploration abilities. In the proposed
equation, the global exploration is guided by choosing the base vector randomly from
the population and adding another difference vector to the base vector. Also, the local
exploitation is enhanced by using the current best solution in both difference vectors of this
search operator. Further, modified SCA is combined with the multi-strategy ABC algorithm
to better maintain diversity in the population. In the employed ABC variant, two ABC
search equations with good global exploration abilities are engaged in creating candidate
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solutions. The modified SCA and ABC employ a constraint handling technique based on
Deb’s rules to steer the search toward feasible areas.

The performance of the developed hybrid optimizer was explored on fifteen complex
engineering problems. The experimental results of direct comparison of the HSCA with
the standard ABC and SCA revealed that the HSCA performs significantly better than
these two metaheuristics. The proposed approach has also established a highly competitive
performance than the other optimizers studied by the preceding researchers in terms of the
quality and stability of the results. Additionally, the HSCA showed an effective convergence
speed in reaching these results. Therefore, the developed HSCA has a great capacity to
deal with mixed-type design variables concurrently while satisfying various complicated
design constraints.

The proposed hybrid method is easy to implement. The HSCA has a simple archi-
tecture that does not use extra components and is computationally inexpensive. This
algorithm uses three search operators with distinct benefits which coexist during the search.
The analyses indicated that the combination of the modified SCA mutation operator and
the two ABC search equations with the use of three feasibility rules properly sustain the
balance between exploration and exploitation for these design problems. The HSCA does
not increase the number of control parameters in the SCA and the ABC optimizers. But a
common complexity of finding the proper settings of algorithm-dependent parameters is
present in the HSCA, as in lots of other metaheuristic optimizers. Additionally, the issue
of more sophisticated control of the balance between exploitation and exploration during
diverse stages of the search process exists in the proposed approach.

The considered fifteen design problems have different numbers of inequality con-
straints. To solve problems with equality constraints, the appropriate equality constraint
handling technique needs to be employed. It is also important to note that the performance
of the HSCA may be different depending on the constraint-handling technique employed.
The efficiency of some other constraint-handling techniques for complex constraints will be
investigated in future work. Extending the HSCA for solving multi-objective problems will
also be studied.
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