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Abstract: Many researchers have addressed problems involving time-varying (TV) general linear
matrix equations (GLMEs) because of their importance in science and engineering. This research
discusses and solves the topic of solving TV GLME using the zeroing neural network (ZNN) design.
Five new ZNN models based on novel error functions arising from gradient-descent and Newton
optimization methods are presented and compared to each other and to the standard ZNN design.
Pseudoinversion is involved in four proposed ZNN models, while three of them are related to New-
ton’s optimization method. Heterogeneous numerical examples show that all models successfully
solve TV GLMEs, although their effectiveness varies and depends on the input matrix.
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1. Introduction and Preliminaries

Novel zeroing neural network (ZNN) dynamical systems are presented using vari-
ous error functions that arise from gradient-descent and Newton optimization methods.
Introduced models are theoretically investigated and compared to each other and to the
standard ZNN design. The proposed ZNN models are applied in solving time-varying
(TV) general linear matrix equations (GLMEs) with arbitrary TV real input matrices. The
TV GLME problem is expressed as the matrix equation

A(t)Y(t)C(t) = B(t), A(t) ∈ Rm×n, Y(t) ∈ Rn×k, C(t) ∈ Rk×h, B(t) ∈ Rm×h,

m ≥ n, k ≤ h,
(1)

in which Y(t) is unknown matrix.
The solutions Y(t) to the Equation (1) are extremely useful in science as well as in

a wide range of engineering applications, including optimizing the manipulability of a
robotic arm’s joint angles [1], making highly accurate predictions for missing quality of
service data [2], tracking robotic motion and mobile objects [3], obtaining weights of feed-
forward neural networks [4]. This paper presents and contrasts six ZNN models based on
two new error functions for solving TV GLMEs that involve arbitrary matrices A(t), B(t),
and C(t). It is worth mentioning that the matrix pseudoinversion is involved in four of the
proposed ZNN models, while three are related to Newton’s optimization method.

The ZNN concept was coined by Zhang et al. in [5] for determining online solutions
to TV matrix inversion problems. Most ZNN-based dynamical systems belong to classes of
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recurrent neural networks (RNNs) designed to approximate zeros of matrix, vector, or scalar
equations. Besides ZNN, there is another type of RBBs, which is known as Gradient neural
networks (GNN). As an outcome, numerous significant research results have been revealed
in the scientific literature. ZNN and GNN dynamics for solving linear matrix equations
of the form (1) were described and compared in [6]. Two Zhang functions and initiated
ZNN dynamics for solving the TV GLME A(t)Y(t) = B(t) were presented and investigated
theoretically and numerically in [7]. A gradient-based neural dynamics for solving the
matrix equation AXB = D was investigated in [8]. Gradient and zeroing dynamical systems
aimed to solve the system of linear equations in both the TV and constant environment
are investigated in [9–11]. GNN neural-dynamic schemes are substantially designed
for solving equations with time-invariant coefficient matrices [11]. A global overview
of Zeroing dynamical systems (ZND), involving ZND aimed to solving linear matrix
equations, was presented in [12]. Nonlinear Zeroing neural dynamical systems with finite-
time convergence and noise-tolerant for solving linear matrix equations in time-varying
scenarios were proposed and investigated in [13,14]. A ZNN design whose dynamics
are based on varying gain parameter and which are suitable for solving TV GLME was
proposed in [15]. A very popular class of ZNN dynamical systems is represented by ZNN
models with a finite-time or pre-defined convergence time. A finite-time convergent ZNN
dynamics with a robust activation was presented in [14] and applied in some engineering
fields. Xiao in [16] discovered and investigated finite-time dynamical systems for solving
time-dependent complex matrix equation AX = B. A desirable feature of ZNN dynamics
is its ability to neutralize different types of noises that appear during the evolution of
dynamic systems. A noise-tolerant ZNN design with nonlinear activation that involves
appropriate integral term was proposed and investigated in [17]. Finite-convergent zeroing
neural design in the complex domain based on the Tikhonov regularization on the matrix
A and aimed at solving time-dependent matrix equations AX = D was considered in [18].
Various and numerous areas of numerical linear algebra are studied by applying ZNN
dynamics in the time-varying case. Solving tensor and matrix inversion on TV arrays [19],
generalized eigenvalues problems [20], generalized inversion [21], matrix equations and
matrix decompositions [3], quadratic optimization problems [22], and approximations
of various matrix functions [23,24] are predominant utilizations of ZNNs. ZNN models
based on two fuzzy-adaptive activations for resolving specific linear TV linear matrix
equations (LME) were introduced in [25,26]. The hybrid models introduced in [27] are
defined using suitable combinations of GNN and ZNN neural dynamics for solving matrix
equations BX = D or CX = D. Apart from different types of activation in dynamic systems,
numerous studies have been devoted to the modification of the dynamic evolution of ZNN.
High-order error function designs and high-order ZNNs which are designed using powers
of standard Zhang functions and adopted for solving LME were proposed in [28].

Dtermining an error function (or Zhang function) E(t), based on a suitable expression
that reflects the problem being solved, is the first step in developing ZNN dynamics [29].
The second stage takes the dynamical development

Ė(t) =
dE(t)

dt
= −λF (E(t)), λ > 0 (2)

in which Ė(t) ∈ Rm×n means the time derivative of E(t) ∈ Rm×n, a real number λ > 0
represents the scaling parameter required for accelerating the convergence speed, and
F (·) : Rm×n → Rm×n denotes elementwise usage of appropriately defined odd-increasing
activation function on E(t). Target of our research is the linear ZNN design

Ė(t) = −λE(t), λ > 0. (3)

The system of first-order differential Equation (3), which defines the ZNN evolution
law, has the analytical solution E(t) = E(0)e−λt [12]. Thus, E(t) in the standard ZNN is
exponentially convergent to the zero 0 with the exponential convergence rate λ as t→ +∞.
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The ZNN model for solving the GLME (1) is defined using the matrix-valued Zhangian

E(t) = A(t)Y(t)C(t)− B(t), A(t) ∈ Rm×n, Y(t) ∈ Rn×k, C(t) ∈ Rk×h, B(t) ∈ Rm×h. (4)

The main drawback of the basic ZNN design (3) and (4), based on the standard error
function E(t), is its limited application to cases where the input matrices meet certain
requirements. Motivated by that shortcoming, in this research we propose two new error
functions derived from optimization methods. The error function EG(t) is defined by
zeroing the gradient of the Frobenius matrix norm of E(t), while the error function EN(t)
is defined by the Newton step corresponding to the Frobenius matrix norm of E(t). That
is why we use the terms Gradient zeroing neural network (GZNN) and Newton zeroing
neural network (NZNN) for dynamic systems that are defined based on the new error
functions EG and EN , respectively.

Moreover, we noticed that the analysis of the complete set of solutions to the
Equation (1) has not been investigated so far. In previous research, the solution based
on invertible matrices A and C has been analyzed, which corresponds to the solution
Y(t) = A−1(t)B(t)C−1(t) [6,26]. Our idea is to look for least-squares solutions, under
weaker assumptions that allow the coefficient-matrices to be singular.

The following highlights are key results of this work:

• A new and unique ZNN development, based on two novel error functions EG(t) and
EN(t), is used to address the problem of solving TV GLMEs (1) with arbitrary TV real
input matrices.

• Six ZNN models based on different error functions are presented and compared, five
of which are new. Pseudoinversion is involved in three new ZNN models, while two
are related to Newton’s optimization method.

• A precise convergence analysis of the proposed ZNNs is presented and the set of
solutions is defined using known results from linear algebra.

• Six numerical examples confirm that all considered models can solve TV GLMEs,
although their effectiveness varies depending on input matrices.

The following is the structure of the presentation. Section 2 presents the motivation
and describes the main results. Section 3 defines six ZNN dynamical systems and analyses
their solvability, general solution, sets of all solutions, and convergence properties. Section 4
introduces and analyses simulation results obtained through six numerical examples that
involve input matrices of different types. Finally, in Section 5, there are closing remarks.

The paper follows classical notations: In ∈ Rn×n signifies the identity matrix of the
order n; Im,n ∈ Rm×n signifies a m× n matrix with ones on the main diagonal and zeros
elsewhere; 1n and and 1m,n, respectively, signify a vector in Rn and a matrix in Rm×n

consisting of ones; Om,n ∈ Rm×n signifies the zero m× n array; ⊗ designates the Kronecker
product; vec(·) stands for the vectorization; �means the Hadamard product; ‖·‖F signifies
the Frobenius norm; the operators (·)T, (·)−1 and (·)†, respectively, signify the matrix
transposition, inversion and the pseudoinversion.

2. Motivation and Description of Main Results

The traditional ZNN dynamics for solving (1) is based on the error function (Zhangian)
E(t) defined in (4), and follows the dynamic flow

Ė(t) = −λE(t) = −λ(A(t)Y(t)C(t)− B(t)). (5)

The standard ZNN design (5) developed to solve the GLME (1) requires invertible matrices
A and C to force E(t) to zero, which the unique solution Y(t) = A−1(t)B(t)C−1(t) [26,30].
Our goal is to resolve this restriction and propose dynamical evolutions based on error functions
that tend to zero in more general cases, which include the singularity of matrix-coefficients
A(t) and C(t). This research aims to find new neurodynamical models based on different error
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functions. Our motivation in defining new Zhang functions has its origin in gradient-descent
methods for solving the unconstrained minimization problem

min f (x), x ∈ Rn, (6)

where f : Rn → R is a continuously-differentiable function bounded from below. The
gradient descent (GD) iterative scheme for solving (6) is defined by

xk+1 = xk − αkgk, (7)

whereby gk = ∇ f (xk) is the gradient vector and αk is appropriately defined step size. The
convergence result

lim
k→∞
‖gk‖ = 0 (8)

for iterations (7) is widely known in the literature [31].
The Newton method with line search for solving (6) is defined by

xk+1 = xk − αkG−1
k gk, (9)

where G−1
k denotes the inverse of the Hessian matrix Gk = 52 f (xk).

New error functions EG(t) and EN(t) are defined using analogies with gradient-
descent and Newton method for nonlinear optimization. The residual matrix
E(t) = A(t)Y(t)C(t)− B(t) is the desired goal function which is forced to the zero matrix.
The gradient of the Frobenius norm

εY =
‖E(t)‖2

F
2

=
‖A(t)Y(t)C(t)− B(t)‖2

F
2

is equal to [6]
∂εY
∂Y

= ∇εY = AT(AYC− B)CT = EG(t).

Follwing iterations defined in [32], the gradient-descent iterations for minimizing the
goal function εY are defined by

Yk+1 = Yk − αk AT(AYkC− B)CT, αk > 0,

taking an arbitrary initial matrix Y0 ∈ Rn×k. The Gradient neural network (GNN) dynamic
evolution minimizes ‖AY(t)C− B‖2

F and it is based on the direct proportionality between
the time derivative Ẏ(t) and the negative gradient of the goal function εY(t) [33,34]:

Ẏ(t) = −λ
∂εY(t)

∂Y
, Y(0) = Y0. (10)

Our goal is to define the ZNN design for solving the TV GLME (1) based on the
error function

EG(t) := ∇εY(t) = AT(AYC− B)CT = ATE(t)CT, (11)

which initiates the following dynamics, termed GZNN dynamics:

ĖG(t) = −λEG(t) = −λ
(

AT(AYC− B)CT
)

. (12)

Further, Hessian of εY in the case C := I is equal to ∇2εY = ∂2εY
∂Y2 = AT A. In the case

A := I, Hessian of εY is equal to ∇2εY = ∂2εY
∂Y2 = CCT. Following the results from [32], the

Newton iterations with line search in the time-invariant case can be defined by

Yk+1 = Yk − αk

(
AT A

)−1
AT(AYkC− B)CT

(
CCT

)−1
, αk > 0.
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Consider the real numbers δ
AT A

and δ
CCT defined by

δ
AT A

=

{
ε, rank(AT A) < n,
0, rank(AT A) = n,

δ
CCT =

{
ε, rank(CCT) < k,
0, rank(CCT) = k,

where ε > 0 is a small real regularization parameter. So, we define the Zhangian in the case
of rank(A) ≤ n ≤ m, rank(C) ≤ k ≤ h as

EN(t) :=
(

AT(t)A(t) + δ
AT A

I
)−1

AT(A(t)Y(t)C(t)− B(t))CT(t)
(

C(t)CT(t) + δ
CCT I

)−1
. (13)

Given the well-known limit representation of the Moore-Penorse inverse, restated
in [35], it can be obtained

lim
ε→0

(
AT A + δ

AT A
I
)−1

AT = A†, lim
ε→0

CT
(

CCT + δ
CCT I

)−1
= C†,

which implies

EN(t)→ A†(t)(A(t)Y(t)C(t)− B(t))C†(t) = A†(t)E(t)C†(t)

as ε → 0. The ZNN design for solving EN(t) = 0 based on the error function EN(t), and
termed NZNN, is defined by

ĖN(t) = −λEN(t). (14)

Dynamics (14) forces EN(t) to zero, which (in view of (13)) coincides with the zero
of EG(t).

Solvability and Solutions of Proposed Dynamical Systems

In this subsection we investigate conditions for solvability of the matrix equations
E(t) = 0, EG(t) = 0 and EN(t) = 0 and their sets of solutions.

Lemma 1 defines conditions for the solvability and defines solutions of the linear ma-
trix equation AYC = B. The results is obtained as a consequence of [35] (p. 52, Theorem 1)
in the time-varying case.

Lemma 1 ([35] p. 52, Theorem 1). For arbitrary A(t) ∈ Cm×n, B(t) ∈ Cp×q, D(t) ∈ Cm×q,
the general linear matrix equation

A(t)Y(t)C(t) = B(t) (15)

is solvable if and only if
A(t)A†(t)B(t)C†(t)C(t) = B(t), (16)

in which case its general solution is given by

A†(t)B(t)C†(t) + Q(t)− A†(t)A(t)Q(t)C(t)C†(t), (17)

for arbitrary Q(t) ∈ Cn×p.

Corollary 1. If (16) is satisfied, the set of all solutions to (15) is defined by

ΘQ =
{

A†(t)B(t)C†(t) + Q(t)− A†(t)A(t)Q(t)C(t)C†(t) | Q(t) ∈ Cn×p
}

. (18)

The set ΘQ is termed as solutions set in rest of the paper.

Lemma 2 restates results from [8] (Theorem 2.2). These results are used in Remark 1 to
define the solution which will be used in numerical comparison of defined models.
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Lemma 2 ([8] Theorem 2.2). Assume that constant matrices A ∈ Rm×n, C ∈ Rk×h and
B ∈ Rm×h satisfy

AA†BC†C = B. (19)

Then the activation state variables matrix Y(t) of the dynamical system

Ẏ(t) = −γAT(AV(t)C− B)CT (20)

is convergent as t→ +∞ and has the equilibrium state

Y(t)→ Ỹ = A†CB† + Y(0)− A† AY(0)CC† (21)

for every initial state matrix Y(0) ∈ Rn×p.

Remark 1. Theorem 2.2 in [8] claims that the activation state variables matrix Y(t) of the GNN
dynamics (20) for solving (15) in the time-invariant case converges as t→ +∞ to the equilibrium
state defined in (21).

Accordingly, we will use the equilibrium matrix

ỸY(0)(t) = A†(t)B(t)C†(t) + Y(0)− A†(t)A(t)Y(0)C(t)C†(t) ∈ ΘQ, (22)

for the comparison of the proposed models in performed numerical experiments.

Theorem 1 investigates conditions for the solvability of the equations E(t) = 0,
EG(t) = 0, EN(t) = 0, and solutions sets to these equations.

Theorem 1. Consider arbitrary smooth TV matrices A(t) ∈ Rm×n, C(t) ∈ Rk×h and
B(t) ∈ Rm×h. The following statements are valid.

(a) The equation E(t) = 0 is solvable if and only if (16) holds, and the solutions set to E(t) = 0
is ΘQ defined in (18).

(b) If rank(A) ≤ n ≤ m, the equation EG(t) = 0 is always solvable and the solutions set to
EG(t) = 0 is ΘQ defined by (18).

(c) If rank(A) ≤ n ≤ m, the equation EN(t) = 0 is always solvable and the solutions set to
EN(t) = 0 is ΘQ defined by (18).

Proof. (a) The error function E(t) in the traditional ZNN (TZNN) model is defined by (4)
and solves the equation E(t) = 0. This part of the proof follows from known results on
the solvability and the general solution to the matrix Equation (15), given in Lemma 1,
and its application to the matrix equation E(t) = 0⇐⇒ A(t)Y(t)C(t) = B(t).

(b) The dynamics (12) forces EG(t) = ∇εY(t) = AT(AYC− B)CT to zero. On the other
hand, according to Lemma 1, the error function EG(t) vanishes in the case.

EG(t) = 0⇐⇒ AT AYCCT = ATBCT.

As a consequence, the matrix equation EG(t) = 0 is consistent, its general solution is
is given by (17), and its solutions set is defined in (18). The consistency is confirmed
by the identity

AT A
(

AT A
)†

ATBCT
(

CCT
)†

CCT = ATBCT.

In addition, the general solution to EG(t) = 0 is given by (17). Indeed, using Lemma 1,
the general solution to EG(t) = 0 is equal to

Y =
(

AT A
)†

ATBCT
(

CCT
)†

+ Q−
(

AT A
)†

AT AQCCT
(

CCT
)†

= A†BC† + Q + A† AQCC†.
(23)
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(c) In the case rank(A) ≤ n ≤ m, rank(C) ≤ k ≤ h, the Zhangian EN(t) becomes the zero
matrix in the case

EN(t) = 0⇐⇒
(

AT A + δ
AT A

I
)−1

AT(AYC− B)CT
(

CCT + δ
CCT I

)−1
= 0. (24)

The GLME EN(t) = 0 is always solvable and its solutions set is equal to (18). This
statement follows from

EN(t) = 0⇐⇒ AT(AYC− B)CT = 0

⇐⇒ EG(t) = 0.

Following general results from [35] (p. 52, Theorem 1) it is straightforward to verify
that (18) is the general set of solutions to EN(t) = 0.

Remark 2. The general conclusion is that the neural dynamics (12) forces the residual matrix
EG(t) = ∇εY(t) = AT(AYC− B)CT to zero. According to (23), the ZNN dynamics (12) reaches
the solution Y(t) of the form (23) which coincides with the solution (18) to E(t) = A(t)Y(t)C(t)−
B(t)→ 0. Finally, EN(t)→ 0 is equivalent to EG(t)→ 0.

In this way, we explain one of the main advantages of the proposed models: the matrix equation
E(t) = 0 is solvable under the condition (16), while zeroing EG(t) = 0 and EN(t) = 0 are
always consistent. In view of (18) and (23), the general solutions to all three equations E(t) = 0,
EG(t) = 0 and EN(t) = 0 are identical.

Corollary 2. Let us consider the solutions set

Λ =
{

ỸY(0)(t)
∣∣∣ Y(0) ∈ Rn×k},

generated by all possible initial states Y(0) of the form (22). The following statements are valid.

(a) AΛC = {B}.
(b) An arbitrary solution ỸY(0)(t) ∈ Λ, defined in (22), is a least squares solution to (1).
(c) The unique solution Ỹ0(t) ∈ Λ produces the best-approximate (i.e., the minimal-norm least-

squares) solution A†BC† to (1).

Proof. Part (a) follows from Lemma 1.
(b) Following the results from [36,37],

‖AYC− B‖2 ≥ ‖AA†BC†C− B‖2,

for arbitrary solution Y to (1), where the equality is valid if Y ∈ ỸY(0)(t).
(c) Follows from the known result originated in [36,37]

‖A†BC†‖2 ≤ ‖A†BC† + Y− A† AYC†C‖2.

The proof is complete.

3. Various ZNN Models for Solving TV GLMEs

The current section defines and analyses six ZNN expansions for calculating online
solutions of TV GLMEs, including TZNN which is based on the traditional ZNN approach,
GZNN based on the gradient ZNN approach, NZNNV1, NZNNV2 and NZNNV3 which
are based on the Newton’s optimization method, and DZNN based on the ZNN approach
for finding the direct solution produced with the use of pseudoinverse. The TZNN and
GZNN models provided here cover all potential scenarios for arbitrary TV real input
matrices A(t), B(t), C(t) for solving the TV GLME (1).
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3.1. Traditional ZNN Model

Considering smooth arbitrary TV matrices A(t) ∈ Rm×n, C(t) ∈ Rk×h and
B(t) ∈ Rm×h, the error function in the traditional ZNN (TZNN) model is established as

E(t) = A(t)Y(t)C(t)− B(t), (25)

under conditions

{A, B, C} ∈ D =
{

A ∈ Rm×n, C ∈ Rk×h, B ∈ Rm×h, m = n = rank(A), k = h = rank(C)
}

. (26)

It is important to note that the desired solution is Y(t) ∈ Rn×k. The time derivative of
E(t) defined in (25) is equal to

Ė(t) = Ȧ(t)Y(t)C(t) + A(t)Ẏ(t)C(t) + A(t)Y(t)Ċ(t)− Ḃ(t). (27)

Therefore, the following implicit dynamics can be obtained considering the linear
ZNN flow (2)

A(t)Ẏ(t)C(t) = −λ(A(t)Y(t)C(t)− B(t))− Ȧ(t)Y(t)C(t)− A(t)Y(t)Ċ(t) + Ḃ(t),

{A, B, C} ∈ D.
(28)

which is just the linear ZNN model (8) in [6]. Using the Kronecker product in conjunction
with the vectorization, the dynamics (28) is modified and, as a result, we obtain the
following ZNN model in vector form

(CT(t)⊗ A(t))vec(Ẏ(t)) =

vec
(
−λ(A(t)Y(t)C(t)− B(t))− Ȧ(t)Y(t)C(t)− A(t)Y(t)Ċ(t) + Ḃ(t)

)
,

{A, B, C} ∈ D.

(29)

The ZNN model (29) will be termed as TZNN model. The solution to the dynamical
system (29) can be approximated using the standard Matlab ode solver. If CT(t)⊗ A(t)
is a nonsingular mass matrix, the exponential convergence speed achieved by the TZNN
design (29) to the exact TV solution of the TV GLME (1) is proved in [6] (Theorem 1).

In [6], the authors vectorized the TV GLME A(t)Y(t)C(t) = B(t) into its equivalent
form (CT(t)⊗ A(t))vec(Y(t)) = vec(B(t)). We restate the main result from [6] (Theorem 1)
in the form adopted for (1) to improve readability of the paper. This result defines Unique-
solution condition that requires invertibility of the mass matrix (CT(t)⊗ A(t)).

Lemma 3 ([6] Theorem 1). Assume that time-varying coefficient matrices in (1) are smooth. If
the following Unique-solution condition

(CT(t)⊗ A(t))T(CT(t)⊗ A(t)) ≥ δI, ∀t ≥ 0, (30)

is satisfied for a real number δ > 0, then the matrix Y(t) of the Zhang neural network (28), starting
from arbitrary initial state Y(0), converges exponentially to the theoretical solution of (1) with the
exponential convergence rate λ.

Vectorized ZNN design (29) exploits the same mass matrix CT(t)⊗ A(t) and requires
its invertibility. Using (CT(t)⊗ A(t))−1 = CT(t)−1 A(t)−1, we conclude that the Unique-
solution condition requires invertibility of A(t) and C(t). Therefore, if CT(t) ⊗ A(t) is
nonsingular then (16) is satisfied.

Corollary 3. Let A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h be differentiable. If the condi-
tion (26) is satisfied, starting from arbitrary initial value Y(0), the TZNN model (40) converges
exponentially and globally to A−1(t)B(t)C−1(t).
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3.2. Gradient ZNN (GZNN) Model

The gradient-based ZNN (GZNN) approach considers arbitrary smooth TV matrices
A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h for solving

AT(t)A(t)Y(t)C(t)CT(t) = AT(t)B(t)CT(t), (31)

where Y(t) ∈ Rn×k is the desired solution. According to general requirements of the ZNN
design (2) [6,30], we consider the constraints

{A, B, C} ∈ DG ={
A ∈ Rm×n, C ∈ Rk×h, B ∈ Rm×h, m ≥ n ≥ rank(A(t)), h ≥ k ≥ rank(C(t))

}
.

(32)

The error function in GZNN design will be defined by

EG(t) = AT(t)(A(t)Y(t)C(t)− B(t))CT(t) = AT(t)E(t)CT(t), {A, B, C} ∈ DG. (33)

The time derivative of (33) is

ĖG(t) = ȦT(AYC− B)CT + AT(ȦYC + AẎC + AYĊ− Ḃ)CT + AT(AYC− B)ĊT. (34)

Then, considering (2), it can be obtained:

AT AẎCCT =− λAT(AYC− B)− ȦT(AYC− B)CT − AT(ȦYC + AYĊ− Ḃ)CT

− AT(AYC− B)ĊT, {A, B, C} ∈ DG.
(35)

Using the vectorization in conjunction with the Kronecker product, the dynamics (35)
is modified as

(CCT ⊗ AT A)vec(Ẏ) =

vec
(
− λAT(AYC− B)− ȦT(AYC− B)CT − AT(ȦYC + AYĊ− Ḃ)CT − AT(AYC− B)ĊT),
{A, B, C} ∈ DG.

(36)

Replacements

W(t) =CCT ⊗ AT A

r(t) =vec
(
− λAT(AYC− B)− ȦT(AYC− B)CT

− AT(ȦYC + AYĊ− Ḃ)CT − AT(AYC− B)ĊT)
ẏ(t) =vec(Ẏ(t)), y = vec(Y(t))

(37)

lead to the dynamical evolution
W(t)ẏ(t) = r(t). (38)

The mass matrix W(t) in (38) is singular in rank conditions rank(A) < min{m, n} or
rank(C) < min{k, h}. The Tikhonov regularization is the principle widely exploited to
solve such singularity problems. As a result, W(t) is regularized by the matrix

M(t) =

{
W(t), rank(A) = min{m, n} & rank(C) = min{k, h}
W(t) + βIkn, rank(A) < min{m, n} or rank(C) < min{k, h}

(39)

where β ≥ 0 is a small regularization quantity. Then the following ZNN model is used
instead of (38):

M(t)ẏ(t) = r(t), (40)
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where M(t) is a nonsingular mass matrix. The ZNN (40) is named GZNN, and it is solvable
using a proper ode Matlab solver. A global convergence with exponential speed of the
GZNN design (40) to the exact TV solution of the TV GLME (31) is certified in Theorem 2.

Theorem 2. Let A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h be differentiable. If the condi-
tion (32) is satisfied, starting from arbitrary initial value y(0), the vectorized GZNN model (40)
converges exponentially and globally to one element from the set ΘQ defined in (18), which solves
the TV GLME (31).

Proof. To obtain the solution y(t) to the TV GLMEs (31), the Zhangian matrix is defined
by (33) inline with its time derivative (34). The ZNN expansion based on (33) leads to
the model (35). Furthermore, from the derivation procedure, (40) is an equivalent form
of (35), which represents the standard GZNN model. Since a regularization parameter β is
involved in the the definition of the mass matrix M(t) in (40), M(t) is invertible. From [6]
(Theorem 1), restated in Lemma 3, the unknown matrix Y(t) in (35) converges to the exact
solution as t → ∞. According to Theorem 1(b), the matrix equation EG(t) = 0 is always
solvable and its solutions are included in ΘQ.

3.3. Newton ZNN Model (Version 1)

Applying the limit representation of the pseudoinverse [35]

lim
ε→0

(
AT A + δ

AT A
I
)−1

AT = A†, lim
ε→0

CT
(

CCT + δ
CCT A

I
)−1

= C†,

the error function (13) of the Newton ZNN version 1 (NZNNV1) model will be defined by

EN(t) = A†(t)(A(t)Y(t)C(t)− B(t))C†(t), {A, B, C} ∈ DG. (41)

So, the first variant of the Newton ZNN approach considers the smooth arbitrary TV
matrices A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h for solving the following GLMEs:

A†(t)A(t)Y(t)C(t)C†(t) = A†(t)B(t)C†(t), {A, B, C} ∈ DG, (42)

where the desired solution is Y(t) ∈ Rn×k.
The time derivative of EN(t) is given as

ĖN(t) =Ȧ†(AYC− B)C† + A†(ȦYC + AẎC + AYĊ− Ḃ)C† + A†(AYC− B)Ċ†. (43)

The time derivative of the pseudoinverse of P(t) ∈ Rm×n is equal to

Ṗ† = −P† ṖP† + P†(P†)TṖT(I − PP†) + (I − P†P)ṖT(P†)TP†. (44)

Then, considering the linear ZNN design (2), it is obtained

Ȧ†(AYC− B)C† + A†(ȦYC + AẎC + AYĊ− Ḃ)C† + A†(AYC− B)Ċ†

= −λA†(AYC− B)C†, {A, B, C} ∈ DG,
(45)

or equivalently

A† AẎCC† =− λA†(AYC− B)C† − Ȧ†(AYC− B)C† − A†(ȦYC + AYĊ− Ḃ)C†

− A†(AYC− B)Ċ†, {A, B, C} ∈ DG,
(46)
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Applying the vectorization and the Kronecker product, the (46) dynamics is trans-
formed into(

(CC†)⊗ (A† A)
)

vec(Ẏ)

= vec
(
− λA†(AYC− B)C† − Ȧ†(AYC− B)C† − A†(ȦYC + AYĊ− Ḃ)C†

− A†(AYC− B)Ċ†),
{A, B, C} ∈ DG,

(47)

and setting

W(t) =((CC†)⊗ (A† A))

r(t) =vec
(
− λA†(AYC− B)C† − Ȧ†(AYC− B)C†

− A†(ȦYC + AYĊ− Ḃ)C† − A†(AYC− B)Ċ†)
ẏ(t) =vec(Ẏ(t)), y(t) = vec(Y(t)),

(48)

the subsequent ZNN design is generated:

W(t)ẏ(t) = r(t). (49)

The mass matrix W(t) in (49) is singular under the rank conditions
rank(A) < min{m, n} or rank(C) < min{k, h}. The regularization principle leads to
the regular mass matrix

M(t) =

{
W(t), rank(A) = min{m, n} & rank(C) = min{k, h}
W(t) + βIkn, rank(A) < min{m, n} or rank(C) < min{k, h}

(50)

such that β ≥ 0 defines the ridge regression parameter. Accordingly, the ZNN dynami-
cal system

M(t)ẏ(t) = r(t) (51)

is used instead of (49), where M(t) is the nonsingular mass matrix. The differential sys-
tem (51) is termed NZNNV1, and it is solvable using ode Matlab solvers. Theorem 3 proves
the exponential convergence rate of the NZNNV1 evolution (51) to the accurate TV solution
of TV GLMEs (42).

Theorem 3. Let A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h be differentiable. If the condi-
tion (16) is satisfied, the NZNNV1 model (51), starting form any initial value y(0), exponentially
converges to one element from the set ΘQ defined in (18), which solves the TV GLME (42).

Proof. To acquire the solution y(t) to (42), the Zhangian matrix is defined as in (41), in
conjunction with the initiated ZNN dynamics. The model (45) is obtained by adopting the
linear design for zeroing (41), which produces the NZNN design. From [6] (Theorem 1),
restated in Lemma 3, each error matrix equation in the error matrix equation group (45)
converges to the accurate solution as t → ∞. According to Theorem 1(c), the matrix
equation EN(t) = 0 is always solvable and its solutions are included in ΘQ. Consequently,
the solution of (45) converges to the solution of TV GLMEs (42) as t→ ∞. The derivation
procedure of (51) confirms that it is an equivalent form of (45).

3.4. Newton ZNN Model (Version 2)

This subsection presents the second version of the Newton ZNN model for solving
the TV GLMEs of (42). The Newton ZNN version 2 (NZNNV2) model includes two error
functions. More precisely, the error function (41) is converted as follows:

E1(t) = X(t)(A(t)Y(t)C(t)− B(t))Z(t), {A, B, C} ∈ DG. (52)
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The matrix X(t) ∈ Rn×m in (52) is defined as the zero of the error function for finding
the pseudoinverse of an arbitrary TV matrix A(t) (see [38])

E2(t) = AT(t)(Im − A(t)X(t)), m ≥ n ≥ rank(A(t)), (53)

while Z(t) ∈ Rh×k is the zero of the error function for finding the pseudoinverse of an
arbitrary TV matrix C(t)

E3(t) = (Ih − Z(t)C(t))CT(t), h ≥ k ≥ rank(C(t)). (54)

The derivative of (52) is

Ė1(t) =Ẋ(AY− B)Z + X(ȦYC + AẎC + AYĊ− Ḃ)Z + X(AYC− B)Ż,

{A, B, C} ∈ DG,
(55)

while the derivative of (53) is

Ė2(t) = ȦT(Im − AX)− AT ȦX− AT AẊ, m ≥ n ≥ rank(A), (56)

and
Ė3(t) = (Ih − ZC)ĊT − ŻCCT − ZĊCT, h ≥ k ≥ rank(C), (57)

Then, considering the linear ZNN design (2), it can be obtained:
Ẋ(AY− B)Z + X(ȦYC + AẎC + AYĊ− Ḃ)Z + X(AYC− B)Ż = −λX(AYC− B)Z,

ȦT(Im − AX)− AT ȦX− AT AẊ = −λAT(Im − AX),
(Ih − ZC)ĊT − ŻCCT − ZĊCT = −λ(Ih − ZC)CT

(58)

or in equivalent form
XAẎCZ + Ẋ(AY− B)Z + X(AYC− B)Ż = −λX(AYC− B)Z− X(ȦYC + AYĊ− Ḃ)Z,

−AT AẊ = −λAT(Im − AX)− ȦT(Im − AX) + AT ȦX,
−ŻCCT = −λ(Ih − ZC)CT − (Ih − ZC)ĊT + ZĊCT.

(59)

The dynamics (59) are modified using vectorization and the Kronecker product
as follows:

(CZ)T ⊗ (XA)vec(Ẏ) + ((AY− B)Z)T ⊗ Invec(Ẋ) + Ik ⊗ (X(AYC− B))vec(Ż)

= vec
(
− λX(AYC− B)Z− X(ȦYC + AYĊ− Ḃ)Z

)
,

(−Im ⊗ AT A)vec(Ẋ) = vec
(
− λAT(Im − AX)− ȦT(Im − AX) + AT ȦX

)
,

(−CCT ⊗ Ih)vec(Ż) = vec
(
− λ(Ih − ZC)CT − (Ih − ZC)ĊT + ZĊCT).

(60)

Setting
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w1(t) =(CZ)T ⊗ (XA)

w2(t) =((AY− B)Z)T ⊗ In,

w3(t) =Ik ⊗ (X(AYC− B)),

w4(t) =− Im ⊗ AT A,

w5(t) =− CCT ⊗ Ih,

r1(t) =vec
(
− λX(AYC− B)Z− X(ȦYC + AYĊ− Ḃ)Z

)
r2(t) =vec

(
− λAT(Im − AX)− ȦT(Im − AX) + AT ȦX

)
r3(t) =vec

(
− λ(Ih − ZC)CT − (Ih − ZC)ĊT + ZĊCT)

W(t) =

 w1 w2 w3
Omn,kn w4 Omn,kh
Okh,kn Okh,mn w5

, r(t) =

r1
r2
r3

, ẏ(t) =

vec(Ẏ)
vec(Ẋ)
vec(Ż)

, y =

vec(Y)
vec(X)
vec(Z)

,

(61)

the following dynamical system is generated

W(t)ẏ(t) = r(t), (62)

with the mass matrix W(t). To solve the problem with singularity of W(t) in the case
rank(A) < min{m, n} or rank(C(t)) < min{k, h}, the following nonsingular mass matrix
is used:

M(t) =

{
W(t), rank(A) = min{m, n} & rank(C) = min{k, h}
W(t) + βImnkn, rank(A) < min{m, n} or rank(C) < min{k, h},

(63)

wherein β ≥ 0. Then the following ZNN model is used instead of (62):

M(t)ẏ(t) = r(t), (64)

where M(t) is a nonsingular mass matrix. The NZNNV2 design (64) is solvable with an ode
solver available in Matlab. The global and exponential convergence rate of the NZNNV2
flow (64) to the exact TV solution of (42) is verified in Theorem 4.

Theorem 4. Let A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h be differentiable. If the con-
dition (16) is satisfied, the NZNNV2 model (64) initialized by an arbitrary initial value y(0),
exponentially converges to the exact solution of the TV GLMEs (42) in the form (18).

Proof. Similar to the proof of Theorem 3.

3.5. Newton ZNN Model (Version 3)

This subsection presents the third version of the Newton ZNN model for solving the
TV GLMEs of (65). The Newton approach considers the smooth arbitrary TV matrices
A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h for solving the following GLMEs:(

AT A + γIn

)−1
AT AYCCT

(
CCT + γIk

)−1
=
(

AT A + γIn

)−1
ATBCT

(
CCT + γIk

)−1
,

{A, B, C} ∈ DG,
(65)

where Y ∈ Rn×k is the desired solution. Note that γ ≥ 0 denotes the regularization
parameter.

Based on the aforementioned, the error function in the Newton ZNN version 3
(NZNNV3) model will be defined by:

EN(t) =
(

AT A + γIn

)−1
AT(AYC− B)CT

(
CCT + γIk

)−1
, {A, B, C} ∈ DG, (66)



Mathematics 2022, 10, 4292 14 of 26

Given that the time derivative of the inverse of P(t) is

Ṗ−1(t) = −P−1ṖP−1, (67)

and setting
S1(t) = (AT A + γIn)

−1, m ≥ n ≥ rank(A), (68)

S2(t) = (CCT + γIk)
−1, h ≥ k ≥ rank(C), (69)

with

Ṡ1(t) = −
(

AT A + γIn

)−1
(ȦT A + AT Ȧ)

(
AT A + γIn

)−1
, m ≥ n ≥ rank(A) (70)

and

Ṡ2(t) = −
(

CCT + γIk

)−1
(ĊCT + CĊT)

(
CCT + γIk

)−1
, h ≥ k ≥ rank(C), (71)

the time derivative of (41) is given by

ĖN(t) =Ṡ1 AT(AYC− B)CTS2 + S1 ȦT(AYC− B)CTS2

+ S1 AT(ȦYC + AẎC + AYĊ− Ḃ)CTS2

+ S1 AT(AYC− B)ĊTS2

+ S1 AT(AYC− B)CTṠ2, {A, B, C} ∈ DG.

(72)

Then, considering the linear ZNN dynamics (2), it can be obtained:

Ṡ1 AT(AYC− B)CTS2 + S1 ȦT(AYC− B)CTS2

+ S1 AT(ȦYC + AẎC + AYĊ− Ḃ)CTS2

+ S1 AT(AYC− B)ĊTS2 + S1 AT(AYC− B)CTṠ2

= −λS1 AT(AYC− B)CTS2,

(73)

or equivalently

S1 AT AẎCCTS2 =− λS1 AT(AYC− B)CTS2

− Ṡ1 AT(AYC− B)CTS2 − S1 ȦT(AYC− B)CTS2

− S1 AT(ȦYC + AYĊ− Ḃ)CTS2 − S1 AT(AYC− B)ĊTS2

− S1 AT(AYC− B)CTṠ2,

(74)

The vectorization and the Kronecker product transform (46) into the equivalent form

((CCTS2)
T ⊗ (S1 AT A))vec(Ẏ) = vec

(
− λS1 AT(AYC− B)CTS2

− Ṡ1 AT(AYC− B)CTS2 − S1 ȦT(AYC− B)CTS2

− S1 AT(ȦYC + AYĊ− Ḃ)CTS2

− S1 AT(AYC− B)ĊTS2 − S1 AT(AYC− B)CTṠ2
)
.

(75)
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Then setting

W(t) =((CCTS2)
T ⊗ (S1 AT A))

r(t) = vec
(
− λS1 AT(AYC− B)CTS2

− Ṡ1 AT(AYC− B)CTS2 − S1 ȦT(AYC− B)CTS2

− S1 AT(ȦYC + AYĊ− Ḃ)CTS2

− S1 AT(AYC− B)ĊTS2 − S1 AT(AYC− B)CTṠ2
)

ẏ(t) =vec(Ẏ(t)), y(t) = vec(Y(t)),

(76)

the following system of differential equations is obtained:

W(t)ẏ(t) = r(t). (77)

Since W(t) is singular in the case rank(A) < min{m, n} or rank(C) < min{k, h}, the
utilization of the Tikhonov principle leads to the invertible mass matrix

M(t) =

{
W(t), rank(A) = min{m, n} & rank(C) = min{k, h}
W(t) + βIkn, rank(A) < min{m, n} or rank(C) < min{k, h}

(78)

in which it is β ≥ 0. As a result, the following dynamical evolution is used instead of (77):

M(t)ẏ(t) = r(t), (79)

where M(t) is a nonsingular mass matrix. The ZNN flow (79) will be denoted as NZNNV3,
and it is solvable using one of the ode Matlab solvers.

Theorem 5. Let A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h be differentiable. If the condi-
tion (16) is satisfied, the NZNNV3 model (79), starting from arbitrary initial state y(0), exponen-
tially converges to the theoretical TV solution of the TV GLMEs (65) in the form (18).

Proof. Similar to the proof of Theorem 3.

3.6. Direct ZNN Model

The direct approach considers the smooth arbitrary TV matrices A(t) ∈ Rm×n,
C(t) ∈ Rk×h and B(t) ∈ Rm×h for solving the GLME

Y(t) = A†(t)B(t)C†(t), {A, B, C} ∈ DG, (80)

where the desired solution is Y(t) ∈ Rn×k. The direct approach always calculates the
solution produced directly by the pseudoinverse of A(t) and C(t). As a result, the direct
ZNN (DZNN) model includes three error functions. The first error function in the DZNN
model is defined by

E1(t) = Y(t)− X(t)B(t)Z(t), {A, B, C} ∈ DG, (81)

wherein X(t) ∈ Rn×m is the desired zero of the second error function for calculating A†(t)
(see [38]):

E2(t) = AT(t)(Im − A(t)X(t)), m ≥ n ≥ rank(A(t)), (82)

and Z(t) ∈ Rh×k is the zero of the third error function for finding C†(t):

E3(t) = (Ih − Z(t)C(t))CT(t), h ≥ k ≥ rank(C(t)). (83)
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The time derivative of (81) is defined by

Ė1(t) = Ẏ− ẊBZ− XḂZ− XBŻ, {A, B, C} ∈ DG, (84)

the time derivative of (82) is

Ė2(t) = ȦT(Im − AX)− AT ȦX− AT AẊ, m ≥ n ≥ rank(A) (85)

and the time derivative of (83) is given by

Ė3(t) = (Ih − ZC)ĊT − ŻCCT − ZĊCT, h ≥ k ≥ rank(C). (86)

Then, considering the ZNN model (2), it can be obtained
Ẏ− ẊBZ− XḂZ− XBŻ = −λ(Y− XBZ),

ȦT(Im − AX)− AT ȦX− AT AẊ = −λAT(Im − AX),
(Ih − ZC)ĊT − ŻCCT − ZĊCT = −λ(Ih − ZC)CT,

(87)

or in equivalent form
Ẏ− ẊBZ− XBŻ = −λ(Y− XBZ) + XḂZ,

−AT AẊ = −λAT(Im − AX)− ȦT(Im − AX) + AT ȦX,
−ŻCCT = −λ(Ih − ZC)CT − (Ih − ZC)ĊT + ZĊCT.

(88)

Using the vectorization and the Kronecker product, (88) is transformed into
Inkvec(Ẏ)− ((BZ)T ⊗ In)vec(Ẋ)− (Ik ⊗ (XB))vec(Ż) = vec

(
− λ(Y− XBZ) + XḂZ

)
(−Im ⊗ AT A)vec(Ẋ) = vec

(
− λAT(Im − AX)− ȦT(Im − AX) + AT ȦX

)
(−CCT ⊗ Ih)vec(Ż) = vec

(
− λ(Ih − ZC)CT − (Ih − ZC)ĊT + ZĊCT). (89)

Setting

w1(t) =Ink

w2(t) =− (BZ)T ⊗ In,

w3(t) =− Ik ⊗ (XB),

w4(t) =− Im ⊗ AT A,

w5(t) =− CCT ⊗ Ih,

r1(t) =vec
(
− λ(Y− XBZ) + XḂZ

)
r2(t) =vec

(
− λAT(Im − AX)− ȦT(Im − AX) + AT ȦX

)
r3(t) =vec

(
− λ(Ih − ZC)CT − (Ih − ZC)ĊT + ZĊCT)

W(t) =

 w1 w2 w3
Omn,kn w4 Omn,kh
Okh,kn Okh,mn w5

, r(t) =

r1
r2
r3

, ẏ =

vec(Ẏ)
vec(Ẋ)
vec(Ż)

, y =

vec(Y)
vec(X)
vec(Z)

,

(90)

the following differential system with the mass matrix W(t) is obtained

W(t)ẏ(t) = r(t). (91)

Since W(t) is singular when rank(A(t)) < min{m, n} or rank(C(t)) < min{k, h}, the
following regular mass matrix is used:

M(t) =

{
W(t), rank(A(t)) = min{m, n} & rank(C(t)) = min{k, h}
W(t) + βImnkn, rank(A(t)) < min{m, n} or rank(C(t)) < min{k, h}

(92)
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such that β ≥ 0. As a result, the following ZNN model is used instead of (91):

M(t)ẏ(t) = r(t), (93)

where M(t) is a nonsingular mass matrix. The system (93) is termed as DZNN model, and
it is solvable with an ode Matlab solver.

Theorem 6. Let A(t) ∈ Rm×n, C(t) ∈ Rk×h and B(t) ∈ Rm×h be differentiable. If the con-
dition (16) is satisfied, the DZNN model (93) starting from any initial value y(0), converges
exponentially to the theoretical TV solution of the TV GLMEs (80) in the form (18).

Proof. Analogous to the proof of Theorem 3.

4. Simulation Examples

This section compares performances of the TZNN model (29), the GZNN design (40),
the NZNNV1 model (51), the NZNNV2 model (64), the NZNNV3 model (79), and the
DZNN model (93) on six numerical examples (NE), involving square or rectangular, as
well as singular or nonsingular input TV matrices. The diagram in Figure 1 is presented to
understand better the solutions produced by these six models.

TZNN GZNN NZNNV1 NZNNV2 NZNNV3

Y(t)=A†(t)B(t)C†(t)

Y(t)=A†(t)B(t)C†(t)+(I-A†(t)A(t))Y(0)+Y(0)(I-C(t)C†(t))

rank(A(t))<min{m,n}

&

rank(C(t))<min{k,h}

rank(A(t))=min{m,n}

&

rank(C(t))=min{k,h}

DZNN

Figure 1. Solutions produced by proposed ZNN models.

This diagram shows how the GZNN, NZNNV1, NZNNV2, and NZNNV3 models
generate various solutions for different initial conditions. In contrast, the TZNN and
DZNN models generate just the pseudoinverse solution of the TV GLME (1) for any
initial conditions.

As preliminaries, a few parameters and symbols must be defined, as well as some
additional information for the subsequent NEs. The considered time interval is [0, 10] in
all NE, while the ZNN scaling parameter is assigned to λ = 10, and the regularization
parameter is β = 1e− 8. The initial condition (IC1) in all NEs is

Y(0) = AT(0)Im,hCT(0)

for all models, with X(0) = AT(0) and Z(0) = CT(0) for the NZNNV2 model (64), the
NZNNV3 model (79), and the DZNN model (93). The second initial condition (IC2) for the
last three NEs has been set as

Y(0) = (1 : k)� 1n×k,

with X(0) = AT(0) and Z(0) = CT(0) for the NZNNV2 model (64), the NZNNV3
model (79) and the DZNN model (93), and γ = 1e − 1 for the NZNNV3 model (79).
In the figures legends, the notation TZNN, GZNN, NZNNV1, NZNNV2, NZNNV3 and
DZNN denote the solutions or errors produced by the corresponding models solutions,



Mathematics 2022, 10, 4292 18 of 26

while the notations Y∗1 (t), Y∗2 (t), Y∗(t) refer to Y∗1 (t) = A†BC† and Y∗2 (t) = ỸY(0)(t), and
Y∗(t) = Y∗1 = Y∗2 .

4.1. Example 1

This NE is about a TV GLME that considers the following square matrices of dimen-
sions 4× 4:

A(t) =


3 + cos(t) 1 + 1/2 sin(t) . . . 1 + 1/n sin(t)

1 + 1/2 sin(t) 3 + cos(t) . . . 1 + 1/(n− 1) sin(t)
. . . . . . . . . . . .

1 + 1/m sin(t) 1 + 1/(m− 1) sin(t) . . . 3 + cos(t)

,

C(t) =
[

5 + cos(t) −3 + sin(t)
3 + cos(t) 2 + sin(t)

]
,

B(t) =


7 + cos(t) 6 + sin(2t)
5 + sin(t) −4− sin(t)
1 + cos(t) −6 + cos(t)
3− cos(t) −2 + cos(t)

,

such that rank(A(t)) = 4. The input matrices A(t), C(t) and B(t) are nonsingular matrices.

4.2. Example 2

This NE is about a TV GLME that considers rectangular matrices

A(t) =
[

6− cos(πt) −3− cos(πt) 1− cos(πt)
5− cos(πt) −8− cos(πt) 2− cos(πt)

]T

,

C(t) =

5 + cos(t) −3 + sin(t) −2 + sin(t) −1 + sin(t)
3 + cos(t) 2 + sin(t) 3 + sin(t) 4 + sin(t)
5 + cos(t) 7 + sin(t) 3 + sin(t) 2 + sin(t)

,

B(t) =
[
2A(:, 1) 3A(:, 2) −3A(:, 2) −2A(:, 1)

]
,

such that rank(A(t)) = 2. That is, the input A(t) is a full-column rank 3× 2 matrix, and
the input C(t) is a full-row rank 3× 4 matrix.

4.3. Example 3

This NE is about a TV GLME that takes into account the rectangular matrices below:

A(t) =


3 + cos(t) 1 + 1/2 sin(t) . . . 1 + 1/n sin(t)

1 + 1/2 sin(t) 3 + cos(t) . . . 1 + 1/(n− 1) sin(t)
. . . . . . . . . . . .

1 + 1/m sin(t) 1 + 1/(m− 1) sin(t) . . . 3 + cos(t)

,

C(t) =
[

5 + cos(t) −3 + sin(t) −2 + sin(t) −1 + sin(t)
3 + cos(t) 2 + sin(t) 3 + sin(t) 4 + sin(t)

]
,

B(t) =

diag(1 : k)
1k

2× 12,k

+ sin(t),

where rank(A(t)) = min{m, n} and m = 10, n = 6 and k = 4. That is, the input matrix
A(t) is a full-column rank 10× 6 matrix, and the input C(t) is a full-row rank 2× 4 matrix.
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4.4. Example 4

This example concerns a TV GLME that takes into account the input matrices

A(t) =


1 + sin(t)

1 + 1/2 sin(t)
1 + 1/3 sin(t)
1 + 1/4 sin(t)

� 14,

C(t) =
[

5 + cos(t) −3 + sin(t)
5 + cos(t) −3 + sin(t)

]
,

B(t) =
[
3A(:, 1) 2A(:, 4)

]
such that A(t) and C(t) are singular and of dimensions 4× 4 and 2× 2, respectively, with
rank(A(t)) = rank(C(t)) = 1.

4.5. Example 5

This NE is about a TV GLME that takes the rectangular matrices below into account:

A(t) =
[
6− cos(πt) −5− cos(πt) 1 + sin(πt) 2 + sin(t) −2 + sin(t)

]T � [1 2
]
� 15,2,

C(t) =

5 −3 −2 −1 2 −3
8 −4 −2 7 2 −3
5 7 3 2 −3 2

+ sin(t),

B(t) =
[
5A(:, 1) 2A(:, 2) 15×4

]
where rank(A(t)) = 1 and rank(C(t)) = 1. The input matrix A(t) is a 5× 2 rank-deficient
matrix, and C(t) is a full-row rank 3× 6 matrix.

4.6. Example 6

This NE is about a TV GLME that takes the rectangular matrices below into consideration:

A(t) =
[
1 + sin(t) 1 + 1/2 sin(t) . . . 1 + 1/m sin(t)

]
� 1m×n,

C(t) =
[
5 + cos(t) −3 + sin(t) −2 + sin(t) −1 + sin(t)

]
1k×h,

B(t) =
[
3A(:, 1) 2A(:, 1) 5A(:, 1) 1m

]
,

where rank(A(t)) = 1 with m = 8 and n = 5, and rank(C(t)) = 1 with k = 3 and h = 4.
The input matrix A(t) is rank-deficient and of size 8 × 5, and C(t) is a rank deficient
3× 4 matrix.

4.7. General Discussion

Since A(t) and C(t) in Example 1 are nonsingular, the solvability condition (16)
is satisfied. As a consequence, the TV GLME (1) is solvable with the unique solution
Y∗1 (t) = A†BC†. On the other hand, the solvability condition (16) for the matrix equation
E(t) = 0 is not satisfied in all another Examples 2–6. So, the equation E(t) = 0 is not
solvable in Examples 2–6. On the other hand, according to Theorem 1, the matrix equations
EG(t) = 0 and EN(t) = 0 are solvable in all examples.

In this subsection, the performance of six proposed ZNN models for solving TV
GLME (1) is investigated through six NEs. All the models generate the solution Y∗1 (t),
i.e., the pseudoinverse solution of the TV GLME (1), under the IC1 in all NEs, while the
GZNN, NZNNV1, NZNNV2, and NZNNV3 models generate the solution Y∗2 (t) under the
IC2 in NEs Sections 4.4–4.6. More precisely, NEs Sections 4.1–4.3, respectively, deal with
square nonsingular A(t) and C(t), a rectangular full column rank A(t), and a rectangular
full row rank C(t). As a result, all the models generate the pseudoinverse solution of the
TV GLME (1), i.e., Y∗(t) = Y∗1 (t) = Y∗2 (t), for any initial condition. It is worth noting
that the TZNN is only applicable in NE Section 4.1, which has square nonsingular input
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matrices A(t) and C(t). To substantiate the claim mentioned above, the TZNN has been
used in NE Section 4.2, where Figure 2b demonstrates that the TZNN error matrix does
not converge to zero. Furthermore, NE Section 4.4 deals with square singular A(t) and
C(t), and NEs Sections 4.5 and 4.6 deal with rectangular rank deficient A(t) and C(t). As
a result, the GZNN, NZNNV1, NZNNV2, and NZNNV3 generate the solution Y∗1 (t) under
the IC1 and the solution Y∗2 (t) under the IC2. It is worth noting that Y∗1 (t) 6= Y∗2 (t) in NEs
Sections 4.4–4.6 under the IC2.

Figures 2–4 follow the next schedule: first rows in the figures display the conver-
gence of the error functions involved in the tested models, i.e., (25) of TZNN, (33) of
GZNN, (41) of NZNNV1, (52) and (53) of NZNNV2 (NZNNV2-E1 and NZNNV2-E2), (66)
of NZNNV3, (81) and (82) of DZNN (DZNN-E1 and DZNN-E2) Frobenius norms; the sec-
ond rows in figures exhibit the convergence behavior of the models on Error 1:
‖Y(t)−Y∗2 (t)‖F, where Y(t) refers to solutions generated by considered models; the third
rows in the figures display trajectories of generated solutions Y(t); the fourth rows show
the convergence of the models on Error 2: ‖A(t)Y(t)C(t)− B(t)‖F in NE Section 4.1,
and Error 2:

∥∥AT(t)(A(t)Y(t)C(t)− B(t))CT(t)
∥∥

F in NEs Sections 4.2–4.6. Note also that
Figure 2 contains results about NEs Sections 4.1–4.3, Figure 3 contains results about NEs
Sections 4.4–4.6 under the IC1, and Figure 4 contains results about NEs Sections 4.4–4.6
under the IC2.

The following can be deduced from the NEs. The exponential convergence of the
models that is proven in Theorems 2–6 can be observed in the first row figures. Particularly,
Figure 2a–c present the exponential convergence of the models in NEs Sections 4.1–4.3, re-
spectively, whereas Figures 3a–c and 4a–c present the exponential convergence of the
models in NEs Sections 4.4–4.6 under IC1 and IC2, respectively. More particularly,
while all models begin with an initial value other than the optimal one, all NEs have
received differentiable A(t), B(t), and C(t) matrices that meet the condition (16). In
Figures 2a–c, 3a–c and 4a–c, the error functions convergence begins at t = 0 in the range
[101, 106], but it ends before t = 2 with lowest values in the range [10−10, 10−1]. It is also
crucial to note that when the value of the design parameter λ is higher, the models will
converge faster and the overall error will be lowered even further. Furthermore, all other
figures behave in the same way due to the convergence tendency of the error functions.
In other words, the graphs associated with the models in the remaining figures begin at
t = 0 in a very different value from the objective and reach it before t = 2. As a result, it is
evident that Theorems 2–6 are proven true.

In general, according to the first row figures, all the ZNN models converge to zero,
where the NZNNV1 and NZNNV3 models have the fastest convergence rate, and the TZNN
and DZNN have the second and third fastest, respectively. In contrast, the GZNN and
NZNNV2 models have the slowest and almost similar convergence rates. According to the
second row figures under IC1 and fourth row figures, the NZNNV1 and NZNNV3 models
have the fastest convergence rate, the GZNN has the second fastest, and the NZNNV2
model has the slowest. The NZNNV2 and DZNN models have the lowest overall errors
when A(t) and C(t) are rectangular, specifically in NEs Sections 4.2 and 4.5. The second
row figures under IC2 show that the NZNNV1, NZNNV2, NZNNV3, and GZNN models
perform similarly to the second row figures under IC1. However, the DZNN model does
not converge to zero, as expected. Finally, the third row figures demonstrate that under
IC1, all models solutions match Y∗(t), however under IC2, the DZNN model solutions
match Y∗1 (t), while the NZNNV1, NZNNV2, NZNNV3, and GZNN models solutions
match Y∗2 (t).

Graphs included in Figures 3a–c and 4a–c, on the other hand, show that the IC1 and
IC2 have no effect on the models’ convergence, proving the Theorems 2–6 claim that the
models’ performance is unaffected by the initial condition.
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Figure 2. Errors and trajectories in NE Example 1, Example 2 and Example 3.

where rank(A(t)) = 1 with m = 8 and n = 5, and rank(C(t)) = 1 with k = 3 and h = 4.283

The input matrix A(t) is rank-deficient and of size 8× 5, and C(t) is a rank deficient284

3× 4 matrix.285

Figure 2. Errors and trajectories in NE Sections 4.1–4.3.
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Figure 3. Errors and trajectories in NE Example 4, Example 5 and Example 6 under IC1.

4.7. General Discussion286

Since A(t) and C(t) in Example 1 are nonsingular, the solvability condition (16)287

is satisfied. As a consequence, the TV GLME (1) is solvable with the unique solution288

Y∗1 (t) = A†BC†. On the other hand, the solvability condition (16) for the matrix equation289

Figure 3. Errors and trajectories in NE Sections 4.4–4.6 under IC1.
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To summarize, the TZNN is only applicable in the case where m = n = rank(A(t))
and k = h = rank(C(t)). It is important to mention that A(t) becomes C(t) and C(t)
becomes A(t) when n < m and k < h. As a result, the cases where n < m and k < h is
disregarded in the NEs. The GZNN has a lower overall error than NZNNV1 and NZNNV3,
although they have the same convergence speed. Even though the NZNNV2 has the
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slowest convergence speed, its overall error is between NZNNV1 and GZNN. Compared to
GZNN, NZNNV1, and NZNNV3, the DZNN model’s convergence speed is slightly slower,
but its overall error is the lowest. Remember that the DZNN model’s primary distinction
from all other models is that, regardless of the initial conditions, it generates only a single
solution based on the pseudoinversion. That is, all the models work excellently in solving
the TV GLMEs (1).

5. Conclusions

The problem of solving TV GLMEs with random TV real input matrices is resolved
in this paper by applying the ZNN design. Six ZNN models for calculating the online
solution to general TV GLMEs are defined, analyzed, and compared, including TZNN,
which is based on the traditional ZNN approach, GZNN which is based on the gradient
ZNN approach, NZNNV1, NZNNV2, and NZNNV3 which are based on the Newton’s
optimization method, and DZNN which is based on the ZNN approach for finding the
direct solution produced with the use of the pseudoinverse. Six numerical examples
involving square or rectangular, and singular or nonsingular matrices show that all models
successfully solve TV GLMEs. However, their effectiveness varies and depends on the
input matrix, while the NZNNV1 and NZNNV3 models converge to exact solutions faster
than the other models.

There are a few prospective study areas that can be explored.

1. The streams of NZNNV1, NZNNV2, NZNNV3, and DZNN models accelerated by ap-
propriate nonlinear activations, as well as nonlinear NZNNV1, NZNNV2, NZNNV3,
and DZNN model flows with a finite convergence, can all be investigated.

2. Another research stream is to use carefully selected parameters defined in fuzzy envi-
ronments. Such research will be a continuation of research presented in [25,26,38,39].

3. The presented TZNN, GZNN, NZNNV1, NZNNV2, NZNNV3, and DZNN models
are not noise-tolerant, so all noise types have a significant influence on the accuracy
of the suggested ZNNs. Consequently, related future investigation can be oriented on
adjusting the proposed dynamical systems to appropriate more general integration-
enhanced and noise-tolerant ZNN classes.

4. Numerous results concerning the solution of important equations of a special type
have appeared in recent years. For example, there is a number of recent papers
concerning the Sylvester equation [40,41] or related to Lyapunov equation [42–44].
Studying such equations can be one of the goals of our research.
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19. Mo, C.; Gerontitis, D.; Stanimirović, P. Solving the time-varying tensor square root equation by varying-parameters finite-time
Zhang neural network. Neurocomputing 2021, 445, 309–325. [CrossRef]

20. Wang, X.; Che, M.; Wei, Y. Recurrent neural network for computation of generalized eigenvalue problem with real diagonalizable
matrix pair and its applications. Neurocomputing 2016, 216, 230–241. [CrossRef]

21. Li, X.; Li, S.; Xu, Z.; Zhou, X. A Vary-parameter convergence-accelerated recurrent neural network for online solving dynamic
matrix pseudoinverse and its robot application. Neural Process. Lett. 2021, 53, 1287–1304. [CrossRef]

22. Zhang, Z.; Yang, S.; Zheng, L. A penalty strategy combined varying-parameter recurrent neural network for solving time-varying
multi-type constrained quadratic programming problems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2993–3004. [CrossRef]
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