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a b s t r a c t 

It is well known that minimum-cost portfolio insurance (MPI) is an essential investment 

strategy. This article presents a time-varying version of the original static MPI problem, 

which is thus more realistic. Then, to solve it efficiently, we propose a powerful recurrent 

neural network called the linear-variational-inequality primal-dual neural network (LVI- 

PDNN). By doing so, we overcome the drawbacks of the static approach and propose an 

online solution. In order to improve the performance of the standard LVI-PDNN model, 

an adaptive fuzzy-power LVI-PDNN (F-LVI-PDNN) model is also introduced and studied. 

This model combines the fuzzy control technique with LVI-PDNN. Numerical experiments 

and computer simulations confirm the F-LVI-PDNN model’s superiority over the LVI-PDNN 

model and show that our approach is a splendid option to accustomed MATLAB proce- 

dures. 

© 2022 Elsevier Inc. All rights reserved. 

 

1. Introduction 

In economic decisions, optimization models play a significant role. Popular areas include asset allocation, option pricing, 

risk management, model calibration etc. Considering that research on metaheuristic algorithms has recently been widely 

used to address both linear and nonlinear optimization problems [1,2] , such optimization models can be approached effec- 

tively employing accustomed methods of optimization. For instance, optimal tangency portfolio under cardinality constraint 

problems are defined in [3,4] as nonlinear programming problems and approached by heuristics. In [5,6] , under large data

inputs, time-varying Markowitz-based portfolio optimization problems are formulated and studied using nature-inspired op- 

timization algorithms. A nonlinear portfolio optimization problem is presented in [7] , for minimizing the cost of insurance 

along with the portfolio’s transaction costs and it is approached using a memetic metaheuristic algorithm, called beetle an- 
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tennae search. In this paper, the time-varying minimum-cost portfolio insurance (TMPI) problem is defined and studied as 

a time-varying linear programming (TVLP) problem. 

Numerous significant theoretical research discoveries, along with hardware and software implementations of an artificial 

neural network (ANN) have been proposed with the exponential development of artificial intelligence, information technol- 

ogy, and contemporary electronics [8–14] . For example, ANN models have been applied to solar radiation prediction [8] ,

portfolio optimization [10,11] , stochastic exchange rates stabilization [12] and feedback control systems stabilization [9] . In 

general, the main benefits of an ANN contain generalization, noise-tolerance, fault-tolerance, and the capability to anticipate 

unknown data while reducing processing costs and time [13,14] . Time-varying and static (time-invariant) problems might 

necessitate alternative techniques due to the fact that usually they behave differently [14] . Keep in mind that the majority of

existing techniques and tools are built with the goal of resolving static problems. Many real-time systems (such as real-time 

monitoring and controlling systems, and high-speed parallel processing systems) are time-varying due to the presence of 

time-dependent variables and the demand for high performance. As a result, conventional methods cannot be as efficient as 

dealing with static problems in this case. 

Fuzzy logic systems (FLS), on the other hand, have been researched intensively, see for example [15,16] . FLSs have the

ability to manage uncertainties, which is why they are used in a variety of fields, such as robotics [17] , spacecraft [18] ,

Rössler chaotic dynamical system [19] and automobile [20] . Other well-known FLS applications include nonlinear system 

control [21] and the study of time-varying systems [22] , whereas numerous publications of current research focus on the 

use of fuzzy control in error-correction neural networks [23,24] . According to the application and characteristics of FLS, this 

study employs FLS to improve the performance of a recurrent neural network dubbed linear-variational-inequality primal- 

dual neural network (LVI-PDNN). For instance, a number of time-varying financial portfolio selection problems are pro- 

posed and investigated in [10,11,14] and it is found that utilizing ANN models rather than conventional methods reduces 

the amount of time needed to find the optimal solution. So, conventional methods cannot be as efficient as dealing with

static problems in practical scenarios. As a result, an adaptive fuzzy-power LVI-PDNN (F-LVI-PDNN) model is introduced and 

studied. 

In this paper, we study the TMPI problem as a continuous TVLP problem in order to trace the progress of the MPI

when changing over time and to provide some type of forecast. More particularly, we use interpolation methods to convert 

the problem’s data in continuous time, and then we apply the proposed models, LVI-PDNN and F-LVI-PDNN, to produce an 

online solution. Note that, the LVI-PDNN is a well-known approach for tackling a number of static problems and outperforms 

the approach for handling time-varying problems. By doing so, we overcome the drawbacks of the static approach and 

propose an online solution that is more realistic to a time-varying financial problem. 

The following list summarizes this work’s key points: 

• A TVLP financial problem, dubbed TMPI, is introduced and investigated. 
• A unique LVI-PDNN’s design for addressing the TMPI problem is proposed. 
• An adaptive F-LVI-PDNN model is introduced and studied. 
• Applications of LVI-PDNN and F-LVI-PDNN on actual financial time-series from the real world. 
• High-level performing MATLAB function linprog is compared with the proposed LVI-PDNN and F-LVI-PDNN models to 

evaluate their performances. 

Since linprog is designed for time-invariant linear programming (LP), multiple static LP problems have been ap- 

proached by the linprog to generate a part of the LVI-PDNN’s solution on the TVLP problem. 

The paper has been organized in the following way. Section 2 presents the TMPI problem, which is a financial TVLP

problem, in detail. Portfolio insurance optimization through fuzzy LVI-PDNN is presented in Section 3 . Section 4 includes 

applications on the TMPI problem, employing actual financial time-series from the real world. Section 5 gives concluding 

remarks. 

2. Minimum-cost portfolio insurance 

For financial models, reducing portfolio costs is always of major importance. One way to reduce portfolio costs is to 

minimize the cost of insurance (see [5,25–29] ). For instance, an approach based on the notion of Riesz spaces is employed

in [25] to solve a time-varying optimization problem for minimizing the insurance costs of the portfolio. In [27] , the au-

thor solve the problem of optimal expected growth in a random trade time model, taking into account the insurance of

the portfolio in a low liquid market, to ensure the optimal constant proportion portfolio insurance approach in a simple

form. Inhere, we propose a time-varying equivalent to the relevant static problem that has been discussed and examined in 

numerous articles, such as [30,31] . 

The continuous time-varying version of the MPI problem introduced here is an innovative approach that integrates robust 

processes from neural networks to provide an online solution that is more realistic to a time-varying financial problem. With 

[ a, b] , we indicate the space of real-valued continuous functions specified at [ a, b] interval. The initial portfolio is a vector

φ = [ φ1 , φ2 , . . . , φn ] 
T in R 

n and φi , for each i = 1 , . . . , n , denote the investment on asset i . R 

n is referred to as portfolio space.

If φ is a portfolio that is not zero, then its payoff is given by the formula 

X 

T (t) · φ, 
2 
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where X(t) = [ x 1 (t) , x 2 (t ) , . . . , x n (t )] T is the space of invested assets, x i (t) ∈ C[ a, b] indicate the i asset’s return, for each i ,

and t ∈ [ a, b] ⊆ [0 , + ∞ ) is the time. 

Let us suppose that p(t) = [ p 1 (t) , p 2 (t ) , . . . , p n (t )] T is a vector of time-varying prices, where p i (t) ∈ C[ a, b] , i = 1 , 2 , . . . , n

is the insurance price of asset i . Here, we assume that a fixed price along with an asset risk cost make up the costs of

insurance for the portfolio. If the price rates related to asset risk are represented by β and the fixed price by δ, the function

of the fixed and linear insurance prices is as follows: 

p i (t) = δ + β · Var 

[ 
M i (t) 

max (M i (t)) 

] 
, (2.1) 

where M i (t) = [ x i (t) , x i (t − 1) , . . . , x i (t − c + 1)] T with i = 1 , 2 , . . . , n , and Var 
[
·] signifies the variance. Also, the constant c ≤

t − 1 , c ∈ N , implies the time delays. Since M i (t) ∈ R 

c , it is the variance of its c in number normalized prices that measures

the risk of the i asset. Thus, the cost of insurance for any asset is determined by the level of risk it entails, when there is

a possibility that the expected return may not match the real return. Because of this, insurance premiums are increasing in

pace with inflation. 

For a portfolio φ and floor price λ ∈ R the max { X T (t) · φ, λ} , is the insured payoff of the portfolio at floor price λ. As a

result, the TVLP formulation of the TMPI problem is the following: 

min 

η(t) ∈ R n 
p T (t) · η(t) (2.2) 

subject to − X 

T (t) · η(t) ≤ min {−X 

T (t) · φ, −λ} (2.3) 

0 ≤ η(t) ≤ θ (t) , (2.4) 

where η(t) = [ η1 (t) , η2 (t ) , . . . , ηn (t )] T ∈ R 

n is the optimal portfolio and θ (t) = X T (t) · φ ·
[ 

1 
x 1 (t) 

, . . . , 1 
x n (t) 

] T 
=

[ θ1 (t) , θ2 (t ) , . . . , θn (t )] T with θi (t) ∈ C[ a, b] , i = 1 , 2 , . . . , n is the upper bound of η(t) . More precisely, θ (t) is the higher

value of any stock that an investor is eligible to hold at time t , when putting all the portfolio φ payoff in each one of them.

3. Portfolio insurance optimization through fuzzy LVI-PDNN 

Given that LP plays a fundamental role in mathematical optimization, the majority of its facets have been extensively 

researched during the past few decades. Applications in both research and industry have frequently adopted solutions to 

LP problems [32–34] . In the past, researchers have often addressed LP problems with no more than two different types of

constraints [33] . However, most studies were dedicated to investigating LP problems on the basis of static coefficients, see 

[35] , which implies that approaches intended to deal with this class of LP problems are useless in time-varying contexts. 

The neural network technique has been proved to be a powerful real-time computation instrument for over ten years 

due to the availability of hardware implementation and its parallel distributed computing nature [14,24,36–38] . For example, 

[36] presents a simple, piecewise-linear and global convergent approach to optimal solutions with dual neural networks. 

In [38] , the authors introduced a primal-dual neural network with a piecewise-linear dynamic, inline with linear varia- 

tional inequality. In [37] one can find a LVI-PDNN with the ability to handle both LP and quadratic programming (QP) on

the same/unified way. Globally, the LVI-PDNN converges to the optimum solution(s). In [39] , LVI-PDNN was applied simul- 

taneously to find real-time solutions to time-varying LP problems, liable to equality, inequality and boundary constraints. 

3.1. TMPI through the LVI-PDNN design 

To approach the TMPI problem we include the Eqs. (2.2) –(2.4) to the LVI-PDNN from Wu et al. [39] . Consequently, we

set the coefficients: 

H(t) = 

[
0 −X (t) 

X 

T (t) 0 

]
, r(t) = 

[
p(t) 

min { X 

T (t) · φ, −λ} 
]
, 

and the primal-dual decision vector z(t) , with upper and lower bounds to which it is liable, as below: 

z(t) = 

[
η(t) 
v (t) 

]
∈ R 

n +1 , ζ−(t) = 

[
0 

0 

]
∈ R 

n +1 , ζ+ (t) = 

[
θ (t) 

1 e 100 

]
∈ R 

n +1 , 

where v (t) ∈ R signifies the dual decision variable of (2.3) . The TVLP problem of (2.2) –(2.4) can be addressed using the

LVI-PDNN dynamical system described below: 

˙ z (t) = γ (I + H 

T (t ))(P 
(z(t ) − (H(t ) z(t ) + r(t))) − z(t)) . (3.1) 
3 
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Fig. 1. The FLC structure. 

 

 

 

 

 

 

 

 

Notice that γ > 0 is a design parameter, whereas P 
(·) is the projection operator [39] , defined as below: 

P 
(z i (t)) = 

{ 

ζ−(t) , z i (t) < ζ−(t) 
z i (t) , ζ−(t) ≤ z i (t) ≤ ζ+ (t) 
ζ+ (t) , z i (t) > ζ+ (t) 

, i = 1 , 2 , . . . , n + 1 . (3.2) 

It should be highlighted that the solution z(t) of (3.1) can be successfully produced using a MATLAB ode solver. 

To provide a clearer picture of the real-time LVI-PDNN’s convergence, the residual error is given by: 

R (t) = z(t) − P 
(z(t) − (H(t ) z(t ) + r(t))) . (3.3) 

According to [35, Theorems 1 and 2] , if the Frobenius norm ‖ R (t) ‖ F → 0 , the LVI-PDNN converges to the theoretical solution

as a consequence that z(t) converge to the theoretical solution z ∗(t) . 

3.2. The adaptive fuzzy-power LVI-PDNN design 

Fuzzy logic systems have found extensive use in the control of nonlinear systems due to its potent capacity to approx-

imate complicated systems without the requirement for prior knowledge of system dynamics. The LVI-PDNN model’s con- 

stant design parameter γ is supplemented by a fuzzy parameter due to the difficulties in precisely describing the size of 

the error-norm ‖ R (t) ‖ F in the model (3.1) . In this approach, the LVI-PDNN model’s calculation accuracy and robustness can 

be increased, and the following fuzzy-power LVI-PDNN (F-LVI-PDNN) dynamics is suggested: 

˙ z (t) = γ ν(I + H 

T (t ))(P 
(z(t ) − (H(t ) z(t ) + r(t))) − z(t)) , (3.4) 

where γ > 1 is the traditional design parameter and ν is the desired fuzzy parameter, acquired using a suitably designed

fuzzy logic controller (FLC). Typically, designing an FLC requires three steps [24] . Considering the error of the LVI-PDNN, i.e.,

‖ R (t) ‖ F , to be the FLC’s input, then Fig. 1 illustrates the initiated output ν . 

The following is a description of the three steps involved in creating the FLC. 

(1) Fuzzification : By using the following π-shaped membership function (MF), the fuzzification used in this research 

converts the input set into the fuzzy input set I and the output set into the fuzzy output set O : 

κ(x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , x ≤ κ

2 

(
x −κ
ζ−κ

)
2 , κ ≤ x ≤ κ+ ζ

2 

1 − 2 

(
x −ζ
ζ−κ

)
2 , 

κ+ ζ
2 

≤ x ≤ ζ

1 , ζ ≤ x ≤ ξ

1 − 2 

(
x −ξ
ψ−ξ

)
2 , ξ ≤ x ≤ ξ+ ψ 

2 

2 

(
x −ψ 

ψ−ξ

)
2 , 

ξ+ ψ 

2 
≤ x ≤ ψ 

0 , ψ ≤ x, 

(3.5) 

where κ, ζ , ξ , ψ ∈ R signify constant parameters. Particularly, the MF’s feet is determined by the parameters κ, ψ , while its

shoulders are determined by ζ , ξ . There are several possibilities available when choosing an MF in general. In order to soften

the sharp bounds while maintaining the overall behavior of the ‖ R (t) ‖ F performance ranges, an experimentally determined 

π-shaped MF was employed to describe the degree of membership of the ‖ R (t) ‖ F values. 

The following triangular MF is the function this FLC uses to generate the output set: 

ρ(x ) = max 

{
min 

{
x − κ

ζ − κ
, 
ξ − x 

ξ − ζ

}
, 0 

}
, (3.6) 

where κ, ζ , ξ ∈ R signify constant parameters. Particularly, the MF’s feet is determined by the parameters κ, ξ , while its

peak is determined by ζ . 

(2) Fuzzy inference engine : The following group of “IF-THEN” rules are fuzzy rules between the fuzzy input set I and the

fuzzy output set O : 
4 
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Fig. 2. Market stocks in NEs 4.1 –4.3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• P 1 : if I = L then O = L , 
• P 2 : if I = H then O = H. 

L and H, respectively, are fuzzy set notations that precisely represent low error and high error. Considering P l = P 1 ∪ P 2 ,

it is acquired O = I ◦ P l , l = 1 , 2 , where ◦ signifies the fuzzy transformation symbol. Thereafter, αI◦R (ν) = αI◦P 1 
∨ αI◦P 2 

and

αI◦P l 
= sup (αI l 

∧ αO l 
) for l = 1 , 2 . It is worth mentioning that ∧ and ∨ signify the minimum and maximum values operators,

respectively. 

(3) Defuzzification : To acquire the fuzzy parameter ν , the defuzzification method below, dubbed centroid, is utilized: 

ν = 

∫ 
O ν αI◦R (ν)d ν∫ 

O αI◦R (ν)d ν
. (3.7) 

Utilizing the F-LVI-PDNN dynamics (3.4) improves the capacity for continuous learning and preserves knowledge from 

prior learning during the continual learning process. The key concept is to substitute the primary gain value γ with the

power γ ν , which contains the suitably calculated fuzzy exponent ν from the FLC. The fundamental purpose of the sug- 

gested FLC is to integrate the prior knowledge, which is based on ‖ R (t) ‖ F values, into the LVI-PDNN dynamics. It is impor-

tant to note that the FLC controller structure, including the membership functions selected, the amount of fuzzy rules and 

the defuzzification method selected, was created particularly to address the TMPI problem. The FLC controller structure is 

therefore heuristic, and different structures are needed for different applications. 

4. Numerical experiments 

The data inputs for the financial optimization model we work with are time-series. In other words, the data input is in

discrete-time. As we are attempting to calculate the online solution of a continuous time-varying problem, these data have 

to be converted into continuous-time. We accomplish that by transforming the time-series into functions of continuous- 

time. Particularly, the linear interpolation method is used in this section on five different portfolios. To accomplish this, 

the custom interpolation function linots , taken from [5,28] , is employed on X(t) and p(t) . It is important to note that

[5,28] propose numerous custom interpolation functions of well-known interpolation methods. 

The time-series that were utilized in the numerical experiments of this section are shown in Fig. 2 . More precisely,

Fig. 2 contains the ticker symbol of the stocks that are available in the market. Note that a ticker symbol is a string of

letters which is employed to identify stocks, bonds, mutual funds or any other securities traded on the stock exchange. Also, 

the financial time-series utilized were retrieved from Yahoo Finance, whereas the specific data utilized may also be acquired 

from https://github.com/SDMourtas/DATA/tree/main/TMPI . 

In addition, the time periods in finance may be divided into annually, quarterly, monthly, weekly, daily and combinations 

of them. But, between two different time periods of the same division their observations may not be equal in number, which

is caused by the fact that financial markets can be close, one month has fewer days than another, the year is leap, etc. To

solve the omitted observations problem, we employ the parameter ω that splits the observations into time periods for each 

t within the processes of the proposed models. That is, we use p(ωt) and X(ωt) in place of p(t) and X(t) . For convenience,

we employ the custom function omega , which is presented in [5,28] . This function takes as inputs the time period t along

with the vector noep, which includes the total number of observations for each period, and returns the parameter ω. 

The recommended settings for the FLC employed in all numerical examples (NEs) of this section are presented in Table 1 ,

whereas the ode15s MATLAB solver is used on (3.1) and (3.4) to produce the solution of the TMPI problem. In the fol-

lowing NEs, the parameters settings are γ = 100 , δ = 2 and β = 10 0 0 . It is important to note that the MATLAB function

linprog may only address static linear programming (LP) problems, not TVLP problems. As a consequence, multiple static 
5 
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Table 1 

FLC’s recommended settings. 

Set MF Range Rule κ ζ ξ ψ Weight 

Input π -shaped [0,10] P 1 -0.1 0 0 0.1 1 

P 2 0 0.01 10 12 1 

Output triangular [1,7] P 1 -5 1 2 - 1 

P 2 6 7 13 - 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LP problems have been approached by the linprog to generate a part of the LVI-PDNN’s solution on the TVLP problem.

Furthermore, using the theoretical solutions produced by the linprog as a reference, our attention is solely on comparing 

the performances of LVI-PDNN and F-LVI-PDNN. 

4.1. Numerical example A 

In this NE, we deal with a portfolio containing the 3 stocks presented in Fig. 2 . Let X(t) = [ x 1 (t) , x 2 (t) , x 3 (t)] T , where

X(t) contains the daily close prices of these 3 stocks into x 1 (t) , x 2 (t) and x 3 (t) , respectively. The time delay parameter has

been set to c = 40 , and we find the minimum-cost insured portfolio η(t) for the time period 02/03/2020 to 01/10/2020.

Furthermore, we divide our time-series into seven monthly periods by setting noep = [23 , 21 , 20 , 22 , 22 , 21 , 22] , and we set

the interval of integration [0,7] in the ode solver. Note that the vector noep contains the observations number for each 

month of the time period 02/03/2020 to 01/10/2020. Given a portfolio φ = [2 , 2 , 2] , a floor λ = 140 , and starting from z(0) =
[ φ, 2] , we present the results in Fig. 3 a–d. 

4.2. Numerical example B 

A 4 stock portfolio is built in this NE, which contains the 4 stocks presented in Fig. 2 . Let X(t) =
[ x 1 (t) , x 2 (t) , x 3 (t) , x 4 (t )] T , where X(t ) contains the daily close prices of these 4 stocks into x 1 (t) , x 2 (t) , x 3 (t) , x 4 (t) , re-

spectively. The time delay parameter has been set to c = 35 , and we find the minimum-cost insured portfolio η(t) for

the time period 02/01/2020 to 03/08/2020. Furthermore, we divide our time-series into seven monthly periods by set- 

ting noep = [22 , 19 , 22 , 21 , 20 , 22 , 23] , and we set the interval of integration [0,7] in the ode solver. Note that the vector

noep contains the observations number for each month of the time period 02/01/2020 to 03/08/2020. Given a portfolio 

φ = [2 , 2 , 2 , 2] , a floor λ = 220 , and starting from z(0) = [ φ, 2] , the results are presented in Fig. 3 e–h. 

4.3. Numerical example C 

In this NE, we investigate the efficacy of (3.1) and (3.4) in three large portfolios, containing of 10 stocks, 20 stocks and

30 stocks. As a result, the experimental findings prove the reliability of (3.1) and (3.4) approaches and demonstrate that it

could be applied to large datasets and real-world scenarios. 

In all portfolio cases of this NE, the time delay parameter has been set to c = 21 in the corresponding time-series of

Fig. 2 , and we find the minimum-cost insured portfolio η(t) for the time period 01/05/2019 to 01/10/2019. Furthermore, we

divide our time-series into five monthly periods by setting noep = [23 , 20 , 22 , 22 , 21] , and we set the interval of integration

[0,5] in the ode solver. Note that the vector noep contains the observations number for each month of the time period 

01/05/2019 to 01/10/2019. 

Specifically, in the case of 10 stocks portfolio, we set X(t) = [ x 1 (t ) , . . . , x 10 (t )] T , where X(t ) contains the daily close prices

of market stocks included in the corresponding block of Fig. 2 into x 1 (t) , x 2 (t ) , . . . , x 10 (t ) , respectively. Given a portfolio

φ = 2 ones(10,1), a floor λ = 980 , and starting from z(0) = [ φ, 2] , the results are presented in Fig. 4 a–c. In the case of 20

stocks portfolio, we set X(t) = [ x 1 (t ) , . . . , x 20 (t )] T , where X(t ) contains the daily close prices of market stocks included in the

corresponding blocks of Fig. 2 into x 1 (t) , x 2 (t ) , . . . , x 20 (t ) , respectively. Given a portfolio φ = 2 ones(20,1), a floor λ = 1980 ,

and starting from z(0) = [ φ, 2] , the results are presented in Fig. 4 d–f. In the case of 30 stocks portfolio, we set X(t) =
[ x 1 (t) , . . . , x 30 (t)] T , where X(t) contains the daily close prices of market stocks included in the corresponding blocks of 

Fig. 2 into x 1 (t) , x 2 (t ) , . . . , x 30 (t ) , respectively. Given a portfolio φ = 2 ones(30,1), a floor λ = 2450 , and starting from z(0) =
[ φ, 2] , the results are presented in Fig. 4 g–i. 

4.4. Results discussion 

This subsection discusses the findings shown in Figs. 3 - 4 and compares the performances of (3.1) and (3.4) . The optimal

portfolios, η(t) , which contain 3 and 4 stocks, respectively, are shown in Fig. 3 a and e. Therein, we notice that the portfolios

produced by the linprog , (3.1) and (3.4) are identical. Note that linprog produces the presumptive theoretical solution. 

Figures 3 b, f, 4 a, d and g show the error ‖ R (t) ‖ F of (3.3) , produced during the convergence of (3.1) and (3.4) for

the portfolios consisting of 3, 4, 10, 20 and 30 stocks, respectively. The noise is expected in these figures since we work

with time-series and, considering the parameter’s γ small value, the error value is magnificent. However, compared to the 
6
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Fig. 3. The convergence, the LVI-PDNN’s and F-LVI-PDNN’s residual errors, the payoff and the insurance costs for two portfolios containing 3 and 4 stocks, 

in NE A and B, respectively. 

 

 

 

 

 

 

 

 

 

 

 

LVI-PDNN, the error produced by the F-LVI-PDNN is far less noisy and converges to zero more quickly. Thereafter, the F-LVI-

PDNN outperforms the LVI-PDNN in terms of accuracy. 

The floor prices along with the payoffs of the initial portfolios φ and the portfolios η(t) , which contain 3, 4, 10, 20 and

30 stocks, respectively, are shown in Figs. 3 c, g, 4 d, e and h. Therein, we notice that the portfolios’ payoffs produced by the

linprog , (3.1) and (3.4) are identical. It is important to note that the payoffs of the portfolios φ and η(t) are the products

of X T (t) · φ and X T (t) · η(t) , respectively. 

Figures 3 d, h, 4 c, f and i present the insurance costs of the initial portfolio φ and the portfolios η(t) , which contain 3,

4, 10, 20 and 30 stocks, respectively. We notice that the insurance costs produced by the linprog , (3.1) and (3.4) are the

same for the respective portfolios. It is worth noting that the insurance costs of the portfolios φ and η(t) are the products

of p(t) T · φ and p(t) T · η(t) , respectively. 

Comparing the portfolios η(t) payoffs in Figs. 3 c, g, 4 b, e and h and the portfolios η(t) insurance costs in Figs. 3 d,

h, 4 c, f and i, respectively, we notice that the insurance costs of η(t) are rising only in the case where the payoff needs

to be kept at the floor. Furthermore, it is obvious that the clear payoff, which is the payoff minus the insurance costs, of

portfolio η(t) is always greater than the clear payoff of portfolio’s φ. Moreover, using the parameter ω, which is especially

useful when combining different time periods with unequal numbers of observations in each one, is a novel concept. So, 

by considering the ω parameter, our approach is more realistic. Another important discovery is that, in every NE studied, 
7 
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Fig. 4. The convergence, the LVI-PDNN’s and F-LVI-PDNN’s residual errors, the payoff and the insurance costs for portfolios containing 10, 20 and 30 stocks 

in NE C. 

 

 

asking for a time-varying portfolio η(t) , as opposed to a constant portfolio φ, results in much cheaper portfolio insurance

costs. Comprehensively, the experiments on two small and three large portfolios show that the F-LVI-PDNN outperforms the 

LVI-PDNN and both performed admirably in solving the TMPI problem. 

5. Conclusion 

The TMPI problem was presented in this paper, and it was solved using a recurrent neural network dubbed LVI-PDNN. 

In order to improve the performance of the standard LVI-PDNN model, an adaptive F-LVI-PDNN model was also introduced 

and studied. A number of NEs demonstrated the competence of the (3.1) and (3.4) approaches in a financial TVLP problem.

Our experiments lead us to the conclusion that both the LVI-PDNN and F-LVI-PDNN produce the online solution of the 

TMPI problem, with the F-LVI-PDNN providing a faster convergence and greater accuracy than the LVI-PDNN. An important 

discovery is that choosing a time-varying portfolio over a constant portfolio leads in much cheaper portfolio insurance costs. 

The reliability of the LVI-PDNN and F-LVI-PDNN techniques was proven by experimental findings, which also demonstrated 

that they could be applied to large datasets and real-world scenarios. 
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