
Citation: Stanimirović, P.S.;

Shaini, B.I.; Sabi’u, J.; Shah, A.;

Petrović, M.J.; Ivanov, B.; Cao, X.;

Stupina, A.; Li, S. Improved Gradient

Descent Iterations for Solving

Systems of Nonlinear Equations.

Algorithms 2023, 16, 64. https://

doi.org/10.3390/a16020064

Academic Editors: Alicia Cordero

and Gerardo Toraldo

Received: 24 November 2022

Revised: 7 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Improved Gradient Descent Iterations for Solving Systems
of Nonlinear Equations
Predrag S. Stanimirović 1,2,* , Bilall I. Shaini 3, Jamilu Sabi’u 4, Abdullah Shah 5, Milena J. Petrović 6 ,
Branislav Ivanov 7 , Xinwei Cao 8,*, Alena Stupina 2 and Shuai Li 9

1 Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
2 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”,

Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia
3 Department of Mathematics, Faculty of Applied Sciences, State University of Tetova, St. Ilinden, n.n.,

1220 Tetovo, North Macedonia
4 Department of Mathematics, Yusuf Maitama Sule University, Kano 700282, Nigeria
5 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia
6 Faculty of Sciences and Mathematics, University of Pristina in Kosovska Mitrovica, Lole Ribara 29,

38220 Kosovska Mitrovica, Serbia
7 Technical Faculty in Bor, University of Belgrade, Vojske Jugoslavije 12, 19210 Bor, Serbia
8 School of Business, Jiangnan University, Lihu Blvd, Wuxi 214122, China
9 Faculty of Science and Engineering, Zienkiewicz Centre for Computational Engineering, Swansea University,

Swansea SA1 8EN, UK
* Correspondence: pecko@pmf.ni.ac.rs (P.S.S.); xwcao@jiangnan.edu.cn (X.C.)

Abstract: This research proposes and investigates some improvements in gradient descent iterations
that can be applied for solving system of nonlinear equations (SNE). In the available literature, such
methods are termed improved gradient descent methods. We use verified advantages of various
accelerated double direction and double step size gradient methods in solving single scalar equations.
Our strategy is to control the speed of the convergence of gradient methods through the step size
value defined using more parameters. As a result, efficient minimization schemes for solving SNE are
introduced. Linear global convergence of the proposed iterative method is confirmed by theoretical
analysis under standard assumptions. Numerical experiments confirm the significant computational
efficiency of proposed methods compared to traditional gradient descent methods for solving SNE.

Keywords: nonlinear equations; gradient descent methods; nonlinear programming; Jacobian

MSC: 90C53; 65K05; 49M37

1. Introduction, Preliminaries, and Motivation

Our intention is to solve a system of nonlinear equations (SNE) of the general form

F(x) = 0, x ∈ Rn, (1)

where R is the set of real numbers, Rn denotes the set of n-dimensional vectors from R,
and F : Rn 7→ Rn, F(x) = (F1(x), . . . , Fn(x))T, and Fi : Rn 7→ R is the ith component of F.
It is assumed that F is a continuously differentiable mapping. The nonlinear optimization
problem (1) is equivalent to the subsequent minimization of the following goal function f :

min
x∈Rn

f (x), f (x) =
1
2
‖F(x)‖2 =

1
2

n

∑
i=1

(Fi(x))2. (2)

The equivalence of (1) and (2) is widely used in science and practical applications.
In such problems, the solution to SNE (1) comes down to solving a related least-squares

Algorithms 2023, 16, 64. https://doi.org/10.3390/a16020064 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020064
https://doi.org/10.3390/a16020064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0002-5073-143X
https://orcid.org/0000-0001-9179-0965
https://orcid.org/0000-0001-8316-5289
https://doi.org/10.3390/a16020064
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020064?type=check_update&version=2

Algorithms 2023, 16, 64 2 of 23

problem (2). In addition to that, the application of the adequate nonlinear optimization
method in solving (1) is a common and efficient technique. Some well-known schemes for
solving (1) are based on successive linearization, where the search direction dk is obtained
by solving the equation

F(xk) + F′(xk)dk = 0, (3)

where F′(xk) ≡ JF(xk), and JF(x) =
[

∂F1(x)
∂xj

]
is the Jacobian matrix of F(x). Therefore, the

Newton iterative scheme for solving (1) is defined as

xk+1 = xk + tkdk = xk − tk
(

F′(xk)
)−1F(xk), (4)

where tk is a positive parameter that stands for the steplength value.

1.1. Overview of Methods for Solving SNE

Most popular iterations for solving (1) use appropriate approximations Bk of the
Jacobian matrix F′(xk). These iterations are of the form xk+1 = xk + tkdk, where tk is the
steplength, and dk is the search direction obtained as a solution to the SNE

Bkdk + F(xk) = 0. (5)

For simplicity, we will use notations

Fk := F(xk), yk := Fk+1 − Fk, sk := xk+1 − xk. (6)

The BFGS approximations are defined on the basis of the secant equation Bk+1sk = yk.
The BFGS updates

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k
yT

k sk

with an initial approximation B0 ∈ Rn×n were considered in [1].
Further on, we list and briefly describe relevant minimization methods that exploit

the equivalence between (1) and (2). The efficiency and applicability of these algorithms
highly motivated the research presented in this paper. The number of methods that we
mention below confirms the applicability of this direction in solving SNE. In addition, there
is an evident need to develop and constantly upgrade the performances of optimization
methods for solving (1).

There are numerous methods which can be used to solve the problem (1). Many of
them are developed in [2–7]. Derivative-free methods for solving SNE were considered
in [8–10]. These methods are proposed as appropriate adaptations of double direction
and steplength methods in nonlinear optimization and the approximation of the Jacobian
with a diagonal matrix whose entries are defined utilizing of an appropriate parameter.
One approach based on various modifications of the Broyden method was proposed
in [11,12]. A derivative-free conjugate gradient (CG) iterations for solving SNE were
proposed in [13].

A descent Dai–Liao CG method for solving large-scale SNE was proposed in [14].
Novel hybrid and modified CG methods for finding a solution to SNE were originated
in [15,16], respectively. An extension of a modified three-term CG method that can be
applied for solving equations with convex constraints was presented in [17]. A diagonal
quasi-Newton approach for solving large-scale nonlinear systems was considered in [18,19].
A quasi-Newton method, defined based on an improved diagonal Jacobian approximation,
for solving nonlinear systems was proposed in [20]. Abdullah et al. in [21] proposed a
double direction method for solving nonlinear equations. The first direction is the steepest
descent direction, while the second direction is the proposed CG direction. Two derivative-
free modifications of the CG-based method for solving large-scale systems F(x) = 0 were
presented in [22]. These methods are applicable in the case when the Jacobian of F(x) is not
accessible. An efficient approximation to the Jacobian matrix with a computational effort

Algorithms 2023, 16, 64 3 of 23

similar to that of matrix-free settings was proposed in [23]. Such efficiency was achieved
when a diagonal matrix generates a Jacobian approximation. This method possesses low
memory space requirements because the method is defined without computing exact gradi-
ent and Jacobian. Waziri et al. in [24] followed the approach based on the approximation
of the Jacobian inverse by a nonsingular diagonal matrix. A fast and computationally
efficient method concerning memory requirements was proposed in [25], and it uses an
approximation of the Jacobian by an adequate diagonal matrix. A two-step generalized
scheme of the Jacobian approximation was given in [26]. Further on, an iterative scheme
which is based on a modification of the Dai–Liao CG method, classical Newton iterates,
and the standard secant equation was suggested in [27]. A three-step method based on a
proper diagonal updating was presented in [28]. A hybridization of FR and PRP conjugate
gradient methods was given in [29]. The method in [29] can be considered as a convex
combination of the PRP method and the FR method while using the hyperplane projection
technique. A diagonal Jacobian method was derived from data from two preceding steps,
and a weak secant equation was investigated in [30]. An iterative modified Newton scheme
based on diagonal updating was proposed in [31]. Solving nonlinear monotone operator
equations via a modified symmetric rank-one update is given in [32]. In [33], the authors
used a new approach in solving nonlinear systems by simply considering them in the form
of multi-objective optimization problems.

It is essential to mention that the analogous idea of avoiding the second derivative
in the classical Newton’s method for solving nonlinear equations is exploited in deriv-
ing several iterative methods of various orders for solving nonlinear equations [34–37].
Moreover, some derivative-free iterative methods were developed for solving nonlinear
equations [38,39]. Furthermore, some alternative approaches were conducted for solving
complex symmetric linear systems [40] or a Sylvester matrix equation [41].

Trust region methods have become very popular algorithms for solving nonlinear
equations and general nonlinear problems [37,42–44].

The systems of nonlinear equations (1) have various applications [15,29,45–48], for exam-
ple in solving the `1-norm problem arising from compressing sensing [49–52], in variational
inequalities problems [53,54], and optimal power flow equations [55] among others.

Viewed statistically, the Newton method and different forms of quasi-Newton methods
have been frequently used in solving SNE. Unfortunately, methods of the Newton family
are not efficient in solving large-scale SNE problems since they are based on the Jacobian
matrix. A similar drawback applies to all methods based on various matrix approximations
of the Jacobian matrix in each iteration. Numerous adaptations and improvements of the
CG iterative class exist as one solution applicable to large-scale problems. We intend to use
the simplest Jacobian approximation using an appropriate diagonal matrix. Our goal is to
define computationally effective methods for solving large-scale SNEs using the simplest
of Jacobian approximations. The realistic basis for our expectations is the known efficient
methods used to optimize individual nonlinear functions.

The remaining sections have the following general structure. The introduction, pre-
liminaries, and motivation are included in Section 1. An overview of methods for solving
SNE is presented in Section 1.1 to complete the presentation and explain the motivation.
The motivation for the current study is described in Section 1.2. Section 2 proposes sev-
eral multiple-step-size methods for solving nonlinear equations. Convergence analysis of
the proposed methods is investigated in Section 3. Section 4 contains several numerical
examples obtained on main standard test problems of various dimensions.

1.2. Motivation

The following standard designations will be used. We adopt the standard notations
for the gradient g(x) := ∇ f (x) and the Hessian G(x) := ∇2 f (x) of the objective function
f (x). Further, gk = g(xk) denotes the gradient vector for f in the point xk. An appropriate
identity matrix will be denoted by I.

Algorithms 2023, 16, 64 4 of 23

Our research is motivated by two trends in solving minimization problems. These
streams are described as two subsequent parts of the current subsection. A nonlinear
multivariate unconstrained minimization problem is defined as

min f (x), x ∈ Rn, (7)

where f (x) : Rn 7→ R is a uniformly convex or strictly convex continuously differentiable
function bounded from below.

1.2.1. Improved Gradient Descent Methods as Motivation

The most general iteration for solving (7) is expressed as

xk+1 = xk + tkdk. (8)

In (8), xk+1 presents a new approximation point based on the previous xk. Positive
parameter tk stays for the steplength value, while dk presents the search direction vector,
which is generated based on the descent condition

gT
k dk < 0.

The direction vector dk may be defined in various ways. This vital element is often
determined using the features of the function gradient. In one of the earliest optimization
schemes, the gradient descent method (GD), this variable is defined as negative of the
gradient direction, i.e., dk = −gk. In the line search variant of the Newton method, the
search direction presents the solution to the system of nonlinear equations Gkd = −gk with
respect to d, where Gk := G(xk) = 52 f (xk) denotes the Hessian matrix.

Unlike traditional GD algorithms for nonlinear unconstrained minimization, which
are defined based on a single step size tk, a class of improved gradient descent (IGD)
algorithms define the final step size using two or more steps size scaling parameters. Such
algorithms were classified and investigated in [56]. Obtained numerical results confirm that
the usage of appropriate additional scaling parameters decreases the number of iterations.
Typically, one of the parameters is defined using the inexact line search, while the second
one is defined using the first terms of the Taylor expansion of the goal function.

A frequently investigated class of minimization methods that can be applied for
solving the problem (7) use the following iterative rule

xk+1 = xk − θktkgk. (9)

In (9), the parameter tk represents the step size in the kth iteration. The originality of
the iteration (9) is expressed though the acceleration variable θk. This type of optimization
scheme with acceleration parameter was originated in [57]. Later, in [58], the authors
justifiably named such models as accelerated gradient descent methods (AGD methods shortly).
Further research on this topic confirmed that the acceleration parameter generally improves
the performance of the gradient method.

The Newton method with included line search technique is defined by the following
iterative rule

xk+1 = xk − tkG−1
k gk, (10)

wherein G−1
k stands for the inverse of the Hessian matrix Gk. Let Bk be a symmetric positive

definite matrix such that ‖Bk − Gk‖ < ε, for arbitrary matrix norm ‖.‖ and for a given
tolerance ε. Further, let Hk be a positive definite approximation of the Hessian’s inverse G−1

k .
This approach leads to the relation (11) which is the quasi-Newton method with line search:

xk+1 = xk − tk Hk gk. (11)

Algorithms 2023, 16, 64 5 of 23

Updates of Hk can be defined as solutions to the quasi-Newton equation

Hk+1yk = sk, (12)

where sk = xk+1 − xk, yk = gk+1 − gk. There is a class of iterations (11) in which there is
no ultimate requirement for the Hk to satisfy the quasi-Newton equation. Such a class of
iterates is known as modified Newton methods [59].

The idea in [58] is usage of a proper diagonal approximation of the Hessian

Bk = γk I, γk > 0, γk ∈ R. (13)

Applying the approximation (13) of Bk, the matrix Hk can be approximated by the
simple scalar matrix

Hk = γ−1
k I. (14)

In this way, the quasi-Newton line search scheme (11) is transformed into a kind of
AGD iteration, called the SM method and presented in [58] as

xk+1 = xk − γ−1
k tkgk. (15)

The positive quantity γk is the convergence acceleration parameter which improves
the behavior of the generated iterative loop. In [56], methods of the form (15) are termed as
improved gradient descent methods (IGD). Commonly, the primary step size tk is calculated
through the features of some inexact line search algorithms. An additional acceleration
parameter γk is usually determined by the Taylor expansion of the goal function. This way
of generating acceleration parameter is confirmed as a good choice in [56,58,60–62].

The choice γk := 1 in the IGD iterations (15) reveal the GD iterations

xk+1 = xk − tkgk. (16)

On the other hand, if the acceleration γk is well-defined, then the step size tk := 1 in
the IGD iterations (15) is acceptable in most cases [63], which leads to a kind of the GD
iterative principle:

xk+1 = xk − γ−1
k gk. (17)

Barzilai and Borwein in [64] proposed two efficient IGD variants, known as BB method
variants, where the steplength γBB

k was defined as an approximation Hk = γBB
k I. Therefore,

the replacement γ−1
k := γBB

k in (17) leads to the BB iterative rule

xk+1 = xk − γBB
k gk.

The scaling parameter γBB
k in the basic version is defined upon the minimization of the

vector norm min
γ
‖sk−1 − γyk−1‖2, which gives

γBB
k =

sT
k−1yk−1

yT
k−1yk−1

. (18)

The steplength γBB
k in the dual method is produced by the minimization min

γ
‖γsk−1−

yk−1‖2, which yields

γBB
k =

sT
k−1sk−1

sT
k−1yk−1

. (19)

Algorithms 2023, 16, 64 6 of 23

The BB iterations were modified and investigated in a number of publications [65–79]. The
so-called Scalar Correction (SC) method from [80] proposed the trial steplength in (17)
defined by

γSC
k+1 =

sT

k rk
yT

k rk
, yT

k rk > 0
‖sk‖
‖yk‖

, yT
k rk ≤ 0

, rk = sk − γkyk. (20)

The SC iterations are defined as

xk+1 = xk − γSC
k gk.

A kind of steepest descent and BB iterations relaxed by a parameter θk ∈ (0, 2) were
proposed in [81]. The so-called Relaxed Gradient Descent Quasi Newton methods, (shortly
RGDQN and RGDQN1), expressed by

xk+1 = xk − θktkγ−1
k gk, (21)

are introduced in [82]. Here, θk presents the relaxation parameter. This value is chosen
randomly within the (0, 1) interval in the RGDQN schemes and by the relation

θk =
γk

tkγk+1

in the RGDQN1 algorithm.

1.2.2. Discretization of Gradient Neural Networks (GNN) as Motivation

Our second motivation arises from discretizing gradient neural network (GNN) design.
A GNN evolution can be defined in three steps. Further details can be found in [83,84].

The bulleted lists look like this:

Step1GNN. Define underlying error matrix E(t) by the interchange of the unknown ma-
trix in the actual problem by the unknown time-varying matrix V(t), which will be
approximated over time t ≥ 0. The scalar objective of a GNN is just the Frobenius
norm of E(t):

ε(t) =
‖E(t)‖2

F
2

, ‖E‖F =
√

Tr(ETE).

Step2GNN. Compute the gradient ∂ε(t)
∂V = ∇ε(t) of the objective ε(t).

Step3GNN. Apply the dynamic GNN evolution, which relates the time derivative V̇(t)
and direction opposite to the gradient of ε(t):

V̇(t) =
dV(t)

dt
= −γ

∂ε(t)
∂V

, V(0) = V0. (22)

Here, V(t) is the activation state variables matrix, t ∈ [0,+∞) is the time, γ > 0 is the
gain parameter, and V̇(t) is the time derivative of V(t).

The discretization of V̇(t) by the Euler forward-difference rule is given by

V̇(t) ≈ (Vk+1 −Vk)/τ, (23)

where τ is the sampling time and Vk = V(t = kτ), k = 1, 2, . . . [84]. The approximation (23)
transforms the continuous-time GNN evolution (23) into discrete-time iterations

Vk+1 −Vk
τ

= −γ
∂ε(t)
∂V

= −γ∇ε(t).

Derived discretization of the GNN design is just a GD method for nonlinear optimization:

Vk+1 = Vk − βk∇ε(t), βk = τ γ > 0, (24)

Algorithms 2023, 16, 64 7 of 23

where βk = τ γ > 0 is the step size. So, the step size βk is defined as a product of two
parameters, in which the parameter γ should be “as large as possible”, while τ should be
“as small as possible”. Such considerations may add additional points of view to multiple
parameters gradient optimization methods.

Our idea is to generalize the IGD iterations considered in [56] to the problem of solving
SNE. One observable analogy is that the gain parameter γ from (22) corresponds to the
parameter γk from (15). In addition, the sampling time τ can be considered as an analogy
to the primary step size tk ∈ (0, 1), which is defined by an inexact line search. Iterations
defined as IGD iterations adopted to solve SNE will be called IGDN class.

2. Multiple Step-Size Methods for Solving SNE

The term “multiple step-size methods” is related to the class of gradient-based iterative
methods for solving SNE employing a step size defined using two or more appropriately
defined parameters. The final goal is to improve the efficiency of classical gradient methods.
Two strategies are used in finding approximate parameters: inexact line search and the
Taylor expansion.

2.1. IGDN Methods for Solving SNE

Our aim is to simplify the update of the Jacobian F′(xk) := Jk. Following (13), it is
appropriate to approximate the Jacobian with a diagonal matrix

F′(xk) ≈ γk I. (25)

Then, Bk = γk I in (5) produces the search direction dk = −γ−1
k Fk, and the iterations (8)

are transformed into
xk+1 = xk − tkγ−1

k Fk. (26)

The final step size in iterations (26) is defined using two step size parameters: tk
and γk. Iterations that fulfill pattern (26) are an analogy of IGD methods for nonlinear
unconstrained optimization and will be termed as IGDN class of methods.

Using the experience of nonlinear optimization, the steplength parameter γk can be
defined appropriately using the Taylor expansion of F(x):

Fk+1 = Fk + F′(ξk)(xk+1 − xk), ξk ∈ [xk, xk+1]

On the basis of (25), it is appropriate to use F′(ξk) ≈ γk I, which implies

Fk+1 − Fk = γk(xk+1 − xk). (27)

Using (27) and applying notation (6), one obtains the following updates of γk:

γk =
yT

k yk

yT
k sk

=
sT

k yk

sT
k sk

.

It can be noticed that the iterative rule (26) matches with BB iteration [64]. So, we
introduced the BB method for solving SNE. Our further contribution is the introduction of
appropriate restrictions on the scaling parameter. To that end, Theorem 1 reveals values of
γk which decrease the objective functions included in Fk. The inequality Fk+1 ≤ Fk means
(Fk+1)i ≤ (Fk)i, i = 1, . . . , n.

Theorem 1. If the condition γk+1 ≤ γk
tk

is satisfied, then the IGDN iterations (26) satisfy Fk+1 ≤ Fk.

Proof. As a consequence of (26) and (27), one can verify

Fk+1 = Fk − tkγk+1γ−1
k Fk =

(
1− tkγk+1γ−1

k

)
Fk. (28)

Algorithms 2023, 16, 64 8 of 23

In view of tk, γk+1, γk ≥ 0, it follows that 1− tkγk+1γ−1
k ≤ 1. On the other hand,

the inequality 1− tkγk+1γ−1
k ≥ 0 is satisfied in the case γk+1 ≤ γk

tk
. Now, (28) implies

(Fk+1)i ≤ (Fk)i, i = 1, . . . , n, which needs to be proven.

So, appropriate update γk+1 can be defined as follows:

γk+1 =

yT

k yk
yT

k sk
=

sT
k yk

sT
k sk

, yT
k sk ≥ 0,

γk
tk

, yT
k sk < 0.

(29)

Now, we are able to generate the value of the next approximation in the form

xk+2 = xk+1 − tk+1γ−1
k+1Fk+1. (30)

The step size tk+1 in (30) can be determined using the nonmonotone line search. More
precisely, tk is defined by tk = max

{
1, sk

}
, where s ∈ (0, 1), and the integer k is defined

from the line search

f (xk + tkdk)− f (xk) ≤ −ω1||tkF(xk)||2 −ω2||tkdk||2 + ηk f (xk), (31)

wherein ω1 > 0, ω2 > 0, are constants, and {ηk} is a positive sequence such that

∞

∑
k=0

ηk < ∞. (32)

The equality (28) can be rewritten in the equivalent form

yk = −tkγk+1γ−1
k Fk, (33)

which gives

γk+1 = −
γkFT

k yk

tkFT
k Fk

.

Further, an application of Theorem 1 gives the following additional update for the
acceleration parameter γk:

γk+1 =

− γk FT

k yk
tk FT

k Fk
, FT

k yk
FT

k Fk
/∈ (−1, 0),

γk
tk

, FT
k yk

FT
k Fk
∈ (−1, 0).

(34)

Corollary 1. IGDN iterations (26) determined by (34) satisfy Fk+1 ≤ Fk.

Proof. Clearly, (34) initiates γk+1 ≤ γk
tk

, and the proof follows from Theorem 1.

Further on, the implementation framework of the IGDN method is presented in
Algorithm 1.

Algorithm 1 The IGDN iterations based on (29), (30) or (34), (30).

Require: Vector function F(x), ε > 0 and initialization x0 ∈ Rn.
1: For k = 0 chose γ0 = 1 and F(x0).
2: Check the output criterion; if ‖F(xk)‖ ≤ ε is fulfilled then stop the algorithm; else,

continue performing the next step.
3: (Line search) Compute tk ∈ (0, 1] using (31).
4: Compute xk+1 using (30).
5: Determine γk+1 using (29) or (34).
6: k := k + 1.
7: Return to Step 2.
8: Outputs: xk+1, F(xk+1).

Algorithms 2023, 16, 64 9 of 23

Remark 1. The IGDN algorithm defined by (29) (resp. by (34)) will be denoted by IGDN (29)
(resp. by IGDN (34)). Mathematically, IGDN (29) and IGDN (34) are equivalent. The numerical
comparison of these algorithms will be performed later.

2.2. A Class of Accelerated Double Direction (ADDN) Methods

In [61], an optimization method was defined by the iterative rule

xk+1 = xk + tkdk + t2
kck, (35)

where tk denotes the value of the steplength parameter, and dk, ck are the search directions
vectors. The vector dk is defined as in the SM-method from [58], which gives dk = γk

−1gk,
and further

xk+1 = xk − tkγk
−1gk + t2

kck. (36)

We want to apply this strategy in solving (1). First of all, the vector ck can be defined
according to [85]. An appropriate definition of ck is still open.

Assuming again Bk = γk I, the vector dk from (5) becomes dk = −γ−1
k Fk, which

transforms (35) into
xk+1 = xk − tkγ−1

k Fk + t2
kck. (37)

We propose the steplength γk+1 arising from the Taylor expansion (27) and defined
as in (29). In addition, it is possible to use an alternative approach. More precisely, in this
case, (27) yields to

Fk+1 = Fk − γk+1

(
−tkγ−1

k Fk + t2
kck

)
.

As a consequence, γk+1 can be defined utilizing

γk+1 = −
γkyT

k yk

yT
k
(
−tkFk + γkt2

kck
) . (38)

The problem γk+1 < 0 in (38) is solved using γk+1 = 1.
We can easily conclude that the next iteration is then generated by

xk+2 = xk+1 − tk+1Fk+1 + t2
kck+1.

The ADDN iterations are defined in Algorithm 2.

Algorithm 2 The ADDN iterations based on (37), (38).

Require: Functions F(x), ε > 0 and a given initial vector x0 ∈ Rn.
1: For k = 0 chose γ0 = 1 and F(x0).
2: Check the stop criterion; if ‖F(xk)‖ ≤ ε is satisfied then stop the algorithm; else,

continue with Step 3:.
3: (Line search) Find tk ∈ (0, 1] using inexact line search procedure.
4: Compute xk+1 using (37).
5: Determine γk+1 using (38).
6: In case γk+1 < 0, apply γk+1 = 1.
7: k := k + 1.
8: Back to Step 2.
9: Outputs: xk+1, F(xk+1).

2.3. A Class of Accelerated Double Step Size (ADSSN) Methods

If the steplength t2
k is replaced by another steplength lk in (35), it can be obtained

xk+1 = xk + tkdk + lkck. (39)

Algorithms 2023, 16, 64 10 of 23

Here, the parameters tk, lk ≥ 0 are two independent step size values, and the vectors
dk, ck define the search directions of the proposed iterative scheme (39).

Motivation for this type of iterations arises from [60]. The author of this paper sug-
gested a model of the form (39) with two-step size parameters. This method is actually
defined by substituting the parameter tk

2 from (35) with another step size parameter lk.
Both step size values are computed by independent inexact line search algorithms.

Since we aim to unify search directions, it is possible to use

dk := −γ−1
k Fk, ck := −Fk. (40)

The substitution of chosen parameters (40) into (39) produces

xk+1 = xk −
(

tkγ−1
k + lk

)
Fk. (41)

The final step size,
(

tkγ−1
k + lk

)
, in the iterations (41) are defined combining three

step size parameters: tk, lk, and γk. Again, the parameter γk+1 is defined using the Taylor
series of the form

F(xk+1) = F(xk)− γk+1

(
tkγ−1

k + lk
)

F(xk).

As a consequence, γk+1 can be computed by

γk+1 = −
γkFT

k yk

(tk + γklk)FT
k Fk

.

Theorem 2. If the condition γk+1 ≤ γk
tk+γk lk

holds, then the iterations (41) satisfy Fk+1 ≤ Fk.

Proof. Taking (27) in conjunction with (41), one can verify

Fk+1 = Fk − γk+1

(
tkγ−1

k + lk
)

Fk = Fk

(
1− γk+1

(
tkγ−1

k + lk
))

.

Clearly, γk+1 ≤ γk
tk+γk lk

implies 1− γk+1

(
tkγ−1

k + lk
)
≥ 0. The proof follows from

tk ≥ 0, γk+1, γk ≥ 0, which ensures 1− γk+1

(
tkγ−1

k + lk
)
≤ 1.

In view of Theorem 2, it is reasonable to define the following update for γk+1 in the
ADSSN method:

γk+1 =

− γk FT

k yk
(tk+γk lk)FT

k Fk
, FT

k yk
FT

k Fk
/∈ (−1, 0),

γk
tk+γk lk

, FT
k yk

FT
k Fk
∈ (−1, 0).

(42)

Once the accelerated parameter γk+1 > 0 is determined, the values of step size
parameters tk+1 and lk+1 are defined. Then, it is possible to generate the next point:

Fk+2 = Fk+1 − γk+2

(
tk+1γ−1

k+1 + lk+1

)
Fk+1.

In order to derive appropriate values of the parameters tk+1 and lk+1, we investigate
the function

Φk+1(t, l) = Fk+1 − γk+2

(
γ−1

k+1 t + l
)

Fk+1.

The gradient of Φk+1(t, l) is equal to

g(Φk+1(t, l)) =
{

Φk+1(t, l)′t, Φk+1(t, l)′l
}
=
{
−γk+2γ−1

k+1Fk+1,−γk+2Fk+1

}
. (43)

Therefore,
Φk+1(0, 0) = Fk+1.

Algorithms 2023, 16, 64 11 of 23

In addition,
g(Φk+1(t, l)) = {0, 0} ⇐⇒ Fk+1 = 0. (44)

Therefore, the function Φk+1(t, l) is well-defined.
Step scaling parameters tk and lk can be determined using two successive line search

procedures (31).

Corollary 2. The ADSSN iterations determined by (41) satisfy Fk+1 ≤ Fk.

Proof. Clearly, the definition of γk+1 in (42) implies γk+1 ≤ γk
tk

, and the proof follows from
Theorem 2.

The ADSSN iterations are defined in Algorithm 3.

Algorithm 3 The ADSSN iteration based on (41) and (42).

Require: Chosen F(x), ε > 0 and an initialization x0 ∈ Rn.
1: For k = 0 chose γ0 = 1 and F(x0).
2: Check the test criterion; if ‖F(xk)‖ ≤ ε holds, then stop; else, continue with Step 3:.
3: Find tk using inexact line search.
4: Find lk using inexact line search.
5: Compute xk+1 using (41).
6: Determine the scalar γk+1 using (42).
7: k := k + 1.
8: Return to Step 2:.
9: Outputs: xk+1 and F(xk+1).

Remark 2. Step 6 of Algorithm 3 is defined according to Theorem 2.

2.4. Simplified ADSSN

Applying the relation
tk + lk = 1 (45)

between the step size parameters tk and lk in the ADSSN iterative rule (41), the ADSSN
iteration is transformed to

xk+1 = xk −
[
tk(γ

−1
k − 1) + 1

]
F(xk). (46)

The convex combination (45) of step size parameters tk and lk that appear in the
ADSSN scheme (41) was originally proposed in [62] and applied in an iterative method
for solving the unconstrained optimization problem (7). The assumption (45) represents
a trade-off between the steplength parameters tk and lk. In [62], it was shown that the
induced single step size method shows better performance characteristics in general. The
constraint (45) initiates the reduction of the two-parameter ADSSN rule into a single step
size transformed ADSSN (shortly TADSSN) iterative method (46).

We can spot that the TADSSN method is a modified version of IGDN iterations,
based on the replacement of the product tkγ−1

k , from the classical IGDN iteration, by the
multiplying factor tk(γ

−1
k − 1) + 1.

The substitution φk := tk(γ
−1
k − 1) + 1 will be used to simplify the presentation. Here,

the accelerated parameter value γk+1 is calculated by (29).

Corollary 3. Iterations (46) satisfy

Fk+1 = Fk − γk+1φkFk. (47)

Proof. It follows from (27) and (46).

Algorithms 2023, 16, 64 12 of 23

In view of (47), it is possible to conclude

γk+1 = −
FT

k yk

φkFT
k Fk

.

Corollary 4 gives some useful restrictions on this rule.

Corollary 4. If the condition γk+1 ≤ γk
tk+γk(1−tk)

holds, then the iterations (41) satisfy Fk+1 ≤ Fk.

Proof. It follows from Theorem 1 and lk = 1− tk.

In view of Corollary 4, it is reasonable to define the following update for γk+1 in the
TADSSN method:

γk+1 =

− FT

k yk
φk FT

k Fk
, FT

k yk
φk FT

k Fk
≤ 0

γk
tk+γk(1−tk)

, FT
k yk

φk FT
k Fk

> 0.
(48)

Then, xk+2 is equal to
xk+2 = xk+1 − φk+1Fk+1.

Algorithm 4 The ADSSN iteration based on (46) and (48).

Require: Chosen F(x), ε > 0 and x0 ∈ Rn.
1: For k = 0 chose γ0 = 1 and F(x0).
2: Check the termination criterion; if ‖F(xk)‖ ≤ ε holds then stop; else, go to Step 3:.
3: (Line search) Apply (31) and generate the step size value tk.
4: Compute lk = 1− tk.
5: Compute xk+1 using (46).
6: Determine the scaling factor γk+1 using (48).
7: k := k + 1.
8: Return to Step 2.
9: Output: xk+1, F(xk+1).

3. Convergence Analysis

The level set is defined as

Ω = {x ∈ Rn| ‖F(x)‖ ≤ ‖F(x0)‖}, (49)

where x0 ∈ Rn is an initial approximation.
Therewith, the next assumptions are needed:

(A1)The level set Ω defined in (49) is bounded below.
(A2)Lipschitz continuity holds for the vector function F, i.e., ‖F(x)− F(y)‖ ≤ r‖x− y‖

for all x, y ∈ Rn and r > 0.
(A3)The Jacobian F′(x) is bounded.

Lemma 1. Suppose the assumption (A2) holds. If the sequence {xk} is obtained by the IGDN (29)
iterations, then

yT
k sk ≤ r‖sk‖2, r > 0. (50)

Proof. Obviously,
yT

k sk = sT
k yk = sT

k (Fk+1 − Fk). (51)

Therefore, assuming (A2), it is possible to derive

yT
k sk ≤ ‖sk‖‖Fk+1 − Fk‖ ≤ r‖sk‖2. (52)

Algorithms 2023, 16, 64 13 of 23

Previous estimation confirms that (50) is satisfied with r defined by the Lipschitz
condition in (A2).

For the convergence results of the remaining algorithms, we need to prove the finite-
ness of γk, dk, and the remaining results follow trivially.

Lemma 2. The γk generated by IGDN (29) is bounded by the Lipschitz constant r.

Proof. Clearly, the complemental step size γk defined by (29) satisfies

γk+1 =
yT

k sk

‖sk‖2 ≤
r‖sk‖2

‖sk‖2 = r, (53)

which leads to the conclusion γk ≤ r.

Lemma 3. The additional step size γk generated by IGDN (34) is bounded as follows:

γk ≤
1

k−1
∏
i=0

ti

(54)

Proof. The updating rule (34) satisfies γk+1 ≤ γk
tk

. Continuing in the same way, one
concludes

γk+1 ≤
γ0
k

∏
i=0

ti

.

The proof can be finished using γ0 = 1.

Lemma 4. The additional scaling parameter γk generated by (42) is bounded as follows:

γk ≤
1

k−1
∏
i=0

(ti + γili)
. (55)

Lemma 5. The directions dk used in IGDN (29) and IGDN (34) algorithms are descent directions.

Proof. Since
dk = −γ−1

k Fk, (56)

an application of the scalar product of both sides in (56) with FT
k in conjunction with

Lemma 2 leads to the following conclusion for IGDN (29) iterations:

FT
k dk = −γ−1

k FT
k Fk ≤ −

1
r
‖Fk‖2 < 0. (57)

With Lemma 3, it can be concluded that IGDN (34) iterations imply the following:

FT
k dk = −γ−1

k FT
k Fk ≤ −

(
k−1

∏
i=0

ti

)
‖Fk‖2 < 0. (58)

The proof is complete.

Lemma 6. The direction dk used in ADSSN algorithms is a descent direction.

Proof. Since
dk = −

(
tkγ−1

k + lk
)

Fk, (59)

Algorithms 2023, 16, 64 14 of 23

after using the scalar product of both sides in (59) with FT
k and taking into account Lemma 4,

we obtain
FT

k dk = −
(

tkγ−1
k + lk

)
FT

k Fk

= − 1
γk

(tk + lkγk)FT
k Fk

≤ − 1
1

k−1
∏

i=0
(ti+γi li)

(tk + lkγk)FT
k Fk

= −
(

k

∏
i=0

(ti + γili)

)
‖Fk‖2 < 0.

(60)

The proof is complete.

Theorem 3. The vector Fk+1 generated by IGDN (34) is a descent direction.

Proof. According to (34), it follows

γk+1 = −
γkFT

k yk

tkFT
k Fk

= −
γkFT

k (Fk+1 − Fk)

tkFT
k Fk

= −
γkFT

k Fk+1

tk‖Fk‖2 +
γk
tk

.

As a consequence, γk+1 ≤ γk
tk

implies FT
k Fk+1 ≥ 0, which means that Fk+1 is a descent

direction.

Theorem 4. The vector Fk+1 generated by ADSSN iterations (41) is a descent direction.

Lemma 7. If the assumptions (A1) and (A2) are valid, then the norm of the direction vector dk
generated by IGDN (29) is bounded.

Proof. The norm ‖dk‖ can be estimated as

‖dk‖ =
∥∥∥−γ−1

k Fk

∥∥∥
≤
∣∣∣−γ−1

k

∣∣∣‖Fk‖.
(61)

As an implication of (A1), one can conclude ‖Fk‖ ≤ M, which in conjunction with
Lemma 2 further approximates ‖dk‖ in (61) by ‖dk‖ ≤ w, w = 1

r M > 0.

Lemma 8. If the assumptions (A1) and (A2) hold, then the norm of the direction vector dk
generated by IGDN (34) is bounded.

Proof. As an implication of (A1), one can conclude ‖Fk‖ ≤ M, which in conjunction

with (54) and (61) further approximates ‖dk‖ in (61) by ‖dk‖ ≤ w, w =

(
k−1
∏
i=0

ti

)
M > 0.

Lemma 9. If the assumptions (A1) and (A2) are active, then the norm of the direction vector dk
generated by ADSSN is bounded.

Proof. Following the proof used in Lemma 8, it can be verified that

‖dk‖≤
(

k−1
∏
i=0

(
tiγ
−1
i + li

))
M>0.

Now, we are going to establish the global convergence of IGDN (29) and IGDN (34)
and ADSSN iterations.

Algorithms 2023, 16, 64 15 of 23

Theorem 5. If the assumptions (A2) and (A3) are satisfied and xk are iterations generated by
IGDN (29), then

lim
k→∞
‖F(xk)‖ = 0. (62)

Proof. The search direction is defined by dk = −γ−1
k Fk. Starting from the apparent relation

FT
k dk = −γ−1

k ‖Fk‖2,

we can conclude
‖Fk‖2 = −FT

k dkγk. (63)

Finally, (57) implies FT
k dk < 0, which further implies −FT

k dk > 0. From Lemma 2,
using (63) and −FT

k dk > 0, it follows that

‖Fk‖2 = γk| − FT
k dk|

≤ r
∣∣∣FT

k dk

∣∣∣
≤ r‖Fk‖‖dk‖.

(64)

Based on Lemma 7, it can be concluded

‖Fk‖2 ≤ r‖Fk‖‖dk‖ ≤ r w ‖Fk‖. (65)

By Lemma 5, we can deduce that the norm of the function F(xk) is decreasing along
the direction dk, which means ‖F(xk+1)‖ ≤ ‖F(xk)‖ is true for every k. Based on this fact,
it follows

0 ≤ ‖Fk‖2 ≤ r w ‖Fk‖ −→ 0, (66)

which directly implies
lim
k→∞
‖F(xk)‖ = 0 (67)

and completes the proof.

Theorem 6. If the assumptions (A2) and (A3) are satisfied and xk are iterations generated by
IGDN (34), then (62) is valid.

Proof. The search direction of IGDN (34) satisfies (63). Finally, since γk is bounded as
in (54), and dk is a descent direction (Lemma 8). iIt can be concluded

0 ≤ ‖Fk‖2 ≤

 1
k−1
∏
i=0

ti

∣∣∣FT
k dk

∣∣∣

≤

 1
k−1
∏
i=0

ti

‖Fk‖‖dk‖

≤

 1
k−1
∏
i=0

ti

w‖Fk‖ −→ 0,

(68)

which implies the desired result.

Algorithms 2023, 16, 64 16 of 23

Theorem 7. If the assumptions (A2) and (A3) are satisfied and xk are iterations generated by
ADSSN iterations (41), then (62) is valid.

4. Numerical Experience

In order to confirm the efficiency of the presented IGDN and ADSSN processes, we
compare them with the EMFD iterations from [8]. We explore performances of both IGDN
variants defined by Algorithm 1, depending on chosen acceleration parameter γk. These
variants are denoted as IGDN (29) and IGDN (34).

The following values of needed parameters are used:

• IGDN algorithms are defined using ω1 = ω2 = 10−4, α0 = 0.01, s = 0.2, ε = 10−4,
and ηk =

1
(k+1)2 .

• EMFD method is defined using ω1 = ω2 = 10−4, α0 = 0.01, s = 0.2, ε = 10−4, and
ηk =

1
(k+1)2 .

We use the following initial points (IP shortly) for the iterations:

x1 = ones(1, . . . , 1), x2 =
(

1, 1
2 , 1

3 , . . . , 1
n

)
, x3 = (0.1, 0.1, . . . , 0.1), x4 = (1

n , 2
n , . . . , 1),

x5 =
(

1− 1
n , 1− 2

n , . . . , 0
)

, x6 = (−1, . . . ,−1), x7 =
(

n− 1
n , n− 2

n , . . . , n− 1
)

, x8 = (1
2 , 1, 2

3 , . . . , 2
n).

The considered nine test problems are listed below.
Problem 1 (P1) [86] Nonsmooth Function
F(xi) = 2xi − sin|xi|, for i = 1, 2, . . . , n.
Problem 2 (P2) [87]
F(xi) = min

{
min(xi, x2

i), max(|xi|, x3
i)
}

, i = 2, 3, · · · , n.
Problem 3 (P3) [87] Strictly Convex Function I
F(xi) = exp(xi)− 1, for i = 1, 2, . . . , n.
Problem 4 (P4) [87]
F1(x) = hx1 + x2 − 1,
Fi(x) = xi−1 + hxi + xi−1 − 1, i = 2, 3, . . . , n− 1, h = 2.5
Fn(x) = xn−1 + hxn − 1.
Problem 5 (P5) [87]
F1(x) = x1 + exp(cos(hx1 + x2)),
Fi(x) = xi + exp(cos(hxi−1 + xi + xi+1)), for i = 2, 3, . . . , n− 1, h = 1

n+1
Fn(x) = xn + exp(cos(hxn−1 + xn))
Problem 6 (P6) [87]
F1(x) = 2x1 + sin(x)− 1,
Fi(x) = −2xi−1 + 2xi + 2 sin(xi)− 1, for i = 2, 3, . . . , n− 1, h = 2.5
Fn(x) = −2xn + sin(xn)− 1.
Problem 7 (P7) [87]
F1(x) = 3x3

1 + x2 − 5 + sin(x1 − x2) sin(x1 + x2),
Fi(x) =3x3

i + 2xi+1− 5 sin(xi − xi+1) + 4xi−xi−1 exp(xi−1−xi)− 3, for i = 2, 3, . . . , n−1,
Fn(x) = −xn−1 exp(xn−1 − xn) + 4xn − 3.
Problem 8 (P8) [86]
F(xi) = xi − sin|xi − 1|, for i = 1, 2, . . . , n.
Problem 9 (P9) [86]
F(xi) = 2xi − sin|xi|, for i = 1, 2, . . . , n.

All tested methods are analyzed concerning three main computational aspects: num-
ber of iterations (iter), number of function evaluations (fval), and the CPU time (CPU).
Performances of analyzed models are investigated on nine listed problems, applied on
eight marked initial points, for five variables: 1000, 5000, 10,000, 50,000, 100,000.

According to obtained results, IGDN (29) and IGDN (34) have better performances in
comparison to the EMFD method from [8]. Both variants of IGDN algorithms outperform
the EMFD method in all considered performances. In the next Table 1 (IGDN-EMFD com-

Algorithms 2023, 16, 64 17 of 23

parisons), we display the best comparative analysis achievements of all methods regarding
three tested profiles: iter, fval, and CPU.

Table 1. IGDN-EMFD comparisons.

Methods (29) (34) (29) = (34) (29) = (34) = EMFD EMFD IGDN Total

iter 52 32 181 23 72 265
fval 52 33 180 24 71 265

CPU (sec) 214 141 0 0 5 355

The IGDN (29) variant gives the best results in 52 out of 360 cases, considering the
minimal number of iterations. Further, IGDN (34) has the lowest outcomes in 33 out of 230
cases. These variants have the same minimal number of iterations in total, 181 out of 360
cases. All tree models require equal minimal number of iterations in 23 out of 360 cases,
while the EMFD methods give the minimal number of iterations in 71 out of 360 cases.
Considering the needed number of iterations, IGDN variants reach the minimal values in
265 out of 360 cases, as stated in the column IGDN total.

Regarding the fval metric, the results are as follows: 52 out of 360 cases are in favor
to IGDN (29), 33 out of 360 with respect to IGDN (34), 180 out of 360 when both IGDN
variants have the same minimal fval, while in 24 out of 360 cases all three methods give
equal fval minimal values, and 71 out of 360 are in favor to the EMFD method. The total
minimal fval values achieved under the application of some IGDN variants are the same as
the total minimal iter numbers, i.e., 265 out of 360.

Concerning the CPU time, numerical outcomes are absolutely in favor of IGDN
variants, i.e., in 355 out of 360 cases, while the EMFD is faster only in 5 out of 360 outcomes.

Obtained numerical results justify better performance characteristics of the ADSSN
method, which is defined by Algorithm 3, compared to the EMFD method. Actually,
the ADSSN scheme outperforms the EMFD iteration regarding all analyzed metrics:
iter, fval, CPU time, and additionally with respect to the norm of the objective function.
The summary review of obtained numerical values is presented in Table 2 (ADSSN-
EMFD comparisons).

Table 2. IADSSN-EMFD comparisons.

Methods ADSSN EMFD ADSSN = EMFD

iter 282 55 23
fval 281 56 23

CPU (sec) 359 1 0

Results arranged in Table 2 confirm huge dominance of the ADSSN scheme in compar-
ison with the EMFD method. Considering the number of iterations, the ADSSN method
obtains 282 minimal values, while the EMFD wins in only 55 instances. Similar outcomes
are recorded regarding the fval profile. The most convincing results are achieved consider-
ing the CPU time metric, by which the ADSSN model outperforms the EMFD in 359 out
of 360 cases.

This section finishes with a graphical analysis of the performance features of the
considered methods. In the subsequent Figures 1–6, we display Dolan and Moré [88]
performance profiles of compared models in relation to tested metrics: iter, fval, and CPU.

Algorithms 2023, 16, 64 18 of 23

Figure 1. Performance profile of IGDN versus EMFD [8] with respect to iter.

Figure 2. Performance profile of IGDN versus EMFD [8] with respect to fval.

Figure 3. Performance profile of IGDN versus EMFD [8] with respect to CPU.

Figures 1–3 exhibit the clear superiority of IGDN (29) and IGDN (34) iterations
compared to corresponding EMFD iterations regarding the analyzed characteristics iter
(resp. fval, CPU time). Further, the theoretical equivalence between IGDN (29) and
IGDN (34) implies their identical responses on testing criteria iter and fval, represented in
Figures 1 and 2. However, Figure 3 demonstrates slightly better performances of IGDN (34)
with respect to IGDN (29), which implies that the updating rule (34) is slightly better
compared to (29) concerning the execution time. So, IGDN (34) is computationally the
most effective algorithm.

In the rest of this section, we compare ADSSN and EMFD.

Algorithms 2023, 16, 64 19 of 23

Figure 4. Performance profile of ADSSN versus EMFD [8] with respect to iter.

Figure 5. Performance profile of ADSSN versus EMFD [8] with respect to fval.

Figure 6. Performance profile of ADSSN versus EMFD [8] with respect to CPU.

Figures 4–6 exhibit clear superiority of ADSSN iterations compared to corresponding
EMFD iterations regarding all three analyzed performance profiles, iter, fval, and CPU.

5. Conclusions

The traditional gradient descent optimization schemes for solving SNE form a class
of methods termed the GDN class. A single step size parameter characterizes methods
belonging to that class. We aim to upgrade the traditional GDN iterates by introducing the
improved gradient descent iterations (IGDN), which include complex steplength values

Algorithms 2023, 16, 64 20 of 23

defined by several parameters. In this way, we justified the assumption that applying two
or more quantities in defining the composed step size parameters generally improves the
performance of an underlying iterative process.

Numerical results confirm the evident superiority of IGDN methods in comparison
with EMFD iterations from [8], which indicates the superiority of IGDN methods over
traditional GDN methods considering all three analyzed features: iter, fval, and CPU.
Confirmation of excellent performance of the presented models is also given through
graphically displayed Dolan and Moré’s performance profiles.

The problem of solving SNE by applying some efficient accelerated gradient optimiza-
tion models is of great interest to the optimization community. In that regard, the question
of further upgrading IGDN, ADDN, and ADSSN type of methods is still open.

One possibility for further research is proper exploitation of the results presented
in Theorems 1–2 in defining proper updates of the scaling parameter γk. In addition, it
will be interesting to examine and exploit similar results in solving classical nonlinear
optimization problems.

Author Contributions: Conceptualization, P.S.S. and M.J.P.; methodology, P.S.S., M.J.P. and B.I.;
software, B.I. and J.S.; validation, B.I. and J.S.; formal analysis, P.S.S., B.I., A.S. (Abdullah Shah) and
J.S.; investigation, X.C., S.L. and J.S.; data curation, B.I., J.S. and A.S. (Abdullah Shah); writing—
original draft preparation, P.S.S., J.S. and B.I.S.; writing—review and editing, M.J.P., B.I.S., X.C., A.S.
(Alena Stupina) and S.L.; visualization, B.I., J.S. and B.I.S.; project administration, A.S. (Alena Stupina);
funding acquisition, A.S. (Alena Stupina). All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Predrag Stanimirović is supported by the Science Fund of the Republic of
Serbia, (No. 7750185, Quantitative Automata Models: Fundamental Problems and Applications-
QUAM). Predrag Stanimirović acknowledges support Grant No. 451-03-68/2022-14/200124 given by
Ministry of Education, Science and Technological Development, Republic of Serbia. Milena J. Petrović
acknowledges support Grant No.174025 given by Ministry of Education, Science and Technological
Development, Republic of Serbia. Milena J. Petrović acknowledges support from the internal-junior
project IJ-0202 given by the Faculty of Sciences and Mathematics, University of Priština in Kosovska
Mitrovica, Serbia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, G.; Lu, X. A new backtracking inexact BFGS method for symmetric nonlinear equations. Comput. Math. Appl. 2008, 55,

116–129. [CrossRef]
2. Abubakar, A.B.; Kumam, P. An improved three–term derivative–free method for solving nonlinear equations. Comput. Appl. Math.

2018, 37, 6760–6773. [CrossRef]
3. Cheng, W. A PRP type method for systems of monotone equations. Math. Comput. Model. 2009, 50, 15–20. [CrossRef]
4. Hu, Y.; Wei, Z. Wei–Yao–Liu conjugate gradient projection algorithm for nonlinear monotone equations with convex constraints.

Int. J. Comput. Math. 2015, 92, 2261–2272. [CrossRef]
5. La Cruz, W. A projected derivative–free algorithm for nonlinear equations with convex constraints. Optim. Methods Softw. 2014, 29,

24–41. [CrossRef]
6. La Cruz, W. A spectral algorithm for large–scale systems of nonlinear monotone equations. Numer. Algorithms 2017, 76, 1109–1130.

[CrossRef]
7. Papp, Z.; Rapajić, S. FR type methods for systems of large–scale nonlinear monotone equations. Appl. Math. Comput. 2015, 269,

816–823. [CrossRef]
8. Halilu, A.S.; Waziri, M.Y. En enhanced matrix-free method via double steplength approach for solving systems of nonlinear

equations. Int. J. Appl. Math. Res. 2017, 6, 147–156. [CrossRef]

http://doi.org/10.1016/j.camwa.2006.12.081
http://dx.doi.org/10.1007/s40314-018-0712-5
http://dx.doi.org/10.1016/j.mcm.2009.04.007
http://dx.doi.org/10.1080/00207160.2014.977879
http://dx.doi.org/10.1080/10556788.2012.721129
http://dx.doi.org/10.1007/s11075-017-0299-8
http://dx.doi.org/10.1016/j.amc.2015.08.002
http://dx.doi.org/10.14419/ijamr.v6i4.8072

Algorithms 2023, 16, 64 21 of 23

9. Halilu, A.S.; Waziri, M.Y. A transformed double steplength method for solving large-scale systems of nonlinear equations. J.
Numer. Math. Stochastics 2017, 9, 20–32.

10. Waziri, M.Y.; Muhammad, H.U.; Halilu, A.S.; Ahmed, K. Modified matrix-free methods for solving system of nonlinear equations.
Optimization 2021, 70, 2321–2340. [CrossRef]

11. Osinuga, I.A.; Dauda, M.K. Quadrature based Broyden-like method for systems of nonlinear equations. Stat. Optim. Inf. Comput.
2018, 6, 130–138. [CrossRef]

12. Muhammad, K.; Mamat, M.; Waziri, M.Y. A Broyden’s-like method for solving systems of nonlinear equations. World Appl. Sci. J.
2013, 21, 168–173.

13. Ullah, N.; Sabi’u, J.; Shah, A. A derivative–free scaling memoryless Broyden–Fletcher–Goldfarb–Shanno method for solving a
system of monotone nonlinear equations. Numer. Linear Algebra Appl. 2021, 28, e2374. [CrossRef]

14. Abubakar, A.B.; Kumam, P. A descent Dai–Liao conjugate gradient method for nonlinear equations. Numer. Algorithms 2019, 81,
197–210. [CrossRef]

15. Aji, S.; Kumam, P.; Awwal, A.M.; Yahaya, M.M.; Kumam, W. Two Hybrid Spectral Methods With Inertial Effect for Solving System
of Nonlinear Monotone Equations With Application in Robotics. IEEE Access 2021, 9, 30918–30928. [CrossRef]

16. Dauda, M.K.; Usman, S.; Ubale, H.; Mamat, M. An alternative modified conjugate gradient coefficient for solving nonlinear system
of equations. Open J. Sci. Technol. 2019, 2, 5–8. [CrossRef]

17. Zheng, L.; Yang, L.; Liang, Y. A conjugate gradient projection method for solving equations with convex constraints. J. Comput.
Appl. Math. 2020, 375, 112781. [CrossRef]

18. Waziri, M.Y.; Aisha, H.A. A diagonal quasi-Newton method for system of nonlinear equations. Appl. Math. Comput. Sci. 2014, 6,
21–30.

19. Waziri, M.Y.; Leong, W.J.; Hassan, M.A.; Monsi, M. Jacobian computation-free Newton’s method for systems of nonlinear equations.
J. Numer. Math. Stochastics 2010, 2, 54–63.

20. Waziri, M.Y.; Majid, Z.A. An improved diagonal Jacobian approximation via a new quasi-Cauchy condition for solving large-scale
systems of nonlinear equations. J. Appl. Math. 2013, 2013, 875935. [CrossRef]

21. Abdullah, H.; Waziri, M.Y.; Yusuf, S.O. A double direction conjugate gradient method for solving large-scale system of nonlinear
equations. J. Math. Comput. Sci. 2017, 7, 606–624.

22. Yan, Q.-R.; Peng, X.-Z.; Li, D.-H. A globally convergent derivative-free method for solving large-scale nonlinear monotone
equations. J. Comput. Appl. Math. 2010, 234, 649–657. [CrossRef]

23. Leong, W.J.; Hassan, M.A.; Yusuf, M.W. A matrix-free quasi-Newton method for solving large-scale nonlinear systems. Comput.
Math. Appl. 2011, 62, 2354–2363. [CrossRef]

24. Waziri, M.Y.; Leong, W.J.; Mamat, M. A two-step matrix-free secant method for solving large-scale systems of nonlinear equations.
J. Appl. Math. 2012, 2012, 348654. [CrossRef]

25. Waziri, M.Y.; Leong, W.J.; Hassan, M.A.; Monsi, M. A new Newton’s Method with diagonal Jacobian approximation for systems of
nonlinear equations. J. Math. Stat. 2010, 6, 246–252. [CrossRef]

26. Waziri, M.Y.; Leong, W.J.; Mamat, M.; Moyi, A.U. Two-step derivative-free diagonally Newton’s method for large-scale nonlinear
equations. World Appl. Sci. J. 2013, 21, 86–94.

27. Yakubu, U.A.; Mamat, M.; Mohamad, M.A.;Rivaie, M.; Sabi’u, J. A recent modification on Dai–Liao conjugate gradient method for
solving symmetric nonlinear equations. Far East J. Math. Sci. 2018, 103, 1961–1974. [CrossRef]

28. Uba, L.Y.; Waziri, M.Y. Three-step derivative-free diagonal updating method for solving large-scale systems of nonlinear equations.
J. Numer. Math. Stochastics 2014, 6, 73–83.

29. Zhou, Y.; Wu, Y.; Li, X. A New Hybrid PRPFR Conjugate Gradient Method for Solving Nonlinear Monotone Equations and Image
Restoration Problems. Math. Probl. Eng. 2020, 2020, 6391321. [CrossRef]

30. Waziri, M.Y.; Leong, W.J.; Mamat, M. An efficient solver for systems of nonlinear equations with singular Jacobian via diagonal
updating. Appl. Math. Sci. 2010, 4, 3403–3412.

31. Waziri, M.Y.; Leong, W.J.; Hassan, M.A. Diagonal Broyden-like method for large-scale systems of nonlinear equations. Malays. J.
Math. Sci. 2012, 6, 59–73.

32. Abubakar, A.B.; Sabi’u, J.; Kumam, P.; Shah, A. Solving nonlinear monotone operator equations via modified SR1 update. J. Appl.
Math. Comput. 2021, 67, 343–373. [CrossRef]

33. Grosan, C.; Abraham, A. A new approach for solving nonlinear equations systems. IEEE Trans. Syst. Man Cybern. 2008, 38, 698–714.
[CrossRef]

34. Dehghan, M.; Hajarian, M. New iterative method for solving nonlinear equations with fourth-order convergence. Int. J. Comput.
Math. 2010, 87, 834–839. [CrossRef]

35. Dehghan, M.; Hajarian, M. Fourth-order variants of Newton’s method without second derivatives for solving nonlinear equations.
Eng. Comput. 2012, 29, 356–365. [CrossRef]

36. Kaltenbacher, B.; Neubauer, A.; Scherzer, O. Iterative Regularization Methods for Nonlinear III—Posed Problems; De Gruyter: Berlin,
Germany; New York, NY, USA, 2008.

37. Wang, Y.; Yuan, Y. Convergence and regularity of trust region methods for nonlinear ill-posed problems. Inverse Probl. 2005, 21,
821–838. [CrossRef]

http://dx.doi.org/10.1080/02331934.2020.1778689
http://dx.doi.org/10.19139/soic.v6i1.471
http://dx.doi.org/10.1002/nla.2374
http://dx.doi.org/10.1007/s11075-018-0541-z
http://dx.doi.org/10.1109/ACCESS.2021.3056567
http://dx.doi.org/10.31580/ojst.v2i3.932
http://dx.doi.org/10.1016/j.cam.2020.112781
http://dx.doi.org/10.1155/2013/875935
http://dx.doi.org/10.1016/j.cam.2010.01.001
http://dx.doi.org/10.1016/j.camwa.2011.07.023
http://dx.doi.org/10.1155/2012/348654
http://dx.doi.org/10.3844/jmssp.2010.246.252
http://dx.doi.org/10.17654/MS103121961
http://dx.doi.org/10.1155/2020/6391321
http://dx.doi.org/10.1007/s12190-020-01461-1
http://dx.doi.org/10.1109/TSMCA.2008.918599
http://dx.doi.org/10.1080/00207160802217201
http://dx.doi.org/10.1108/02644401211227590
http://dx.doi.org/10.1088/0266-5611/21/3/003

Algorithms 2023, 16, 64 22 of 23

38. Dehghan, M.; Hajarian, M. Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations.
Comput. Appl. Math. 2010, 29, 19–30. [CrossRef]

39. Dehghan, M.; Hajarian, M. On some cubic convergence iterative formulae without derivatives for solving nonlinear equations. Int.
J. Numer. Methods Biomed. Eng. 2011, 27, 722–731. [CrossRef]

40. Dehghan, M.; Shirilord, A. Accelerated double-step scale splitting iteration method for solving a class of complex symmetric linear
systems. Numer. Algorithms 2020, 83, 281–304. [CrossRef]

41. Dehghan, M.; Shirilord, A. A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex
Sylvester matrix equation. Appl. Math. Comput. 2019, 348, 632–651. [CrossRef]

42. Bellavia, S.; Gurioli, G.; Morini, B.; Toint, P.L. Trust-region algorithms: Probabilistic complexity and intrinsic noise with applications
to subsampling techniques. EURO J. Comput. Optim. 2022, 10, 100043. [CrossRef]

43. Bellavia, S.; Krejić, N.; Morini, B.; Rebegoldi, S. A stochastic first-order trust-region method with inexact restoration for finite-sum
minimization. Comput. Optim. Appl. 2023, 84, 53–84. [CrossRef]

44. Bellavia, S.; Krejić, N.; Morini, B. Inexact restoration with subsampled trust-region methods for finite-sum minimization. Comput.
Optim. Appl. 2020, 76, 701–736. [CrossRef]

45. Eshaghnezhad, M.; Effati, S.; Mansoori, A. A Neurodynamic Model to Solve Nonlinear Pseudo-Monotone Projection Equation and
Its Applications. IEEE Trans. Cybern. 2017, 47, 3050–3062. [CrossRef] [PubMed]

46. Meintjes, K.; Morgan, A.P. A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 1987, 22, 333–361.
[CrossRef]

47. Crisci, S.; Piana, M.; Ruggiero, V.; Scussolini, M. A regularized affine–acaling trust–region method for parametric imaging of
dynamic PET data. SIAM J. Imaging Sci. 2021, 14, 418–439. [CrossRef]

48. Bonettini, S.; Zanella, R.; Zanni, L. A scaled gradient projection method for constrained image deblurring. Inverse Probl. 2009, 25,
015002. [CrossRef]

49. Liu, J.K.; Du, X.L. A gradient projection method for the sparse signal reconstruction in compressive sensing. Appl. Anal. 2018, 97,
2122–2131. [CrossRef]

50. Liu, J.K.; Li, S.J. A projection method for convex constrained monotone nonlinear equations with applications. Comput. Math. Appl.
2015, 70, 2442–2453. [CrossRef]

51. Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with applications in compressive
sensing. J. Math. Anal. Appl. 2013, 405, 310–319. [CrossRef]

52. Awwal, A.M.; Wang, L.; Kumam, P.; Mohammad, H.; Watthayu, W. A Projection Hestenes–Stiefel Method with Spectral Parameter
for Nonlinear Monotone Equations and Signal Processing. Math. Comput. Appl. 2020, 25, 27. [CrossRef]

53. Fukushima, M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality
problems. Math. Program. 1992, 53, 99–110. [CrossRef]

54. Qian, G.; Han, D.; Xu, L.; Yang, H. Solving nonadditive traffic assignment problems: A self-adaptive projection–auxiliary problem
method for variational inequalities. J. Ind. Manag. Optim. 2013, 9, 255–274. [CrossRef]

55. Ghaddar, B.; Marecek, J.; Mevissen, M. Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 2016,
31, 539–546. [CrossRef]

56. Ivanov, B.; Stanimirović, P.S.; Milovanović, G.V.; Djordjević, S.; Brajević, I. Accelerated multiple step-size methods for solving
unconstrained optimization problems. Optim. Methods Softw. 2021, 36, 998–1029. [CrossRef]

57. Andrei, N. An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms
2006, 42, 63–73. [CrossRef]

58. Stanimirović, P.S.; Miladinović, M.B. Accelerated gradient descent methods with line search. Numer. Algorithms 2010, 54, 503–520.
[CrossRef]

59. Sun, W.; Yuan, Y.-X. Optimization Theory and Methods: Nonlinear Programming; Springer: New York, NY, USA, 2006.
60. Petrović, M.J. An Accelerated Double Step Size model in unconstrained optimization. Appl. Math. Comput. 2015, 250, 309–319.

[CrossRef]
61. Petrović, M.J.; Stanimirović, P.S. Accelerated Double Direction method for solving unconstrained optimization problems. Math.

Probl. Eng. 2014, 2014, 965104. [CrossRef]
62. Stanimirović, P.S.; Milovanović, G.V.; Petrović, M.J.; Kontrec, N. A Transformation of accelerated double step size method for

unconstrained optimization. Math. Probl. Eng. 2015, 2015, 283679. [CrossRef]
63. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 1999.
64. Barzilai, J.; Borwein, J.M. Two-point step size gradient method. IMA J. Numer. Anal. 1988, 8, 141–148. [CrossRef]
65. Dai, Y.H. Alternate step gradient method. Optimization 2003, 52, 395–415. [CrossRef]
66. Dai, Y.H.; Fletcher, R. On the asymptotic behaviour of some new gradient methods. Math. Program. 2005, 103, 541–559. [CrossRef]
67. Dai, Y.H.; Liao, L.Z. R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 2002, 22, 1–10.

[CrossRef]
68. Dai, Y.H.; Yuan, J.Y.; Yuan, Y. Modified two-point step-size gradient methods for unconstrained optimization. Comput. Optim.

Appl. 2002, 22, 103–109. [CrossRef]
69. Dai, Y.H.; Yuan, Y. Alternate minimization gradient method. IMA J. Numer. Anal. 2003, 23, 377–393. [CrossRef]
70. Dai, Y.H.; Yuan, Y. Analysis of monotone gradient methods. J. Ind. Manag. Optim. 2005, 1, 181–192. [CrossRef]

http://dx.doi.org/10.1590/S1807-03022010000100002
http://dx.doi.org/10.1002/cnm.1328
http://dx.doi.org/10.1007/s11075-019-00682-1
http://dx.doi.org/10.1016/j.amc.2018.11.064
http://dx.doi.org/10.1016/j.ejco.2022.100043
http://dx.doi.org/10.1007/s10589-022-00430-7
http://dx.doi.org/10.1007/s10589-020-00196-w
http://dx.doi.org/10.1109/TCYB.2016.2611529
http://www.ncbi.nlm.nih.gov/pubmed/27705876
http://dx.doi.org/10.1016/0096-3003(87)90076-2
http://dx.doi.org/10.1137/20M1336370
http://dx.doi.org/10.1088/0266-5611/25/1/015002
http://dx.doi.org/10.1080/00036811.2017.1359556
http://dx.doi.org/10.1016/j.camwa.2015.09.014
http://dx.doi.org/10.1016/j.jmaa.2013.04.017
http://dx.doi.org/10.3390/mca25020027
http://dx.doi.org/10.1007/BF01585696
http://dx.doi.org/10.3934/jimo.2013.9.255
http://dx.doi.org/10.1109/TPWRS.2015.2390037
http://dx.doi.org/10.1080/10556788.2019.1653868
http://dx.doi.org/10.1007/s11075-006-9023-9
http://dx.doi.org/10.1007/s11075-009-9350-8
http://dx.doi.org/10.1016/j.amc.2014.10.104
http://dx.doi.org/10.1155/2014/965104
http://dx.doi.org/10.1155/2015/283679
http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1080/02331930310001611547
http://dx.doi.org/10.1007/s10107-004-0516-9
http://dx.doi.org/10.1093/imanum/22.1.1
http://dx.doi.org/10.1023/A:1014838419611
http://dx.doi.org/10.1093/imanum/23.3.377
http://dx.doi.org/10.3934/jimo.2005.1.181

Algorithms 2023, 16, 64 23 of 23

71. Dai, Y.H.; Zhang, H. Adaptive two-point step size gradient algorithm. Numer. Algorithms 2001, 27, 377–385. [CrossRef]
72. Raydan, M. On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 1993, 13, 321–326.

[CrossRef]
73. Raydan, M. The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim.

1997, 7, 26–33. [CrossRef]
74. Vrahatis, M.N.; Androulakis, G.S.; Lambrinos, J.N.; Magoulas, G.D. A class of gradient unconstrained minimization algorithms

with adaptive step-size. J. Comput. Appl. Math. 2000, 114, 367–386. [CrossRef]
75. Yuan, Y. A new step size for the steepest descent method. J. Comput. Math. 2006, 24, 149–156.
76. Frassoldati, G.; Zanni, L.; Zanghirati, G. New adaptive step size selections in gradient methods. J. Ind. Manag. Optim. 2008, 4,

299–312. [CrossRef]
77. Serafino, D.; Ruggiero, V.; Toraldo, G.; Zanni, L. On the steplength selection in gradient methods for unconstrained optimization.

Appl. Math. Comput. 2018, 318, 176–195. [CrossRef]
78. Crisci, S.; Porta, F.; Ruggiero, V.; Zanni, L. Spectral properties of Barzilai–Borwein rules in solving singly linearly constrained

optimization problems subject to lower and upper bounds. SIAM J. Optim. 2020, 30, 1300–1326. [CrossRef]
79. Crisci, S.; Porta, F.; Ruggiero, V.; Zanni, L. Hybrid limited memory gradient projection methods for box–constrained optimization

problems. Comput. Optim. Appl. 2023, 84, 151–189. [CrossRef]
80. Miladinović, M.; Stanimirović, P.S.; Miljković, S. Scalar Correction method for solving large scale unconstrained minimization

problems. J. Optim. Theory Appl. 2011, 151, 304–320. [CrossRef]
81. Raydan, M.; Svaiter, B.F. Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Comput. Optim. Appl. 2002, 21, 155–167.

[CrossRef]
82. Djordjević, S.S. Two modifications of the method of the multiplicative parameters in descent gradient methods. Appl. Math.

Comput. 2012, 218, 8672–8683.
83. Zhang, Y.; Yi, C. Zhang Neural Networks and Neural-Dynamic Method; Nova Science Publishers, Inc.: New York, NY, USA, 2011.
84. Zhang, Y.; Ma, W.; Cai, B. From Zhang neural network to Newton iteration for matrix inversion. IEEE Trans. Circuits Syst. I Regul.

Pap. 2009, 56, 1405–1415. [CrossRef]
85. Djuranovic-Miličić, N.I.; Gardašević-Filipović, M. A multi-step curve search algorithm in nonlinear optimization - nondifferentiable

case. Facta Univ. Ser. Math. Inform. 2010, 25, 11–24.
86. Zhou, W.J.; Li, D.H. A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math.

Comput. 2008, 77, 2231–2240. [CrossRef]
87. La Cruz, W.; Martínez, J.; Raydan, M. Spectral residual method without gradient information for solving large-scale nonlinear

systems of equations. Math. Comput. 2006, 75, 1429–1448. [CrossRef]
88. Dolan, E.; Moré, J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1013844413130
http://dx.doi.org/10.1093/imanum/13.3.321
http://dx.doi.org/10.1137/S1052623494266365
http://dx.doi.org/10.1016/S0377-0427(99)00276-9
http://dx.doi.org/10.3934/jimo.2008.4.299
http://dx.doi.org/10.1016/j.amc.2017.07.037
http://dx.doi.org/10.1137/19M1268641
http://dx.doi.org/10.1007/s10589-022-00409-4
http://dx.doi.org/10.1007/s10957-011-9864-9
http://dx.doi.org/10.1023/A:1013708715892
http://dx.doi.org/10.1109/TCSI.2008.2007065
http://dx.doi.org/10.1090/S0025-5718-08-02121-2
http://dx.doi.org/10.1090/S0025-5718-06-01840-0
http://dx.doi.org/10.1007/s101070100263

	Introduction, Preliminaries, and Motivation
	Overview of Methods for Solving SNE
	Motivation
	Improved Gradient Descent Methods as Motivation
	Discretization of Gradient Neural Networks (GNN) as Motivation

	Multiple Step-Size Methods for Solving SNE
	IGDN Methods for Solving SNE
	A Class of Accelerated Double Direction (ADDN) Methods
	A Class of Accelerated Double Step Size (ADSSN) Methods
	Simplified ADSSN

	Convergence Analysis
	Numerical Experience
	Conclusions
	References

