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Abstract: Multiclass classification is one of the most popular machine learning tasks. The main
focus of this paper is to classify occupations according to the International Standard Classification
of Occupations (ISCO) using a weights and structure determination (WASD)-based neural network.
In general, WASD-trained neural networks are known to overcome the drawbacks of conventional
back-propagation trained neural networks, such as slow training speed and local minimum. However,
WASD-based neural networks have not yet been applied to address the challenges of multiclass
classification. As a result, a novel WASD for multiclass classification (WASDMC)-based neural
network is introduced in this paper. When applied to two publicly accessible ISCO datasets, the
WASDMC-based neural network displayed superior performance across all measures, compared to
some of the best-performing classification models that the MATLAB classification learner app has
to offer.
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1. Introduction

In machine learning (ML), the classification problem arises in a variety of fields, includ-
ing economics and finance [1], medicine [2], medical [3], and engineering [4]. Multiclass
classification is a significant issue in these fields. Each instance in the learning set is a
member of a different set of labels that were previously established for multiclass classifi-
cation. The goal of supervised classification techniques is to build a learning model from
a training set of labeled data so that it can classify new objects with unknown labels [5].
The multiclass classification problem can be solved by extending the binary classification
problem using several ML approaches, such as NNs, decision trees, k-nearest neighbor,
naive Bayes, and support vector machines [6]. The main focus of this paper is to handle
multiclass classification tasks using NNs.

On the one hand, NNs are frequently employed for classification and regression
problems, and they have been effectively used in a variety of fields, including but not limited
to, economics and finance, medicine, and engineering. Particularly, in the field of economics
and finance, NNs have been used to optimize portfolios [7], analyze time series [8], stabilize
stochastic exchange rate dynamics [9], and forecast a variety of macroeconomic factors [10].
In the field of medicine, NNs have been used to diagnose breast cancer [11], lung cancer [12],
flat foot [13], and to classify diabetic retinopathy [14], whereas in the field of engineering,
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they have been used to stabilize feedback control systems [15], track mobile objects [16],
analyze the performance of solar systems [17], and forecast the flow behavior of alloy [18].

On the other hand, social science research usually involves multiclass classification
tasks, such as characterizing occupational mobility [19], conducting case-control studies in
healthcare [20], examining the relationship between cancer and changes in occupational
characteristics [21], and evaluating jobs’ potential for telework [22]. Particularly, a multitude
of classification systems are the foundation for the systematic surveillance of any population,
from the general populace of the world to the people who make up a small- or medium-
sized business or community [23]. The occupation (job title) or the industry a person
works in can be used to reflect occupational exposure for a variety of work-related topics,
such as administrative usage, employment statistics, social sciences, international trade and
commerce, comprising surveillance and analytical methodologies [24]. There are numerous
national and international classification schemes for these concepts, which are periodically
updated [25]. International Standard Classification of Occupations (ISCO), in particular,
was created to make it easier to compare occupational statistics across borders and to act
as a guide for nations creating or updating their own national occupational classification
systems. It has been developed to serve broad administrative and research purposes,
whereas the international community fully endorses it as a recognized benchmark for
international labor statistics [26]. It is worth mentioning that the most recent version
of ISCO, known as ISCO-08, was adopted in 2008. Some case studies on occupational
classification can be found in the Finnish Register of Occupational Diseases [27] and on the
names of music professions [28].

The task of classifying occupations using NNs has become increasingly common
during the past few years [29–33]. In particular, a mathematical model that uses transformer
NNs and ISCO-08 to connect education and occupations is proposed in [29]. By using NNs
and ISCO-08, ref. [30] links the necessary skills that have surfaced in the labor market from
a demand viewpoint and occupations. Ref. [31] proposes a method for analyzing job titles
and embedding them, and then utilizes NN models to demonstrate that they outperform
humans and establish the baseline accuracy for identifying occupations based on ISCO-08.
Using statistical ML and ISCO-08, a comprehensive occupational and economic framework
for wage prediction is constructed in [32]. Ref. [33] describes a method to assess and choose
embeddings from a large text corpus while maintaining the co-hyponyms links synthesized
from ISCO-08 taxonomy, and uses the chosen embeddings as features in order to classify
co-hyponym associations through NNs.

In this paper, we will use a feed-forward NN to handle multiclass classification tasks
in social sciences. Back-propagation algorithms have a long history of being used to train
feed-forward NNs, where the structure of the network is iteratively adjusted. However,
a feature that their forerunners lacked is provided by recently introduced weights and
structure determination (WASD) training algorithms. In particular, the weights direct
determination (WDD) process, which is a component of all WASD algorithms, makes it
easier to directly compute the ideal set of weights, preventing one from becoming stuck
in local minima and ultimately helping to attain lower computational complexity [34].
We thus develop a 3-layer feed-forward WASD for multiclass classification (WASDMC)-
based NN. The novel WASDMC algorithm uses the WDD process combined with a power
maxout activation function to train the WASDMC-based NN. The prominent multiclass
classification task of classifying occupations based on ISCO-08 is taken into consideration
to examine the performance of the WASDMC-based NN. In particular, when applied
to two publicly accessible ISCO datasets, the WASDMC-based NN displayed superior
performance across all measures, compared to some of the best-performing classification
models that the MATLAB classification learner app has to offer.

The main contribution of this paper is the use of a WASD-based NN to address
multiclass classification tasks for the first time and the development of a new activation
function specifically created for WASD-based NNs. The key ideas of this work can be
summed up as follows:
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• A novel 3-layer feed-forward WASDMC-based NN for multiclass classification tasks
is presented.

• A novel power maxout activation function is employed to increase the accuracy of
WASDMC-based NN.

• Two publicly accessible ISCO datasets are considered, and the WASDMC-based NN
performance is compared to some of the best-performing classification models that
the MATLAB classification learner app has to offer.

• A different power activation function is also used to show how the proposed power
maxout activation function behaves differently from other activation functions.

The structure of the paper is described in the sections that follow. An overview of the
final structure and justification for the WASDMC-based NN is given at the start of Section 2.
The creation of the power maxout activation function and the design of the WDD procedure
ensue. The section concludes with a detailed explanation of the WASDMC algorithm and
the entire training procedure. The two ISCO datasets’ data preparation for use with the
WASDMC-based NN is described in Section 3. The results of the WASDMC-based NN
on the two ISCO datasets are shown in Section 4, and its performance is evaluated in
comparison to that of other well-known models. A brief summary and helpful information
for the MATLAB package that has been made accessible on GitHub are also included in
Section 4 to support the quality and computational utility of this work. Final observations
are provided in Section 5.

2. The WASDMC-Based NN Model

This section describes the 3-layer feed-forward WASDMC-based NN for multiclass
classification tasks. Its structure, which has m input and n hidden layer neurons, can
be as shown in Figure 1. In particular, Layer 1 is the input layer, receiving the input
values X1, X2, . . . , Xm, and allocating them to the relevant neuron in Layer 2, which has
a maximum number of activated neurons of n, with equal weight 1, whereas Layer 3 is
the output layer and has one activated neuron. The WDD process is used to acquire the
weights Wi, i = 1, 2, . . . , n− 1 in the neurons that connect Layer 2 and Layer 3 neurons. The
NN model can achieve low hidden layer utilization by employing the WASDMC algorithm.

X1

X2

B(Ŷ )

Layer 1 Layer 2 Layer 3

w0 

w1 

wn-1 

F0(X1,X2,…,Xm)

F1(X1,X2,…,Xm)

Fn-1(X1,X2,…,Xm)

1 

1 

1 
Xm

Figure 1. Structure of the WASDMC-based neural network.

2.1. The WDD Process with the Power Maxout Activation Function

The WDD process is a key component of any WASD algorithm since it eliminates
the need for time-consuming, frequently unreliable iterative computations to find the
ideal weights matching to the present hidden layer structure. Apparently, compared to
conventional weight determination methods, the WDD process helps to achieve both
speed and lower computational complexity, while avoiding some of the associated difficul-
ties [34]. Here, detailed explanations of crucial theoretical foundations and analyses are
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offered for the WASDMC-based NN design. The Taylor polynomial (TAPO) approximation
theorem [35] is first established as follows.

Theorem 1. When a target function f (·) has the (K + 1)-order continuous derivative on the
interval [a1, a2] and K is a non-negative integer, the following applies:

f (x) = AK(x) + EK(x), x ∈ [a1, a2], (1)

where AK(x) and EK(x), respectively, denote the K-order TAPO approximation of f (x) and the
error term.

Considering the value of the r-order derivative of f (x), which is denoted by f (r)(u) at
the point u, f (x) can be approximately represented as seen below:

f (x) ≈ AK(x) =
K

∑
r=0

f (r)(u)
r!

(x− u)r, u ∈ [a1, a2], (2)

where r! denotes the factorial of r.

Proposition 1. To approximate multivariable functions, one may utilize the TAPO approximation
Theorem 1. Consider the target function f (x1, x2, . . . , xh) with h variables and (K + 1)-order
continuous partial derivatives in an origin’s neighborhood (0, . . . , 0). Then, the K-order TAPO
AK(x1, x2, . . . , xh) about the origin is the following:

AK(x1, x2, . . . , xh) =
K

∑
r=0

∑
r1+···+rh=r

x1 · · · xh
r1 · · · rh

(
∂r1+···+rh f (0, · · · , 0)

∂xr1
1 · · · ∂xrh

h

)
, (3)

where r1, r2, . . . , rh are non-negative integers.

The WDD process limits the input data to only be real numbers. As a result, we
assume the input X = [X1, X2, . . . , Xm] ∈ R1×m and the target vector Y ∈ R. Based on
the power activated multi-input NNs in [34], the relationship between the input variables
X1, X2, . . . , Xm and the output target Y of the NN can be represented by the nonlinear
function shown below:

f (X1, X2, . . . , Xm) = Y. (4)

Therefore, according to Proposition 1, the K-order TAPO AK(X1, X2, . . . , Xm) can map
(4) as follows:

AK(X1, X2, . . . , Xm) =
n−1

∑
r=0

zrwr, (5)

where zr = Rr(X1, X2, . . . , Xm) ∈ R1×mn is a power activation function, wr ∈ Rmn is the
weight that refers to zr, and r indicates both the power value and the number of the hidden
layer neurons.

On WASD-based NNs, a variety of activation functions are used, including Cheby-
shev and Euler polynomials, signum, power, sine, and square wave [36–40]. However,
because each activation function has its own combination of empirical and mathematical
characteristics, it might be more appropriate for a certain problem. When dealing with
multiclass classification tasks, the maxout activation function [41] is regarded as one of the
most efficient activation functions. After modifying the maxout activation function to be
employed in (5), the following elementwise power maxout activation function is proposed:

Rr(Xi) =

{
Xr

i , Xr
i = max(X�r)

0 , otherwise
, for i = 1, 2, . . . , m, (6)

where the superscript ()� denotes the Hadamard (or elementwise) exponential.
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For a given number of samples s ∈ N, we assume the standardized input matrix
X = [X1, X2, . . . , Xm] ∈ Rs×m and the target vector Y ∈ Rs. Further, setting zs,r =
Rr(X1, X2, . . . , Xm) ∈ Rs×mn, the input-activation matrix becomes

Z =


z1,0 z1,1 . . . z1,n−1
z2,0 z2,1 . . . z2,n−1

...
...

. . .
...

zs,0 zs,1 . . . zs,n−1

 ∈ Rs×mn, (7)

and the weight vector becomes W = [w0, w1, . . . , wn−1]
T ∈ Rmn. Note that the superscript

()T denotes transposition. Then, instead of iterative weight training in conventional NNs,
the weights of the WASDMC-based NN in Figure 1 are computed using the WDD process,
which is stated in the following Lemma 1.

Lemma 1. The K-order TAPO NN’s steady-state weights can be directly obtained as shown
below [35]:

W = Z†Y, (8)

where the superscript ()† denotes pseudoinversion.

2.2. The WASDMC Algorithm and the NN Model

The WASDMC algorithm is liable for training the NN model. To avoid overfitting,
the data X must first be normalized in the range [0, 1] [34]. After that, the WDD process
is used on all the training samples of the data X. Particularly, setting r = 0, the Z matrix
is constructed according to (6) and (7), and the weights of the NN are directly obtained
through (8). To calculate the NN predictions Ŷ, the following formula is used:

Ŷ = round(ZW), (9)

where round(·) denotes a round function. It is significant to note that since the WDD
process limits the input data to only be real numbers, the output of ZW is also a real
number. Given this, the round function in (9) is used to ensure that this output rounds
to the closest positive integer that corresponds to a single class. Then, the mean absolute
error (MAE) between the predictions Ŷ and the target value Y is measured. Keep in mind
that the MAE is a measurement of errors representing the same phenomenon between
paired observations and is typically used as a loss function in ML for classification tasks.
Furthermore, MAE values that are closer to zero are preferable, and they are calculated
as follows:

MAE =
1
s

s

∑
q=1

∣∣Yq − Ŷq
∣∣, (10)

where s implies the number of samples. In this way, the WASDMC algorithm validates the
data in the entire training set X.

The WASDMC algorithm then iteratively selects the optimal activation function for
each r depending on the MAE. Given a maximum number of hidden-layer neurons nmax,
the highest performing powers r in (6) are picked iteratively from 0 to nmax− 1. Specifically,
a new hidden-layer neuron forms under a given n if the MAE for that n is lower than the
previous best MAE, whereas a n is bypassed and not included in the hidden-layer neurons
if the MAE for that n is higher than the previous best MAE. In this manner, the WASDMC
algorithm is able to maintain the lowest number of hidden-layer neurons in the NN while
lowering the total MAE of the NN model. It is important to mention that max(X�r) = 1
because of the normalization in the range [0, 1]. As a consequence, the maximum number
of hidden-layer neurons is limited to nmax = 2. This happens as a result of the properties
of (6), which lead to every matrix Z for n > 2 being the same as the matrix Z for n = 2.
The diagram in Figure 2a shows the comprehensive process of the WASDMC algorithm.



Mathematics 2023, 11, 629 6 of 14

Version December 23, 2022 submitted to Journal Not Specified 6 of 13

Initialize

n ≤ nmax?

E(n+1)<Emin?

Set Emin ← E(n+1), and r ← [r;n] 

Set n ← n+1

Return the optimal W, r and Emin

Yes

YES

Calculate Z via Eq. (7) for the 
hidden-layer neuron powers [r;n]

Calculate W via Eq. (8), Ŷ via 
Eq. (9), and E(n+1) via Eq. (10)

No

Calculate Z for r, and W

No

(a) The WASDMC algorithm.

Input Data

Return the response B(Ŷ) via Eq. (11) 

Normalize X

Normalize V based on the minimum and 
maximum values of the normalized X

Calculate W and r via WASDMC

Calculate Z with r for the 
normalized V, and Ŷ via Eq. (9)

Set X the training data with the 
explanatory variables, and Y the target

Set V the testing data with 
the explanatory variables

(b) Process for modeling and predicting.

Figure 2. The WASDMC algorithm and the process for modeling and predicting with the WASDMC-based neural network model.

The diagram in Fig. 2(b) shows the comprehensive process for modeling and predicting139

with the WASDMC-based neural network model.140

3. Data Preparation141

This section describes the two ISCO datasets’ data preparation for use with the142

WASDMC-based neural network. It is worth mentioning that ISCO is often built on143

the concepts of skill and job, i.e., the ability to do the activities and duties of a certain144

job, which may require some amount of formal training. A job is defined as a specific145

type of work performed by one person and serves as the statistical unit of ISCO-08. In146

other words, ISCO is an instrument for dividing jobs into a set of groups that are clearly147

defined in accordance with the tasks and responsibilities performed in the job, and it148

is designed to be used in a range of client-oriented applications as well as statistical149

applications. From a social, economic, and medical standpoint, this division is beneficial.150

Additionally, jobs can be classified into 436 4-digit unit groups, 130 3-digit minor groups,151

43 2-digit sub-major groups, and ten major 1-digit groups using the ISCO’s four-level152

hierarchically organized classification system. In our approach, the classification tasks153

solely took into account the 4-digit unit groups.154

For the performance assessment of the WASDMC-based neural network, two ISCO155

datasets are employed. The first dataset is taken from the International Labour Organi-156

sation (ILO) and can be accessed at the following link: https://www.ilo.org/ilostat-files/157

ISCO/newdocs-08-2021/ISCO-08/ISCO-08%20EN%20Structure%20and%20definitions.158

xlsx. We shall refer to this dataset as ILO-ISCO for simplicity. The second dataset is159

taken from [34] and includes data extracted from online sources (OS), pre-processed,160

and hand-annotated following the ISCO taxonomy. We shall refer to this dataset as161

OS-ISCO for simplicity. On the one hand, there are 436 different classes of occupations in162

Figure 2. The WASDMC algorithm and the process for modeling and predicting with the WASDMC-
based NN model.

Based on the aforementioned procedures, the following are the main steps for the
complete process of training and predicting the WASDMC-based NN model of Figure 1.
First, the NN model receives the standardized input X of s samples in Layer 1. Then, the
WASDMC algorithm discovers the optimal number of hidden-layer neurons n∗ as well as
the optimal power of the activation function at each hidden-layer neuron in Layer 2. Last,
Ŷ is calculated through 9, and the following elementwise function is employed in Layer 3:

B(Ŷi) =


max(Y) , Ŷi > max(Y)
Ŷi , min(Y) ≤ Ŷi ≤ max(Y)
min(Y) , Ŷi < min(Y)

, for i = 1, 2, . . . , s, (11)

The diagram in Figure 2b shows the comprehensive process for modeling and predict-
ing with the WASDMC-based NN model. It is important to mention that the normalization
of the input data is described in the following Section 3. Additionally, since the result of (9)
directly pertains to a single class, denormalization is not necessary.

3. Data Preparation

This section describes the two ISCO datasets’ data preparation for use with the
WASDMC-based NN. It is worth mentioning that ISCO is often built on the concepts
of skill and job, i.e., the ability to do the activities and duties of a certain job, which may re-
quire some amount of formal training. A job is defined as a specific type of work performed
by one person and serves as the statistical unit of ISCO-08. In other words, ISCO is an
instrument for dividing jobs into a set of groups that are clearly defined in accordance with
the tasks and responsibilities performed in the job, and it is designed to be used in a range



Mathematics 2023, 11, 629 7 of 14

of client-oriented applications as well as statistical applications. From a social, economic,
and medical standpoint, this division is beneficial. Additionally, jobs can be classified into
436 4-digit unit groups, 130 3-digit minor groups, 43 2-digit sub-major groups, and ten ma-
jor 1-digit groups using the ISCO four-level hierarchically organized classification system.
In our approach, the classification tasks solely took into account the 4-digit unit groups.

For the performance assessment of the WASDMC-based NN, two ISCO datasets are
employed. The first dataset is taken from the International Labor Organization (ILO) and
can be accessed at [42]. We shall refer to this dataset as ILO-ISCO for simplicity. The
second dataset is taken from [43] and includes data extracted from online sources (OS),
pre-processed, and hand-annotated following the ISCO taxonomy. We shall refer to this
dataset as OS-ISCO for simplicity. On the one hand, there are 436 different classes of
occupations in ILO-ISCO, and each class has a variety of job titles that fit within it. On the
other hand, there are 2581 different job titles in OS-ISCO, and each one is associated with
one of 149 different classes of occupations.

To train and test the NN model, the input data can only be real numbers due to
restrictions imposed by the WDD process. However, both of the datasets in our study
contain strings; therefore, the data must be adequately processed and prepared before
being input into the WASDMC-based NN model. The process that each dataset should go
through is described in the following steps S1 to S5.

S1: It is necessary to develop a primary vocabulary for each class. To accomplish this, the
different job titles that all fall under one class must be grouped together, and then
they must be tokenized according to rules based on Unicode Standard Annex #29 [44],
with all letters converted to lowercase and punctuation removed. As a result, given
that there are m classes, we create the structure vector V = [v1, v2, . . . , vm], where
vj, j = 1, . . . , m is the vocabulary of class j.

S2: Consider that the NN model will be tested using s in number samples, each of which
contains one job title. It is necessary to develop a vocabulary for each job title. To
accomplish this, each job title must be tokenized according to rules based on Unicode
Standard Annex #29 [44], with all letters converted to lowercase and punctuation
removed. As a result, we create the structure vector G = [g1, g2, . . . , gs], where
gi, i = 1, . . . , s is the vocabulary of some class.

S3: Considering that some words of a vocabulary in G may belong to several different
class vocabularies in V, we create an input matrix X for training and testing the model
that includes the percentages of similarity between the vocabularies in G and the
vocabularies in V. Particularly, the following process is taken into consideration to
create the input matrix X ∈ Rs×m. Assume the aforementioned structure vectors
V and G, where the vocabularies vj, j = 1, . . . , m and gi, i = 1, . . . , s have k j and hi
amount of words, respectively, and that strcmp(·) is a function that returns 1 (true) if
the input strings are identical and 0 (false) otherwise (see [45]). Then, the percentage
of the vocabulary vj that matches the vocabulary gi is

Pv(i, j) =
1
k j

kj

∑
q=1

strcmp(gi, vj(q)), (12)

where vj(q) refers to the qth element (word) of the vocabulary vj, and the percentage
of the vocabulary gi that matches the vocabulary vj is

Pg(i, j) =
1
hi

kj

∑
q=1

strcmp(gi, vj(q)). (13)

This led us to determine that the ij element of X should represent the average of (12)
and (13) as follows:

X(i, j) =
1
2
(Pv(i, j) + Pg(i, j)), (14)
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which takes values in the range [0, 1].
S4: To train the NN model, we create the input matrix Xtr. Given that there are m distinct

classes, setting G = V in step S3 will create an input matrix Xtr ∈ Rm×m. As a
result, Xtr will include the percentages of similarity between the vocabularies in V.
Additionally, we create the target vector Ytr = [1, 2, . . . , m]T ∈ Rm, where each number
from 1 to m corresponds to a single class.

S5: To test the NN model, we create the input matrix Xte. Given that there are s in number
samples, step S3 will create an input matrix Xte ∈ Rs×m. As a result, Xte will include
the percentages of similarity between the vocabularies in G and the vocabularies in V.
Additionally, the numbers that the classes have taken in Ytr should be used to create
the target vector Yte ∈ Rs.

It should be emphasized that steps S1 to S5 are a heuristic approach that accomplishes
the problem’s goals, namely converting texts to numbers and standardizing the input
matrix. By employing the steps S1 to S5, the following input matrices and target vectors
will be created for training and testing the models for each dataset. In the case of ILO-ISCO,
we will create an input matrix Xtr ∈ R436×436 and a target vector Ytr ∈ R436 since there are
436 different classes of occupations. Additionally, we will use the first and the last job titles
of each class as test data. As a result, we will create an input matrix Xte ∈ R872×436 and a
target vector Yte ∈ R872. In this way, there are 1308 samples in total, of which 33.3% are
used in the training set and 66.7% in the testing set. In the case of OS-ISCO, we will create
an input matrix Xtr ∈ R149×149 and a target vector Ytr ∈ R149 since there are 149 different
classes of occupations. Additionally, we will use all the job titles of each class as test data.
As a result, we will create an input matrix Xte ∈ R2581×149 and a target vector Yte ∈ R2581

since there are 2581 different job titles. In this way, there are 2730 samples in total, of which
5.5% are used in the training set and 94.5% in the testing set. It is important to mention that
the number of samples in the training set must always equal the number of different classes
of occupations, whereas the number of samples in the testing set can be chosen at the user’s
discretion. In light of this, the user may decide on the training-to-testing dataset ratio.

4. NNs Performance Assessment

In this section, the performance of the WASDMC-based NN is examined using the mul-
ticlass classification task of classifying occupations based on ISCO-08. Using the ILO-ISCO
and OS-ISCO datasets described in Section 3, the WASDMC-based NN performance is com-
pared to some of the best-performing classification models that the MATLAB classification
learner app has to offer. These classification models are fine tree (FTree), fine K-nearest
neighbors (FKNNs), the ensemble bagged trees (EBTs), and the narrow neural network
(NNN). More information on the algorithms that these classification models employ and
how they are implemented can be found in [46]. Additionally, to demonstrate how the
proposed activation function performs differently from existing activation functions, the
power activation function (PAF) from [34] is also employed in place of the power maxout
(6). The following elementwise function is the PAF:

Rr(Xi) = Xr
i , for i = 1, 2, . . . , m. (15)

In this section, the WASDMC-PAF is the abbreviation for the WASDMC-based NN
with the PAF, while the WASDMC is the abbreviation for the WASDMC-based NN with the
power maxout activation function. Additionally, the WASDMC-PAF maximum number of
hidden-layer neurons is set to nmax = 20, while the FTree, FKNN, EBT, and NNN models’
training parameters are kept at their default configuration in the MATLAB classification
learner app. It is worth mentioning that you can download the full development and
implementation of the computational methods described in this paper from GitHub at [47].
The concepts and algorithms described in Sections 2 and 3 were used in this link to construct
a MATLAB package that can handle the multiclass classification tasks required by this
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section. Additionally, the MATLAB package offers extensive installation guidelines and
thorough implementation.

In the case of ILO-ISCO, the training set’s input matrix Xtr ∈ R436×436 and the target
vector Ytr ∈ R436 from Section 3 were used for training the classification models. Their
results on the training set are presented in Figure 3a, where we observe that the WASDMC,
FKNN and EBT all have perfect classification scores. That is, these models classified cor-
rectly all the 436 samples of the training set. The WASDMC-PAF performs the worst and the
FTree performs the second-worst, while both models feature more incorrect classifications
than correct ones. Furthermore, the testing set’s input matrix Xte ∈ R872×436 and the target
vector Yte ∈ R872 from Section 3 were used for testing the classification models. Their re-
sults on the 872 samples of the testing set are presented in Figure 3b, where we observe that
the WASDMC has the best performance, with only 19 incorrect classifications, and FKNN
has the second-best performance, with 177 incorrect classifications. The WASDMC-PAF
performs the worst, with 852 incorrect classifications, the FTree performs the second worst,
with 821 incorrect classifications, the NNN performs the third worst, with 622 incorrect
classifications, and the EBT performs the fourth worst, with 458 incorrect classifications.
Notice that the WASDMC-PAF, FTree, NNN and EBT have more incorrect classifications
than correct ones.
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Figure 3. The classification of the ILO-ISCO and OS-ISCO training and testing sets by NNs.

In the case of OS-ISCO, the training set’s input matrix Xtr ∈ R149×149 and the target
vector Ytr ∈ R149 from Section 3 were used for training the classification models. Their
results on the training set are presented in Figure 3c, where we observe that the WASDMC,
FKNN, EBT and NNN all have perfect classification scores. That is, these models classified
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correctly all the 149 samples of the training set. The WASDMC-PAF performs the worst
and the FTree performs the second worst, while both models feature more incorrect clas-
sifications than correct ones. Furthermore, the testing set’s input matrix Xte ∈ R2581×149

and the target vector Yte ∈ R2581 from Section 3 were used for testing the classification
models. Their results on the 2581 samples of the testing set are presented in Figure 3d,
where we observe that the WASDMC has the best performance, with only 172 incorrect
classifications, while the rest of the models have more incorrect classifications than correct
ones. Particularly, the FKNN has the second-best performance, with 1773 incorrect classi-
fications, the EBT has the third-best performance, with 2349 incorrect classifications, the
NNN has the fourth-best performance, with 2359 incorrect classifications, the FTree has the
second-worst performance, with 2538 incorrect classifications, and the WASDMC-PAF has
the worst performance, with 2566 incorrect classifications.

To statistically assess the classification models’ performance, their outputs on the
testing sets of ILO-ISCO and OS-ISCO are subjected to a number of performance metrics in
Tables 1 and 2, respectively. These performance metrics are the MAE, accuracy, sensitivity,
specificity, precision, false positive rate (FPR), F-score, Matthews correlation coefficient
(MCC), and Cohen’s κ. In particular, the accuracy is the proportion of samples that were
correctly classified to the total number of samples, while the specificity is the proportion
of correctly classified negative samples, and the sensitivity (or recall) is the proportion of
correctly classified positive samples. As a result, sensitivity and specificity can be thought
of as two different types of accuracy, with the first being relevant to actual positive samples
and the second to actual negative samples. Moreover, precision shows the proportion of
correctly classified positive samples to all positively predicted samples, sensitivity shows
the correlation between observed and predicted classifications, MCC shows the proportion
of correctly classified negative samples, FPR shows the proportion of incorrectly classified
negative samples, and Cohen’s κ is used to measure inter-rater reliability for categorical
items. More information and greater analysis about these metrics are provided in [48,49].
Last, the training accuracy (TA) as well as the average time consumption (TC) and the
memory usage (MU) for training the NN models are also included in these tables.

Table 1. The NN models’ statistics on the testing set of ILO-ISCO.

Neural Network Models

ILO-ISCO WASDMC WASDMC-PAF FTree FKNN EBT NNN

TC 0.1882 s 1.0407 s 4.0399 sec 1.0738 s 14.8563 s 42.8813 s
MU 4.6925 MB 4.6925 MB 7.5769 MB 6.2226 MB 92.3990 MB 6.3485 MB
TA 1 0.0229 0.2317 1 1 0.9794

MAE 1.2580 86.1238 162.0447 10.4610 31.7133 81.8543
Accuracy 0.9782 0.0229 0.0584 0.7970 0.4782 0.2637

Sensitivity 0.9858 0.4417 0.9160 0.9285 0.7833 0.6370
Specificity 0.9999 0.9977 0.9978 0.9995 0.9988 0.9983
Precision 0.9782 0.0229 0.0584 0.7970 0.4782 0.2637

FPR 5× 10−5 0.0022 0.0021 4× 10−4 0.0011 0.0016
F-score 0.9756 0.5678 0.0727 0.7892 0.4900 0.4103
MCC 0.9821 0.4462 0.9165 0.8942 0.7719 0.6568

Cohen’s κ 0.9782 0.0207 0.0563 0.7966 0.4770 0.2621

The NN models’ statistics on the testing set of ILO-ISCO are presented in Table 1.
Therein, we observe that the WASDMC performs better than the WASDMC-PAF, FTree,
FKNN, EBT and NNN models. Particularly, the WASDMC is about 6 times faster than
the WASDMC-PAF, the second-fastest model, and about 230 times faster than the NNN,
the slowest model. The MUs of WASDMC and WASDMC-PAF are identical, and they
are each about 1.3 times lower than the MU of FKNN, which is the third-lowest MU, and
about 20 times lower than the MU of EBT, which is the highest MU. The TAs of WASDMC,
FKNN and EBT are identical, and they are each about 43 times higher than the TA of
WASDMC-PAF, which is the lowest TA. The MAE of WASDMC is about 8 times lower
than the MAE of FKNN, which is the second-lowest MAE, and about 130 times lower
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than the MAE of FTree, which is the highest MAE. The accuracy of WASDMC is about
1.2 times higher than the accuracy of FKNN, which is the second-highest accuracy, and
about 42 times higher than the accuracy of WASDMC-PAF, which is the lowest accuracy.
Furthermore, the WASDMC has the highest sensitivity, specificity, precision, F-score and
Cohen’s κ values, while the FKNN has the second-highest values in these metrics. The
WASDMC-PAF has the lowest sensitivity, specificity, precision and Cohen’s κ values, and
the FTree has the lowest F-score value. The FPR of WASDMC is about 8 times lower than
the FPR of FKNN, which is the second-lowest FPR, and about 44 times lower than the FPR
of WASDMC-PAF, which is the highest FPR. Last, the WASDMC has the highest MCC,
while the FKNN has the second-highest, and the WASDMC-PAF has the lowest.

Table 2. The NN models’ statistics on the testing set of OS-ISCO.

Neural Network Models

OS-ISCO WASDMC WASDMC-PAF FTree FKNN EBT NNN

TC 0.0138 s 0.0846 s 0.5327 s 0.2275 s 2.6160 s 2.040 s
MU 3.3539 MB 3.3539 MB 3.7661 MB 3.5534 MB 14.8418 MB 3.6103 MB
TA 1 0.0403 0.3154 1 1 0.9933

MAE 2.0987 68.7791 56.5947 19.5877 36.8442 38.7617
Accuracy 0.9333 0.0058 0.0166 0.3130 0.0840 0.0867

Sensitivity 0.9170 0.6779 0.7612 0.5792 0.3425 0.2863
Specificity 0.9995 0.9933 0.9934 0.9953 0.9938 0.9938
Precision 0.9633 0.0402 0.1556 0.7699 0.4661 0.3967

FPR 4× 10−4 0.0067 0.0066 0.0046 0.0061 0.0061
F-score 0.9222 0.3490 0.1143 0.5045 0.3281 0.4134
MCC 0.9293 0.6798 0.7796 0.5751 0.3347 0.3095

Cohen’s κ 0.9278 0.0023 0.0145 0.3094 0.0818 0.0810

The NN models’ statistics on the testing set of OS-ISCO are presented in Table 2.
Therein, we observe that the WASDMC performs better than the WASDMC-PAF, FTree,
FKNN, EBT and NNN models. In particular, the WASDMC is about 6 times faster than
the WASDMC-PAF, the second-fastest model, and about 190 times faster than the EBT,
the slowest model. The MUs of WASDMC and WASDMC-PAF are identical, and they are
each slightly lower than the MU of FKNN, which is the third-lowest MU, and about 4.4 times
lower than the MU of EBT, which is the highest MU. The TAs of WASDMC, FKNN and EBT
are identical, and they are each about 25 times higher than the TA of WASDMC-PAF, which
is the lowest TA. The MAE of WASDMC is about 9 times lower than the MAE of FKNN,
which is the second-lowest MAE, and about 32 times lower than the MAE of WASDMC-PAF,
which is the highest MAE. The accuracy of WASDMC is about 3 times higher than the
accuracy of FKNN, which is the second-highest accuracy, and about 160 times higher than
the accuracy of WASDMC-PAF, which is the lowest accuracy. Furthermore, the WASDMC
has the highest specificity, precision, F-score and Cohen’s κ values, while the FKNN has
the second-highest values in these metrics. The WASDMC-PAF has the lowest specificity,
precision and Cohen’s κ values, and the FTree has the lowest F-score value. The WASDMC
has the highest sensitivity, while the FTree has the second-highest sensitivity, and the NNN
has the lowest sensitivity. The FPR of WASDMC is about 11 times lower than the FPR
of FKNN, which is the second-lowest FPR, and about 16 times lower than the FPR of
WASDMC-PAF, which is the highest FPR. Last, the WASDMC has the highest MCC, while
the FKNN has the second highest, and the WASDMC-PAF has the lowest.
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In general, the WASDMC model functioned brilliantly in handling multiclass classifica-
tion tasks, while its performance in contrast to WASDMC-PAF, FTree, FKNN, EBT and NNN
models is superior. This is in keeping with the information shown in Tabs. in Tables 1 and 2.
Furthermore, FKNN, which employs the k-nearest neighbors algorithm, has the second best
overall performance, whereas the NNN, a NN classifier with one fully connected layer, has
the second-worst overall performance. When FTree and EBT are compared, EBT performs
marginally better than FTree because it integrates multiple decision trees rather than just
one to generate higher predictive performance. It is important to note that despite having
the weakest performance, the WASDMC-PAF had a higher F-score than FTree in both
datasets and a lower MAE than FTree in the ILO-ISCO dataset. However, the F-scores do
not account for true negatives, giving precision and FPR equal weight. As a consequence,
measures such as the MCC and Cohen’s κ are preferred to evaluate performance [48,49].
Therefore, it is evident that the FTree outperforms the WASDMC-PAF based on MCC and
Cohen’s κ values. When WASDMC and WASDMC-PAF are compared, their performance
results differ significantly. It is important to acknowledge that the proposed power maxout
activation function in (6) is superior to the PAF in (15). Aside from sharing the same MU
and having the lowest TCs due to using the same WASD algorithm, the WASDMC had
the best results across all measures, whereas the WASDMC-PAF had the worst results
when compared to the FTree, FKNN, EBT, and NNN models. It is worth mentioning that
the WDD process imposes a constraint on the WASDMC algorithm that the input data
must only be real numbers. Additionally, the WASDMC algorithm’s disadvantage is that
it is only suitable for multiclass classification tasks. However, the WASDMC algorithm’s
advantages include low computational complexity, minimal use of hidden-layer neurons,
low training time consumption, and high accuracy.

5. Conclusions

This paper presented the WASDMC-based NN model, which is trained by a novel
WASDMC algorithm and can handle multiclass classification tasks. Applications on two
publicly accessible ISCO datasets revealed that the WASDMC model handles multiclass
classification tasks brilliantly, outperforming some of the best classification models available
in the MATLAB classification learner app. Particularly, in both datasets, the WASDMC
model had the lowest MU and was about 6 times faster than the second-fastest model and
more than 190 times faster than the slowest model. In the remaining statistical metrics, the
WASDMC model outperformed the other models by a factor of 1.2 to 160. Additionally,
when used with the WASDMC to address classification tasks, the proposed power maxout
activation function demonstrated to be much superior to the PAF.

There are certain limitations on this work as well as some recommendations.

1. The availability of the data, which constrained the extent of our analysis, was a study
limitation. That is, more testing could be done, more results would be obtained,
and the conclusions would be strengthened even further if more ISCO classification
datasets were made accessible to the public.

2. Another option to assess and enhance the effectiveness and precision of a WASD
algorithm is to incorporate a cluster validity method, comparable to the one used in
conventional k-means clustering. With this method, a WASD algorithm can avoid
identifying patterns in seemingly random data, which will enhance the performance
of the WASD-based NN models.

3. Applications in numerous scientific fields could show how the WASDMC-based NN
model is more reliable than conventional NN models.
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