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online solution. In order to improve the performance of the standard LVI-PDNN model,
an adaptive fuzzy-power LVI-PDNN (F-LVI-PDNN) model is also introduced and studied.
This model combines the fuzzy control technique with LVI-PDNN. Numerical experiments
and computer simulations confirm the F-LVI-PDNN model’s superiority over the LVI-PDNN
model and show that our approach is a splendid option to accustomed MATLAB proce-

dures.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In economic decisions, optimization models play a significant role. Popular areas include asset allocation, option pricing,
risk management, model calibration etc. Considering that research on metaheuristic algorithms has recently been widely
used to address both linear and nonlinear optimization problems [1,2], such optimization models can be approached effec-
tively employing accustomed methods of optimization. For instance, optimal tangency portfolio under cardinality constraint
problems are defined in [3,4] as nonlinear programming problems and approached by heuristics. In [5,6], under large data
inputs, time-varying Markowitz-based portfolio optimization problems are formulated and studied using nature-inspired op-
timization algorithms. A nonlinear portfolio optimization problem is presented in [7], for minimizing the cost of insurance
along with the portfolio’s transaction costs and it is approached using a memetic metaheuristic algorithm, called beetle an-
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tennae search. In this paper, the time-varying minimum-cost portfolio insurance (TMPI) problem is defined and studied as
a time-varying linear programming (TVLP) problem.

Numerous significant theoretical research discoveries, along with hardware and software implementations of an artificial
neural network (ANN) have been proposed with the exponential development of artificial intelligence, information technol-
ogy, and contemporary electronics [8-14]. For example, ANN models have been applied to solar radiation prediction [8],
portfolio optimization [10,11], stochastic exchange rates stabilization [12] and feedback control systems stabilization [9]. In
general, the main benefits of an ANN contain generalization, noise-tolerance, fault-tolerance, and the capability to anticipate
unknown data while reducing processing costs and time [13,14]. Time-varying and static (time-invariant) problems might
necessitate alternative techniques due to the fact that usually they behave differently [14]. Keep in mind that the majority of
existing techniques and tools are built with the goal of resolving static problems. Many real-time systems (such as real-time
monitoring and controlling systems, and high-speed parallel processing systems) are time-varying due to the presence of
time-dependent variables and the demand for high performance. As a result, conventional methods cannot be as efficient as
dealing with static problems in this case.

Fuzzy logic systems (FLS), on the other hand, have been researched intensively, see for example [15,16]. FLSs have the
ability to manage uncertainties, which is why they are used in a variety of fields, such as robotics [17], spacecraft [18],
Réssler chaotic dynamical system [19] and automobile [20]. Other well-known FLS applications include nonlinear system
control [21] and the study of time-varying systems [22], whereas numerous publications of current research focus on the
use of fuzzy control in error-correction neural networks [23,24]. According to the application and characteristics of FLS, this
study employs FLS to improve the performance of a recurrent neural network dubbed linear-variational-inequality primal-
dual neural network (LVI-PDNN). For instance, a number of time-varying financial portfolio selection problems are pro-
posed and investigated in [10,11,14] and it is found that utilizing ANN models rather than conventional methods reduces
the amount of time needed to find the optimal solution. So, conventional methods cannot be as efficient as dealing with
static problems in practical scenarios. As a result, an adaptive fuzzy-power LVI-PDNN (F-LVI-PDNN) model is introduced and
studied.

In this paper, we study the TMPI problem as a continuous TVLP problem in order to trace the progress of the MPI
when changing over time and to provide some type of forecast. More particularly, we use interpolation methods to convert
the problem’s data in continuous time, and then we apply the proposed models, LVI-PDNN and F-LVI-PDNN, to produce an
online solution. Note that, the LVI-PDNN is a well-known approach for tackling a number of static problems and outperforms
the approach for handling time-varying problems. By doing so, we overcome the drawbacks of the static approach and
propose an online solution that is more realistic to a time-varying financial problem.

The following list summarizes this work’s key points:

o A TVLP financial problem, dubbed TMP], is introduced and investigated.

* A unique LVI-PDNN’s design for addressing the TMPI problem is proposed.

¢ An adaptive F-LVI-PDNN model is introduced and studied.

o Applications of LVI-PDNN and F-LVI-PDNN on actual financial time-series from the real world.

 High-level performing MATLAB function 1inprog is compared with the proposed LVI-PDNN and F-LVI-PDNN models to
evaluate their performances.

Since linprog is designed for time-invariant linear programming (LP), multiple static LP problems have been ap-
proached by the 1linprog to generate a part of the LVI-PDNN'’s solution on the TVLP problem.

The paper has been organized in the following way. Section 2 presents the TMPI problem, which is a financial TVLP
problem, in detail. Portfolio insurance optimization through fuzzy LVI-PDNN is presented in Section 3. Section 4 includes
applications on the TMPI problem, employing actual financial time-series from the real world. Section 5 gives concluding
remarks.

2. Minimum-cost portfolio insurance

For financial models, reducing portfolio costs is always of major importance. One way to reduce portfolio costs is to
minimize the cost of insurance (see [5,25-29]). For instance, an approach based on the notion of Riesz spaces is employed
in [25] to solve a time-varying optimization problem for minimizing the insurance costs of the portfolio. In [27], the au-
thor solve the problem of optimal expected growth in a random trade time model, taking into account the insurance of
the portfolio in a low liquid market, to ensure the optimal constant proportion portfolio insurance approach in a simple
form. Inhere, we propose a time-varying equivalent to the relevant static problem that has been discussed and examined in
numerous articles, such as [30,31].

The continuous time-varying version of the MPI problem introduced here is an innovative approach that integrates robust
processes from neural networks to provide an online solution that is more realistic to a time-varying financial problem. With
Cla, b], we indicate the space of real-valued continuous functions specified at [a, b] interval. The initial portfolio is a vector

¢ =[¢1. 3. ....¢n]T in R" and ¢, for each i =1, ..., n, denote the investment on asset i. R" is referred to as portfolio space.
If ¢ is a portfolio that is not zero, then its payoff is given by the formula
X'(t) - ¢,
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where X (t) = [x1(t),x2(t), ..., xn(£)]T is the space of invested assets, x;(t) € C[a, b] indicate the i asset’s return, for each i,
and t € [a, b] € [0, +0c0) is the time.

Let us suppose that p(t) = [p;(t), p2(t), ..., pn ()T is a vector of time-varying prices, where p;(t) € Cla, b, i=1,2,..., n
is the insurance price of asset i. Here, we assume that a fixed price along with an asset risk cost make up the costs of
insurance for the portfolio. If the price rates related to asset risk are represented by 8 and the fixed price by §, the function
of the fixed and linear insurance prices is as follows:

M;(t) ]

pit)=58+p8 'Var[imax(M,v(t))

(2.1)
where M;(t) = [x;(t), x;(t —1),....x({t —c+1)]T withi=1,2,...,n, and Var[‘] signifies the variance. Also, the constant ¢ <
t —1, c e N, implies the time delays. Since M;(t) € RS, it is the variance of its ¢ in number normalized prices that measures
the risk of the i asset. Thus, the cost of insurance for any asset is determined by the level of risk it entails, when there is
a possibility that the expected return may not match the real return. Because of this, insurance premiums are increasing in
pace with inflation.

For a portfolio ¢ and floor price A € R the max{XT(t) - ¢, A}, is the insured payoff of the portfolio at floor price A. As a
result, the TVLP formulation of the TMPI problem is the following:

min p'(t) - n(t) (2.2)

n(t)ern

subject to — XT(t) - n(t) < min{-XT(t) - ¢, -1} (2.3)

0 <n() <06(t), (2.4)
where  7(t) =[n1(t), n2(t), ..., na ()T € R" is the optimal portfolio and 6(t)=XT(t)-¢- [ﬁ s anw]T =

[01(8),05(1), ...,0, (O] with 6;(t) eCla,b], i=1,2,...,n is the upper bound of 7(t). More precisely, §(t) is the higher
value of any stock that an investor is eligible to hold at time t, when putting all the portfolio ¢ payoff in each one of them.

3. Portfolio insurance optimization through fuzzy LVI-PDNN

Given that LP plays a fundamental role in mathematical optimization, the majority of its facets have been extensively
researched during the past few decades. Applications in both research and industry have frequently adopted solutions to
LP problems [32-34]. In the past, researchers have often addressed LP problems with no more than two different types of
constraints [33]. However, most studies were dedicated to investigating LP problems on the basis of static coefficients, see
[35], which implies that approaches intended to deal with this class of LP problems are useless in time-varying contexts.

The neural network technique has been proved to be a powerful real-time computation instrument for over ten years
due to the availability of hardware implementation and its parallel distributed computing nature [14,24,36-38]. For example,
[36] presents a simple, piecewise-linear and global convergent approach to optimal solutions with dual neural networks.

In [38], the authors introduced a primal-dual neural network with a piecewise-linear dynamic, inline with linear varia-
tional inequality. In [37] one can find a LVI-PDNN with the ability to handle both LP and quadratic programming (QP) on
the same/unified way. Globally, the LVI-PDNN converges to the optimum solution(s). In [39], LVI-PDNN was applied simul-
taneously to find real-time solutions to time-varying LP problems, liable to equality, inequality and boundary constraints.

3.1. TMPI through the LVI-PDNN design

To approach the TMPI problem we include the Eqs. (2.2)-(2.4) to the LVI-PDNN from Wu et al. [39]. Consequently, we
set the coefficients:

0 —X() p(®)
H(t)=[XT(t) 0 } f“):[min{xT(tya—A}}’

and the primal-dual decision vector z(t), with upper and lower bounds to which it is liable, as below:

2(t) = [zg)):l e R (@) = |:gi| e R, () = I:ligto)oil e R,

where v(t) € R signifies the dual decision variable of (2.3). The TVLP problem of (2.2)-(2.4) can be addressed using the
LVI-PDNN dynamical system described below:

2(t) = y I+ H' () (Pa(2(t) — (H(D)z(t) +1(t))) — 2(1)). (3.1)

3
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Fig. 1. The FLC structure.

Notice that y > 0 is a design parameter, whereas P () is the projection operator [39], defined as below:

{((t), zi(t) < ¢ (t)
Po(zi(t)) = {zi(t), () =z({t)=<{* (), i=1.2,....n+1. (3.2)
O, zi(t) > £ (t)

It should be highlighted that the solution z(t) of (3.1) can be successfully produced using a MATLAB ode solver.
To provide a clearer picture of the real-time LVI-PDNN'’s convergence, the residual error is given by:

R(t) = z(t) — Pa(z(t) — (H(t)z(t) +1(t))). (33)

According to [35, Theorems 1 and 2], if the Frobenius norm ||R(t) ||z — 0, the LVI-PDNN converges to the theoretical solution
as a consequence that z(t) converge to the theoretical solution z*(t).

3.2. The adaptive fuzzy-power LVI-PDNN design

Fuzzy logic systems have found extensive use in the control of nonlinear systems due to its potent capacity to approx-
imate complicated systems without the requirement for prior knowledge of system dynamics. The LVI-PDNN model’s con-
stant design parameter y is supplemented by a fuzzy parameter due to the difficulties in precisely describing the size of
the error-norm |[R(t)||r in the model (3.1). In this approach, the LVI-PDNN model’s calculation accuracy and robustness can
be increased, and the following fuzzy-power LVI-PDNN (F-LVI-PDNN) dynamics is suggested:

2(t) = y" I+ H' () (Pa(z(t) — (H(®)z(t) + (1)) — z(t)), (3.4)

where y > 1 is the traditional design parameter and v is the desired fuzzy parameter, acquired using a suitably designed
fuzzy logic controller (FLC). Typically, designing an FLC requires three steps [24]. Considering the error of the LVI-PDNN, i.e.,
[IR(t) ||, to be the FLC's input, then Fig. 1 illustrates the initiated output v.

The following is a description of the three steps involved in creating the FLC.

(1) Fuzzification: By using the following m-shaped membership function (MF), the fuzzification used in this research
converts the input set into the fuzzy input set I and the output set into the fuzzy output set O:

0, X<K
1—2(% 2, Hfoxsy
k(x) =11, {<x<§ (3.5)
1-2(3% ) ssxsfy
2(5%) Hsxsy
0, ¥ <x,

where «, £, &, Y € R signify constant parameters. Particularly, the MF's feet is determined by the parameters «, yr, while its
shoulders are determined by ¢, £. There are several possibilities available when choosing an MF in general. In order to soften
the sharp bounds while maintaining the overall behavior of the ||[R(t) | performance ranges, an experimentally determined
mr-shaped MF was employed to describe the degree of membership of the ||R(t)||f values.

The following triangular MF is the function this FLC uses to generate the output set:

p(x):max{min{x_K g_x},o}, (3.6)

{-k'§-¢
where «, ¢, £ € R signify constant parameters. Particularly, the MF's feet is determined by the parameters «, &, while its
peak is determined by ¢.

(2) Fuzzy inference engine: The following group of “IF-THEN” rules are fuzzy rules between the fuzzy input set I and the
fuzzy output set O:
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NEA —3stocks————» BACMSF

NE B 4 stocks HPQ NOK PCG AAPL
BAC MS F INTC JPM HPQ

NEC 10 stocks 2l  NOKPCG S ALV-DE

20 stock ING LFC CL QTEC GM KO
stocks NVO PFE PG RHHBY

A\ A 4

| AIG WFC AMD AUY CTL
| FCX KGC QCOM TEVA NIO

30 stocks

Fig. 2. Market stocks in NEs 4.1-4.3.

o P:ifI=LthenO0=1L,
e P:if I=H then O =H.

L and H, respectively, are fuzzy set notations that precisely represent low error and high error. Considering P, = P, U P,,
it is acquired O =10oP, I =1,2, where o signifies the fuzzy transformation symbol. Thereafter, aj.r(v) = ¢jp, V ¢.p, and
Qop, = sup(a,l A aol) for [ =1, 2. It is worth mentioning that A and v signify the minimum and maximum values operators,
respectively.

(3) Defuzzification: To acquire the fuzzy parameter v, the defuzzification method below, dubbed centroid, is utilized:

_ Jovaer(v)dy
B foaloR(V)dV '

Utilizing the F-LVI-PDNN dynamics (3.4) improves the capacity for continuous learning and preserves knowledge from
prior learning during the continual learning process. The key concept is to substitute the primary gain value y with the
power VY, which contains the suitably calculated fuzzy exponent v from the FLC. The fundamental purpose of the sug-
gested FLC is to integrate the prior knowledge, which is based on ||R(t) || values, into the LVI-PDNN dynamics. It is impor-
tant to note that the FLC controller structure, including the membership functions selected, the amount of fuzzy rules and
the defuzzification method selected, was created particularly to address the TMPI problem. The FLC controller structure is
therefore heuristic, and different structures are needed for different applications.

(3.7)

4. Numerical experiments

The data inputs for the financial optimization model we work with are time-series. In other words, the data input is in
discrete-time. As we are attempting to calculate the online solution of a continuous time-varying problem, these data have
to be converted into continuous-time. We accomplish that by transforming the time-series into functions of continuous-
time. Particularly, the linear interpolation method is used in this section on five different portfolios. To accomplish this,
the custom interpolation function 1inots, taken from [5,28], is employed on X(t) and p(t). It is important to note that
[5,28] propose numerous custom interpolation functions of well-known interpolation methods.

The time-series that were utilized in the numerical experiments of this section are shown in Fig. 2. More precisely,
Fig. 2 contains the ticker symbol of the stocks that are available in the market. Note that a ticker symbol is a string of
letters which is employed to identify stocks, bonds, mutual funds or any other securities traded on the stock exchange. Also,
the financial time-series utilized were retrieved from Yahoo Finance, whereas the specific data utilized may also be acquired
from https://github.com/SDMourtas/DATA/tree/main/TMPL

In addition, the time periods in finance may be divided into annually, quarterly, monthly, weekly, daily and combinations
of them. But, between two different time periods of the same division their observations may not be equal in number, which
is caused by the fact that financial markets can be close, one month has fewer days than another, the year is leap, etc. To
solve the omitted observations problem, we employ the parameter « that splits the observations into time periods for each
t within the processes of the proposed models. That is, we use p(wt) and X (wt) in place of p(t) and X(t). For convenience,
we employ the custom function omega, which is presented in [5,28]. This function takes as inputs the time period t along
with the vector noep, which includes the total number of observations for each period, and returns the parameter w.

The recommended settings for the FLC employed in all numerical examples (NEs) of this section are presented in Table 1,
whereas the ode15s MATLAB solver is used on (3.1) and (3.4) to produce the solution of the TMPI problem. In the fol-
lowing NEs, the parameters settings are y =100, 6 =2 and 8 = 1000. It is important to note that the MATLAB function
linprog may only address static linear programming (LP) problems, not TVLP problems. As a consequence, multiple static

5
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Table 1
FLC's recommended settings.
Set MF Range Rule « I & v Weight
Input m-shaped [0,10] P -0.1 0 0 0.1 1
P, 0 0.01 10 12 1
Output  triangular  [1,7] Py -5 1 2 - 1
P 6 7 13 - 1

LP problems have been approached by the 1inprog to generate a part of the LVI-PDNN’s solution on the TVLP problem.
Furthermore, using the theoretical solutions produced by the 1inprog as a reference, our attention is solely on comparing
the performances of LVI-PDNN and F-LVI-PDNN.

4.1. Numerical example A

In this NE, we deal with a portfolio containing the 3 stocks presented in Fig. 2. Let X (t) = [x1(t), xo(t), x3(t)]T, where
X (t) contains the daily close prices of these 3 stocks into x;(t), x(t) and x3(t), respectively. The time delay parameter has
been set to ¢ =40, and we find the minimum-cost insured portfolio 7(t) for the time period 02/03/2020 to 01/10/2020.
Furthermore, we divide our time-series into seven monthly periods by setting noep = [23, 21, 20, 22, 22, 21, 22], and we set
the interval of integration [0,7] in the ode solver. Note that the vector noep contains the observations number for each
month of the time period 02/03/2020 to 01/10/2020. Given a portfolio ¢ = [2, 2, 2], a floor A = 140, and starting from z(0) =
[¢, 2], we present the results in Fig. 3a-d.

4.2. Numerical example B

A 4 stock portfolio is built in this NE, which contains the 4 stocks presented in Fig. 2. Let X(t) =
[%1(£), x2(t), x3(t), x4(t)]T, where X(t) contains the daily close prices of these 4 stocks into x(t),x,(t), x3(t), x4(t), re-
spectively. The time delay parameter has been set to ¢ = 35, and we find the minimum-cost insured portfolio 7(t) for
the time period 02/01/2020 to 03/08/2020. Furthermore, we divide our time-series into seven monthly periods by set-
ting noep = [22, 19, 22, 21, 20, 22, 23], and we set the interval of integration [0,7] in the ode solver. Note that the vector
noep contains the observations number for each month of the time period 02/01/2020 to 03/08/2020. Given a portfolio
¢ =12,2,2,2], a floor A =220, and starting from z(0) = [¢, 2], the results are presented in Fig. 3e-h.

4.3. Numerical example C

In this NE, we investigate the efficacy of (3.1) and (3.4) in three large portfolios, containing of 10 stocks, 20 stocks and
30 stocks. As a result, the experimental findings prove the reliability of (3.1) and (3.4) approaches and demonstrate that it
could be applied to large datasets and real-world scenarios.

In all portfolio cases of this NE, the time delay parameter has been set to c =21 in the corresponding time-series of
Fig. 2, and we find the minimum-cost insured portfolio n(t) for the time period 01/05/2019 to 01/10/2019. Furthermore, we
divide our time-series into five monthly periods by setting noep = [23, 20, 22, 22, 21], and we set the interval of integration
[0,5] in the ode solver. Note that the vector noep contains the observations number for each month of the time period
01/05/2019 to 01/10/2019.

Specifically, in the case of 10 stocks portfolio, we set X (t) = [x; (t), ..., x19(t)]T, where X(t) contains the daily close prices
of market stocks included in the corresponding block of Fig. 2 into x;(t),x,(t),...,x19(t), respectively. Given a portfolio
¢ = 20ones(10,1), a floor A =980, and starting from z(0) = [¢, 2], the results are presented in Fig. 4a-c. In the case of 20
stocks portfolio, we set X(t) = [x1(t), ..., x20()]T, where X (t) contains the daily close prices of market stocks included in the
corresponding blocks of Fig. 2 into x;(t),x,(t), ..., X(t), respectively. Given a portfolio ¢ = 2ones(20,1), a floor A = 1980,
and starting from z(0) = [¢, 2], the results are presented in Fig. 4d-f. In the case of 30 stocks portfolio, we set X(t) =
[%1 (D), ..., x30(t)]T, where X(t) contains the daily close prices of market stocks included in the corresponding blocks of
Fig. 2 into xq (t),x2(t), ..., X30(t), respectively. Given a portfolio ¢ = 2ones(30,1), a floor A = 2450, and starting from z(0) =
[, 2], the results are presented in Fig. 4g-i.

4.4. Results discussion

This subsection discusses the findings shown in Figs. 3-4 and compares the performances of (3.1) and (3.4). The optimal
portfolios, n(t), which contain 3 and 4 stocks, respectively, are shown in Fig. 3a and e. Therein, we notice that the portfolios
produced by the linprog, (3.1) and (3.4) are identical. Note that 1inprog produces the presumptive theoretical solution.

Figures 3 b, f, 4 a, d and g show the error ||R(t)||z of (3.3), produced during the convergence of (3.1) and (3.4) for
the portfolios consisting of 3, 4, 10, 20 and 30 stocks, respectively. The noise is expected in these figures since we work
with time-series and, considering the parameter’s y small value, the error value is magnificent. However, compared to the

6
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Fig. 3. The convergence, the LVI-PDNN’s and F-LVI-PDNN’s residual errors, the payoff and the insurance costs for two portfolios containing 3 and 4 stocks,
in NE A and B, respectively.

LVI-PDNN, the error produced by the F-LVI-PDNN is far less noisy and converges to zero more quickly. Thereafter, the F-LVI-
PDNN outperforms the LVI-PDNN in terms of accuracy.

The floor prices along with the payoffs of the initial portfolios ¢ and the portfolios 7 (t), which contain 3, 4, 10, 20 and
30 stocks, respectively, are shown in Figs. 3¢, g, 4 d, e and h. Therein, we notice that the portfolios’ payoffs produced by the
linprog, (3.1) and (3.4) are identical. It is important to note that the payoffs of the portfolios ¢ and 7n(t) are the products
of XT(t) - ¢ and XT(t) - n(t), respectively.

Figures 3 d, h, 4 ¢, f and i present the insurance costs of the initial portfolio ¢ and the portfolios 7(t), which contain 3,
4, 10, 20 and 30 stocks, respectively. We notice that the insurance costs produced by the linprog, (3.1) and (3.4) are the
same for the respective portfolios. It is worth noting that the insurance costs of the portfolios ¢ and 7n(t) are the products
of p(t)T- ¢ and p(t)T- n(t), respectively.

Comparing the portfolios 7(t) payoffs in Figs. 3c, g, 4 b, e and h and the portfolios 7(t) insurance costs in Figs. 3d,
h, 4 ¢, f and i, respectively, we notice that the insurance costs of 7(t) are rising only in the case where the payoff needs
to be kept at the floor. Furthermore, it is obvious that the clear payoff, which is the payoff minus the insurance costs, of
portfolio n(t) is always greater than the clear payoff of portfolio’s ¢. Moreover, using the parameter w, which is especially
useful when combining different time periods with unequal numbers of observations in each one, is a novel concept. So,
by considering the w parameter, our approach is more realistic. Another important discovery is that, in every NE studied,
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Fig. 4. The convergence, the LVI-PDNN’s and F-LVI-PDNN’s residual errors, the payoff and the insurance costs for portfolios containing 10, 20 and 30 stocks

in NE C.

asking for a time-varying portfolio n(t), as opposed to a constant portfolio ¢, results in much cheaper portfolio insurance

costs. Comprehensively, the experiments on two small and three large portfolios show that the F-LVI-PDNN outperforms the
LVI-PDNN and both performed admirably in solving the TMPI problem.

5. Conclusion

The TMPI problem was presented in this paper, and it was solved using a recurrent neural network dubbed LVI-PDNN.
In order to improve the performance of the standard LVI-PDNN model, an adaptive F-LVI-PDNN model was also introduced
and studied. A number of NEs demonstrated the competence of the (3.1) and (3.4) approaches in a financial TVLP problem.
Our experiments lead us to the conclusion that both the LVI-PDNN and F-LVI-PDNN produce the online solution of the
TMPI problem, with the F-LVI-PDNN providing a faster convergence and greater accuracy than the LVI-PDNN. An important
discovery is that choosing a time-varying portfolio over a constant portfolio leads in much cheaper portfolio insurance costs.
The reliability of the LVI-PDNN and F-LVI-PDNN techniques was proven by experimental findings, which also demonstrated
that they could be applied to large datasets and real-world scenarios.
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