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Abstract: The influence of neutrosophy on many fields of science and technology, as well as its
numerous applications, are evident. Our motivation is to apply neutrosophy for the first time in
order to improve methods for solving unconstrained optimization. Particularly, in this research, we
propose and investigate an improvement of line search methods for solving unconstrained nonlin-
ear optimization models. The improvement is based on the application of symmetry involved in
neutrosophic logic in determining appropriate step size for the class of descent direction methods.
Theoretical analysis is performed to show the convergence of proposed iterations under the same
conditions as for the related standard iterations. Mutual comparison and analysis of generated nu-
merical results reveal better behavior of the suggested iterations compared with analogous available
iterations considering the Dolan and Moré performance profiles and statistical ranking. Statistical
comparison also reveals advantages of the neutrosophic improvements of the considered line search
optimization methods.

Keywords: unconstrained optimization; neutrosophic logic systems; gradient descent methods;
convergence

MSC: 90C70; 90C30; 65K05

1. Introduction, Preliminaries, and Motivation

We investigate applications of neutrosophic logic in determining an additional step
size in gradient descent methods for solving the multivariate unconstrained optimiza-
tion problem

min f (x), x ∈ Rn, (1)

in which the objective f : Rn → R is uniformly convex and twice continuously differentiable.
The most general iteration aimed to solve (1) is the descent direction (DD) method

xk+1 = xk + tkdk, (2)

such that xk+1 is the actual approximation, xk is the former approximation, tk > 0 is a
step size, and dk is an appropriate search direction that satisfies the descent condition
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gT
k dk < 0, in which gk = ∇ f (xk) stands for the gradient vector of the objective f . The most

common choice is the antigradient direction dk = −gk, leading to the gradient descent
(GD) iterations

xk+1 = xk − tkgk, (3)

in which the learning rate tk is typically determined by an inexact line search procedure.
The iterative rule of the general quasi-Newton (QN) class of iterations with line search

xk+1 = xk − tk Hk gk (4)

utilizes an appropriate symmetric and positive definite estimation Bk of the Hessian
Gk = 52 f (xk) and Hk = B−1

k [1]. The upgrade Bk+1 from Bk is established based on
the QN characteristic

Bk+1ςk = ξk, such that ςk = xk+1 − xk, ξk = gk+1 − gk. (5)

Computation of the Hessian or its approximations that include matrix operations is
time-consuming and prohibitive. Following the goal to make optimization methods efficient
in solving large-scale problems, we use the simplest scalar Hessian’s approximation [2,3]:

Bk = γk I, γk > 0. (6)

In this paper, we are interested in the following iterative scheme

xk+1 = xk − γ−1
k tkgk. (7)

Iterations (7) are introduced as improved gradient descent (IGD) methods. The roles of the
additional step γk and the basic step length tk are clearly separated and complement each
other. The quantity tk is defined as the output of an inexact line search methodology, while
γk is calculated based on Taylor series of f (x).

Diverse forms and improvements of the IGD iterative scheme (7) were suggested
in [4–8]. The SM method proposed in [6] corresponds to the iteration

xk+1 = xk − tk(γ
SM
k )−1gk, (8)

where γSM
k > 0 is the gain parameter determined utilizing the Taylor approximation of

f
(

xk − tk(γ
SM
k )−1gk

)
, which results

γSM
k+1 = f

(
2γSM

k
γSM

k ∆k + tk‖gk‖2

t2
k‖gk‖2

)
,

such that fp := f (xp), ∆k := fk+1 − fk and

f(x) =

{
x, x > 0
1, x ≤ 0.

The modification of the SM method was defined as the transformation MSM =
M(SM) [9]

xk+1 =M(SM)(xk) = xk − tkτk(γ
MSM
k )−1gk, (9)

where tk ∈ (0, 1) is defined by the backtracking search, τk = 1 + tk − t2
k , and

γMSM
k+1 = f

(
2γMSM

k
γMSM

k ∆k + tkτk‖gk‖2

(tkτk)2‖gk‖2

)
. (10)

We propose improvements of line search iterative rules for solving (1). The main idea
is based on the application of neutrosophic logic in determining appropriate step length for
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various gradient descent rules. This idea is based on the hybridization principle proposed
in [5,9,10], where an appropriate correction parameter αk with a fixed value is used. A
hybridization of the SM iterations (termed HSM) was introduced in [5] as the iterative rule

xk+1 = H(SM)(xk) = xk − (ηk + 1)(γHSM
k )−1tkgk, (11)

such that ηk is the correction quantity and γHSM
k is the gain value defined as

γHSM
k+1 = f

(
2γHSM

k
γHSM

k ∆k + (ηk + 1)tk‖gk‖2

(ηk + 1)2t2
k‖gk‖2

)
.

The hybridizations of several IGD methods, including the MSM method, were proposed
and investigated in [9,10]. An overview of methods derived by the hybridization of
IGD iterations with the Picard–Mann, Ishikawa, and Khan iterative processes [11–13]
was given in [14]. Some common fixed point results for fuzzy mappings were derived
in [15]. A detailed numerical comparison between hybrid and nonhybrid IGD methodswas
performed in [14]. Four gradient descent algorithms with adaptive step size were proposed
and investigated in [16].

Our goal in this paper is to use an adaptive neutrosophic logic parameter νk instead
of the fixed correction parameter ηk + 1 in determining appropriate step sizes for various
gradient descent methods. The parameter νk in each iteration will be determined on the
basis of the neutrosophic logic controller (NLC).

Consider the universe U . The fuzzy set theory relies on a membership function
T(u) ∈ [0, 1], u ∈ U [17]. In addition, a fuzzy set N over U is a set of ordered pairs
N = {〈u, T(u)〉| u ∈ U}.

The intuitionistic fuzzy set (IFS) was established based on the nonmembership function
F(u) ∈ [0, 1], u ∈ U [18]. Following the philosophy of using two opposing membership
functions, an IFS N in U is defined as the set of ordered triples

N = {〈u, T(u), F(u)〉| u ∈ U},

which are based on the independence of the members, that is T(u), F(u) : U → [0, 1] and
0 ≤ T(u) + F(u) ≤ 1.

The IFS theory was extended by Smarandache in [19] and Wang et al. [20]. The novelty
is the introduction of the indeterminacy-membership function I(u), which symbolizes hesi-
tation in a decision-making process. As a result, elements of a set in the neutrosophic theory
are defined by three individualistic membership functions [19,20] defined by the rules of
symmetry: the truth-membership function T(u), the indeterminacy-membership function
I(u), and the falsity-membership F(u) function. A single-valued neutrosophic set (SVNS)N
over U is the set of neutrosophic numbers of the form N = {〈u, T(u), I(u), F(u)〉| u ∈ U}.
Values of the membership functions independently take values from [0, 1], which initiates
T(u), I(u), F(u) : U → [0, 1] and 0 ≤ T(u) + I(u) + F(u) ≤ 3.

A neutrosophic set is symmetric in nature since the indeterminacy I appears in the
middle between the Truth T and False F [21,22]. Furthermore, a refined neutrosophic set
with two indeterminacies I1 and I2 in the middle between T and F also includes a kind
of symmetry [22]. In [23], the authors firstly introduced a normalized and a weighted
symmetry measure of simplified neutrosophic sets and then proposed a neutrosophic
multiple criteria decision-making method based on the introduced symmetry estimate.

Fuzzy logic (FL), intuitionistic fuzzy logic (IFL), and neutrosophic logic (NL) appear
as efficient tools to handle mathematical models with uncertainty, fuzziness, ambiguity,
inaccuracy, incomplete certainty, incompleteness, inconsistency, and redundancy. NL can be
considered as one of the new theories based on the fundamental principles of neutrosophy,
which actually belongs to the group of many-valued logics and actually represents an
extension of FL. NL can also be considered as a new branch of logic that deals with the
shortcomings of FL and classical logic, as well as IFL. Some of the disadvantages of FL, such
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as the failure to handle inconsistent information, are significantly reduced by applying NL.
Truth and falsity in NL are independent, while in IFL they are dependent. Neutrosophic
logic can manipulate both incomplete and inconsistent data. Thus, there is a need to explore
the use of NL in various domains from medical treatment to the role of recommendation
systems using new advanced computational intelligence techniques. An NL is a better
choice than the FL and IFL in the representation of real-world data and their executions,
because of the following reasons:

(a) FL and IFL systems neglect the importance of indeterminacy. A fuzzy logic controller
(FLC) is based on membership and nonmembership of a particular element to a
particular set and take into account the indeterminate nature of generated data.

(b) An FL or IFL system is further constrained by the fact that the sum of membership
and nonmembership values is limited to 1. More details are available in [24].

(c) NL reasoning clearly distinguishes concepts of absolute truth and relative truth, as-
suming the existence of the absolute truth with assigned value 1+.

(d) NL is applicable in the situation of overlapping regions of the fuzzy systems [25].

Neutrosophic sets (NS) have important applications for denoising, clustering, segmen-
tation, and classification in numerous medical image-processing applications. A utilization
of neutrosophic theory in denoising medical images and their segmentation was proposed
in [26], such that a neutrosophic image is characterized by three membership sets. Several
applications of neutrosophic systems were described in [27]. An application of neutrosophy
in natural language processing and sentiment analysis was investigated in [22].

Our goal in the present paper is to improve some of the main gradient descent meth-
ods for solving unconstrained nonlinear optimization problems utilizing the advantages
of neutrosophic systems. Principal results of the current investigation are emphasized
as follows.

(1) We investigate applications of neutrosophic logic in determining an additional step
size in line search methods for solving the unconstrained optimization problem.

(2) Applications of neutrosophic logic in multiple step-size methods for solving uncon-
strained optimization problems are described and investigated.

(3) Rigorous theoretical analysis is performed to show convergence of the proposed
iterations under the same conditions as for the corresponding original methods.

(4) Numerical comparison between suggested algorithms given the corresponding avail-
able iterations considering the Dolan and Moré benchmarking and the statistical
ranking is presented.

The remaining sections are developed according to the following arrangement. Opti-
mization methods based on additional neutrosophic parameters are presented in Section 2.
Convergence analysis is investigated in Section 3. Section 4 gives numerical experiments
and comparisons. Section 4 gives numerical experiments and compares the MSM, SM, and
GD methods with the neutrosophic extensions FMSM, FSM, and FGD methods, equipped
with neutrosophic control. Moreover, the application of the new methods in regression anal-
ysis is given within this section. Some closing remarks and a vision of future investigation
are presented in Section 5.

2. Fuzzy Optimization Methods

Fuzzy descent direction (FDD) iterations are defined as a modification of the DD
iterations (2), as follows:

xk+1 = Φ(DD)(xk) = xk + νktkdk, (12)
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where νk > 0 is an appropriately defined fuzzy parameter. In general, νk should satisfy

νk


< 1, if ∆k > 0,
= 1, if ∆k = 0,
> 1, if ∆k < 0.

(13)

The main idea used in (13) is to decrease the composite step size νktk of iterations (12)
in the case where f increases and increase νktk in the case when f decreases.

We define the general fuzzy QN (FQN) iterative scheme with the line search as

xk+1 = Φ(QN)(xk) = Φ(xk − Hk gk) = xk − νk Hk gk, (14)

The fuzzy GD method (FGD) is defined by

xk+1 = Φ(GD)(xk) = Φ(xk − tk gk) = xk − νktkgk. (15)

The fuzzy SM method (FSM) is defined as

xk+1 = Φ(SM)(xk) = xk − νktk(γ
FSM
k )−1gk, (16)

where

γFSM
k+1 = f

(
2γFSM

k
γFSM

k ∆k + νktk‖gk‖2

(νktk)
2‖gk‖2

)
. (17)

Starting from (9) and (14), we define the fuzzy MSM method (FMSM) by

xk+1 = Φ(MSM)(xk) = xk − νktkτk(γ
FMSM
k )−1gk, (18)

where

γFMSM
k+1 = f

(
2γFMSM

k
γFMSM

k ∆k + νktkτk‖gk‖2

(νktkτk)
2‖gk‖2

)
. (19)

Table 1 summarizes different steps utilized in the iterations utilized in this paper, in
which the strike means absence of a suitable parameter.

Table 1. Parameters in gradient descent methods and neutrosophic modifications.

Method
Step Sizes

First Second Third

GD tk - -
FGD νk tk -
SM tk (γSM

k )−1 -
FSM νk tk (γSM

k )−1

MSM τk (γMSM
k )−1 -

FMSM νk τk (γMSM
k )−1

Algorithm 1, restated from [6,28], is exploited to determine the step length tk.

Algorithm 1 The backtracking inexact line search.

Input: Goal function f (x), a vector dk at xk and real quantities 0 < σ < 0.5, β ∈ (0, 1).
1: t = 1.
2: While f (xk + tdk) > f (xk) + σtgT

k dk, perform t := tβ.
3: Output: tk = t.

Algorithm 2 describes the general framework of the FDD class of methods.
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Algorithm 2 Framework of FDD methods.

Input: Objective f (x) and an initial point x0 ∈ dom( f ).
1: Put k = 0, ν0 = 1, calculate f (x0), g0 = ∇ f (x0), and generate a descent direction d0.
2: If stopping indicators are fulfilled, then stop; otherwise, go to the subsequent step.
3: (Backtracking) Determine tk ∈ (0, 1] applying Algorithm 1.
4: Compute xk+1 using (12).
5: Compute f (xk+1) and generate descent vector dk+1.
6: (Score function) Compute ∆k := fk+1 − fk.
7: (Neutrosophistication) Compute T(∆k), I(∆k), F(∆k) using appropriate membership

functions.
8: Define neutrosophic inference engine.
9: (De-neutrosophistication) Compute νk(∆k) using de-neutrosophication rule.

10: k := k + 1 and go to step 2.
11: Output: {xk+1, f (xk+1)}.

It is worth mentioning that the general structure of fuzzy neutrosophic optimization
methods follows the philosophy described in the diagram of Figure 1.

Input: x0

Optimization Methods 

Iterative Scheme
NLC Output: xk+1vk

θk

Figure 1. The general structure of the fuzzy optimization methods.

FMSM Method

To define the FMSM method, we need to define the steps Score function, neutrosophis-
tication and de-neutrosophistication in Algorithm 2.

(1) Neutrosophication. Using three membership functions, neutrosophic logic maps the
input ϑ := f (xk)− f (xk+1) into neutrosophic triplets (T(ϑ), I(ϑ), F(ϑ)).
The truth-membership function is defined as the sigmoid function:

T(ϑ) = 1/(1 + e−c1(ϑ−c2)). (20)

The parameter c1 is responsible for its slope at the crossover point ϑ = c2. The
falsity-membership function is the sigmoid function:

F(ϑ) = 1/(1 + ec1(ϑ−c2)). (21)

The indeterminacy-membership function is the Gaussian function:

I(ϑ) = e
− (ϑ−c2)

2

2c2
1 , (22)

where the parameter c1 stands for the standard deviation, and the parameter c2 is the
mean. The neutrosophication of the crisp value ϑ ∈ R used in the implementation is
the transformation of ϑ into 〈ϑ : T(ϑ), I(ϑ), F(ϑ)〉, where the membership functions
are defined in (20)–(22).
Since the final goal is to minimize f (x), it is reasonable to use ∆k as a measure in
the developed NLC. So, we consider the dynamic neutrosophic set (DNS) defined by
D := {〈T(∆k), I(∆k), F(∆k)〉; ∆k ∈ R}.
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(2) Neutrosophic inference engine: The neutrosophic rule between the fuzzy input set I and
the fuzzy output set under the neutrosophic format O = {T, I, F} is described by the
following “IF–THEN” rules:

R1 : If I = P then O = {T, I, F}
R2 : If I = N then O = {T, I, F}.

The notations P and N stand for fuzzy sets and exactly indicate a positive and neg-
ative error, respectively. Using the unification R = R1 ∪ R2, we obtain Oi = I ◦ Ri,
i = 1, 2, where ◦ symbolizes the fuzzy transformation. Furthermore, it follows that
κI◦R(ζ) = κI◦R1

∨
κI◦R2 , κI◦R(ζ) = sup(κI

∧
κOi ), and i = 1, 2, where

∧
(resp.

∨
)

denotes the (min, max, max) operator, (resp. (max, min, min) operator). The process
of turning the fuzzy outputs into a single, crisp output value is known as defuzzifi-
cation. There are various defuzzification methods that can be used to perform this
procedure. The centroid method, the weighted average method, and the max or
mean–max membership principles are some popular defuzzification methods. In
this study, the following defuzzification method, called centroid, is employed to
obtain a vector of crisp outputs ζ∗ = [T(∆k), I(∆k), F(∆k)] ∈ R3 of the fuzzy vector
ζ = {T(∆k), I(∆k), F(∆k)}:

ζ∗ =

∫
O ζ κI◦R(ζ)dζ∫
O κI◦R(ζ)dζ

. (23)

(3) De-neutrosophication. This step assumes conversion 〈T(∆k), I(∆k), F(∆k)〉→νk(∆k) ∈ R
resulting in a single (crisp) value νk(∆k).
The following de-neutrosophication rule is proposed to obtain the parameter νk(∆k)
using the rule (24), which follows the constraints stated in (13):

νk(∆k) =


1− (T(∆k) + I(∆k) + F(∆k))/c1, ∆k > 0
1, ∆k = 0
3− (T(∆k) + I(∆k) + F(∆k)), ∆k < 0.

(24)

The parameter c1 ≥ 3 maintains the lower limit νk(∆k) < 1 of νk(∆k) in the case
∆k > 0. Moreover, definition (24) assumes that the membership functions must satisfy
T(∆k) + I(∆k) + F(∆k) < 2 in the case ∆k > 0.

For better understanding, the NLC structure decomposed by the neutrosophic rules is
presented in the diagram of Figure 2. It is crucial to remember that the NLC controller struc-
ture was built specifically to solve the issues discussed in this paper, including the mem-
bership functions chosen, the number of fuzzy rules chosen, the defuzzification method
chosen, and the de-neutrosophication method chosen. As a result, the NLC controller
structure is heuristic, and different structures can be required for various applications.

Input: �

Neutrosophic 

Inference 

Engine

N
eu

tr
o

so
p

h
ic

at
io

n

IF-THEN 

Rules

Conditions Actions

D
e-

n
eu

tr
o

so
p

h
ic

at
io

n

Output: v

Τ

I

F

Figure 2. The NLC structure decomposed by the neutrosophic rules.

The utilized settings for the NLC employed in all numerical experiments and graphs
of this paper are presented in Table 2.
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Table 2. Recommended parameters in NLC.

Set Membership Function c1 c2 Weight

Input

Truth Sigmoid 1 3 1

Falsity Sigmoid 1 3 1

Indeterminacy Gaussian 6 0 1

Output (24) 3 - 1

Our imperative requirement is νk(∆k) ≥ 0. The fulfillment of this requirement immedi-
ately follows from the membership values T(∆k), F(∆k), I(∆k) during the neutrosophication
process, which are presented in Figure 3a. The NLC output value, νk(∆k), during the
de-neutrosophication process is presented in Figure 3b.

-30 -20 -10 0 10 20 30

0.2

0.4

0.6

0.8

T( )

F( )

I( )

(a)

-30 -20 -10 0 10 20 30

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3-(T( )+I( )+F( ))

1-(T( )+I( )+F( ))/c
1

(b)

Figure 3. Neutrosophication (20)–(22) and de-neutrosophication (24) under the parameters in Table 2.
(a) Neutrosophication. (b) De-neutrosophication.

Figure 3 clearly shows that (24) satisfies basic requirements imposed in (13). More
precisely, graphs in Figure 3 show 1− (T(∆k) + I(∆k) + F(∆k))/c1 < 1 in the case ∆k > 0,
and 3− (T(∆k) + I(∆k) + F(∆k)) ≥ 1 in the case ∆k < 0.

Remark 1. During the iterations, the function decreases and tends to the minimum, so limk→∞ ∆k=0,
that is, limk→∞ νk(∆k) = 1. This observation leads to the conclusion that the parameter νk → 1
decreases as we approach the minimum of the function, and thus the influence of neutrosophy on the
gradient methods decreases. Such desirable behavior of νk(∆k) was our intention.

Algorithm 3 is the algorithmic framework of the FMSM method.

Algorithm 3 Framework of FMSM method.

Input: Objective f (x) and appropriate initialization x0 ∈ dom( f ).
1: Put k = 0 and compute f (x0), g0 = ∇ f (x0) and take γ0 = 1, ν0 = 1.
2: If stopping criteria are satisfied, then stop; otherwise, go to the subsequent step.
3: (Backtracking) Find the step size tk ∈ (0, 1] using Algorithm 1 utilizing the search

direction dk = −νkτk(γ
FMSM
k )−1gk.

4: Compute xk+1 using (18).
5: Calculate f (xk+1) and gk+1 = ∇ f (xk+1).
6: Compute γFMSM

k+1 applying (19).
7: Compute ∆k := fk+1 − fk.
8: Compute T(∆k), I(∆k), F(∆k) using (20)–(22), respectively.
9: Compute ζ∗ = [T(∆k), I(∆k), F(∆k)] using (23).

10: Compute νk := νk(∆k) using (24).
11: Put k := k + 1, and go to Step 2.
12: Return {xk+1, f (xk+1)}.
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3. Convergence Analysis

The following assumptions are necessary, and the following auxiliary results are useful.

Assumption 1. (1) The level set M = {x ∈ Rn| f (x) ≤ f (x0)}, defined around the initial
iterate x0 of (2), is bounded.

(2) The objective f is continuous and differentiable in a neighborhood P ofM, and its gradient
g is Lipschitz continuous, i.e., there exists L > 0, which satisfies

‖g(v)− g(w)‖ ≤ L‖v− w‖, ∀ v, w ∈ P . (25)

Several useful results from [28–30] and [31,32] are restated for completeness. Let dk be
chosen as a descent direction, and let the gradient g(x) fulfill the Lipschitz requirement (25).
The step length tk derived in the backtracking Algorithm 1 satisfies

tk ≥ min

{
1,− β(1− σ)

L
gT

k dk

‖dk‖2

}
. (26)

The notation f ∈ <n (resp. f ∈ =n) is used to indicate that f : Rn → R is twice contin-
uously differentiable and uniformly convex (resp. uniformly convex) on Rn. From [31,32],
it follows that Assumption 1 is satisfied if f ∈ <n.

Lemma 1 ([31,32]). Assumption f ∈ <n implies the existence of real numbers m, M, such that

0 < m ≤ 1 ≤ M. (27)

Moreover, f (p) possesses a unique minimum p∗, such that

m‖q‖2 ≤ qT∇2 f (p) q ≤ M‖q‖2, ∀ p, q ∈ Rn; (28)
1
2

m‖p− p∗‖2 ≤ f (p)− f (p∗) ≤ 1
2

M‖p− p∗‖2, ∀ p ∈ Rn; (29)

m‖p− q‖2 ≤ (g(p)− g(q))T(p− q) ≤ M‖p− q‖2, ∀ p, q ∈ Rn. (30)

For simplicity, denote the SM and MSM iterations as

x(M)SM
k+1 = x(M)SM

k − tkωk(γ
(M)SM
k )−1gk,

where x(M)SM
k denotes xSM

k (resp. xMSM
k ) in the case of the SM (resp. MSM) method and

ωk = 1 (resp. ωk = τk := 1 + tk − t2
k) in the case of the SM (resp. MSM) method. Similarly,

the FSM and FMSM iterations are denoted by the common notation

xF(M)SM
k+1 = xF(M)SM

k − νktkωk(γ
F(M)SM
k )−1gk,

where xF(M)SM
k denotes xFSM

k (resp. xFMSM
k ) in the case of the FSM (resp. FMSM) method

and ωk = 1 (resp. ωk = τk) in the case of the FSM (resp. FMSM) method. Since the
scalar matrix approximation of the Hessian enables to assume that f is twice continuously
differentiable, instead of (28) and (27), we assume only the following bounds for γ

F(M)SM
k :

m ≤ γ
F(M)SM
k ≤ M, 0 < m ≤ 1 ≤ M, m, M ∈ R. (31)

In addition, f ∈ <n reduces to f ∈ =n.
Lemma 2 estimates the iterative decreasing of f ensured by SM and MSM iterations.
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Lemma 2 ([6,9]). Let f ∈ =n and (31) be valid. Then, the SM sequence {xk} produced by (8),
and the MSM sequence {xk} produced by (9), satisfy

f (x(M)SM
k )− f (x(M)SM

k+1 ) ≥ µ‖gk‖
2, (32)

such that

µ = min
{

σ

M
,

σ(1− σ)

L
β

}
. (33)

Theorem 1 investigates the convergence of the FMSM and FSM iterative sequences.

Theorem 1. Let f ∈ =n and (31) be valid. Under these conditions, the FSM sequence induced
by (16), and the FMSM sequence induced by (18), satisfy

f (xF(M)SM
k )− f (xF(M)SM

k+1 ) ≥ µνk‖gk‖2, (34)

such that

µνk = min
{

σνk
M

,
σ(1− σ)

L
β

}
. (35)

Proof. The FSM and FMSM iterations xF(M)SM
k+1 = xF(M)SM

k − tkνkωk(γ
F(M)SM
k )−1gk are of

the general DD pattern xk+1 = xk + tkdk in the case dk = −νkωk(γ
F(M)SM
k )−1gk. According

to the stopping condition used in Algorithm 1, it follows

f (xF(M)SM
k )− f (xF(M)SM

k+1 ) ≥ −σtkgT
k dk, ∀ k ∈ N. (36)

In the occurrence tk < 1, using (36) with dk = −νk ωk(γ
F(M)SM
k )−1gk, one obtains

f (xF(M)SM
k )− f (xF(M)SM

k+1 ) ≥ −σtkgT
k dk = −σtkgT

k

(
−νk ωk(γ

F(M)SM
k )−1gk

)
. (37)

Now, (26) implies

tk ≥ −
β(1− σ)

L
·

gT
k dk

‖dk‖2 = − β(1− σ)

L
·

gT
k

(
−νkωk(γ

F(M)SM
k )−1gk

)
∥∥∥−νkωk(γ

F(M)SM
k )−1gk

∥∥∥2

=
β(1− σ)

L
·

νkωk(γ
F(M)SM
k )−1‖gk‖2

ν2
k ω2

k(γ
F(M)SM
k )−2‖gk‖2

=
β(1− σ)

L
·

γ
F(M)SM
k
νkωk

.

Now, (37), in conjunction with the last inequality, initiates

f (xF(M)SM
k )− f (xF(M)SM

k+1 ) ≥ σtkνkωk(γ
F(M)SM
k )−1gT

k gk

≥ σ
β(1− σ)

L
·

γ
F(M)SM
k
νkωk

νkωk(γ
F(M)SM
k )−1gT

k gk

≥ σ
(1− σ)β

L
‖gk‖2.
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According to (31), in the occurrence tk = 1, we conclude

f (xF(M)SM
k )− f (xF(M)SM

k+1 ) ≥ −σgT
k dk = −σgT

k (−νkωk(γ
F(M)SM
k )−1gk)

=
σ νk

γ
F(M)SM
k

‖gk‖2

≥ σ νk
M
‖gk‖2.

Starting from the above two inequalities, we obtain (34) in both possible situations, tk < 1
and tk = 1, which completes the statement.

Remark 2. Based on (32) and (34), respectively, it follows
f (xF(M)SM

k )− f (xF(M)SM
k+1 ) ∈

[
µνk‖gk‖2,+∞

)
and f (x(M)SM

k )− f (x(M)SM
k+1 ) ∈

[
µ‖gk‖2,+∞

)
.

According to (13), it follows µνk ≥ µ if f (xF(M)SM
k+1 ) < f (xF(M)SM

k ). So,

f (xF(M)SM
k ) − f (xF(M)SM

k+1 ) ∈
[
µνk‖gk‖2,+∞

)
⊆
[
µ‖gk‖2,+∞

)
. This means that values

f (xF(M)SM
k ) − f (xF(M)SM

k+1 ) belong to the interval with values greater than or equal to the in-

terval which includes values f (x(M)SM
k )− f (x(M)SM

k+1 ). Furthermore, it means that possibilities for

the reduction of f (xF(M)SM
k+1 ) compared with f (xF(M)SM

k ) are greater than or equal to possibilities

for the reduction of f (x(M)SM
k+1 ) compared with f (x(M)SM

k ).

Theorem 2 confirms a linear convergence rate of the F(M)SM method for uniformly
convex functions.

Theorem 2. Let f ∈ =n and (31) be valid. If the iterates {xk} are generated by Algorithm 3,
it follows that

lim
k→∞
‖gF(M)SM

k ‖ = 0, (38)

and {xk} converges to x∗ with the least linear convergence rate.

Proof. The proof is analogous to [6] (Theorem 4.1).

In Lemma 3, we investigate the convergence of the F(M)SM method on the class of
quadratic strictly convex functions

f (x) =
1
2

xT Ax− bTx, (39)

wherein A is a real n× n symmetric positive definite and b ∈ Rn. Denote by λ1 ≤ · · · ≤ λn
the sorted eigenvalues of A. The gradient of (39) is given as

gk = Axk − b. (40)

Lemma 3. The eigenvalues of f ∈ =n defined in (39) by a positive definite symmetric matrix
A ∈ Rn satisfy

λ1 ≤
γ

F(M)SM
k+1
tk+1

≤ 2λn

σ
, k ∈ N, (41)

such that γ
F(M)SM
k is determined by (17) and (19), and tk is defined in Algorithm 1.

Proof. Simple calculation leads to

f (xF(M)SM
k+1 )− f (xk)

F(M)SM =
1
2

xT
k+1 Axk+1 − bTxk+1 −

1
2

xT
k Axk + bTxk. (42)



Symmetry 2023, 15, 250 12 of 26

The replacement of (18) in (42) leads to

f (xF(M)SM
k+1 )− f (xF(M)SM

k )=
1
2

[
xk − νktkωk(γ

F(M)SM
k )−1gk]

T A[xk−νktkωk(γ
F(M)SM
k )−1gk

]
− bT[xk − νktkωk(γ

F(M)SM
k )−1gk]−

1
2

xT
k Axk + bTxk

= −1
2

νktkωk(γ
F(M)SM
k )−1xT

k Agk −
1
2

νktkωk(γ
F(M)SM
k )−1gT

k Axk

+
1
2
(νktkωk)

2(γ
F(M)SM
k )−2gT

k Agk + νktkωk(γ
F(M)SM
k )−1bTgk.

Applying (40) in the previous equation, we conclude

f (xF(M)SM
k+1 )− f (xF(M)SM

k )=νktkωk(γ
F(M)SM
k )−1[bTgk − xT

k Agk] +
1
2
(νktkωk)

2(γ
F(M)SM
k )−2gT

k Agk

= νktkωk(γ
F(M)SM
k )−1[bT − xT

k A]gk +
1
2
(νktkωk)

2(γ
F(M)SM
k )−2gT

k Agk

= −νktkωk(γ
F(M)SM
k )−1gT

k gk +
1
2
(νktkωk)

2(γ
F(M)SM
k )−2gT

k Agk.

(43)

After replacing (43) into (19), the parameter γ
F(M)SM
k+1 becomes

γ
F(M)SM
k+1 = 2γ

F(M)SM
k

γ
F(M)SM
k ( fk+1 − fk) + νktkωk‖gk‖2

(νktkωk)2‖gk‖2

= 2γ
F(M)SM
k

−νktkωk‖gk‖2 + 1
2 (νktkωk)

2(γ
F(M)SM
k )−1gT

k Agk + νktkωk‖gk‖2

(νk(tkωk))2‖gk‖2

= 2γ
F(M)SM
k

1
2 (νktkωk)

2(γ
F(M)SM
k )−1gT

k Agk

(νktkωk)2‖gk‖2

=
gT

k Agk

‖gk‖2 .

The last identity implies that γ
F(M)SM
k+1 is the Rayleigh quotient of the real symmetric matrix

A at gk. So,
λ1 ≤ γ

F(M)SM
k+1 ≤ λn, k ∈ N. (44)

The left inequality in (41) is implied by (44), due to tk+1 ∈ (0, 1]. To verify the right
inequality from (41), we use the upper limit imposed by the line search

tk ≥
β(1− σ)γk

L
,

which implies
γ

F(M)SM
k+1
tk+1

<
L

β(1− σ)
. (45)

Taking into account (40), and the symmetricity of A, we derive

‖g(x)− g(y)‖ = ‖Ax− b− (Ay− b)‖ = ‖Ax− Ay‖ ≤ ‖A‖‖x− y‖ = λn‖x− y‖.

Based on the last inequality, it is concluded that the constant L in (45) can be defined as
the largest eigenvalue λn of A. Considering the backtracking parameters σ ∈ (0, 0.5),
β ∈ (σ, 1), it is obtained that

γ
F(M)SM
k+1
tk+1

<
L

β(1− σ)
=

λn

β(1− σ)
<

2λn

σ
. (46)
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Therefore, the right-hand side inequality in (41) is proved, and the proof is finished.

In Theorem 3, we consider the convergence of the FSM and FMSM iterations under
the supplemental presumption λn < 2λ1.

Theorem 3. Let f be a strictly convex quadratic in (39). If the eigenvalues of A satisfy λn < 2λ1,
FSM iterations (16) and FMSM iterations (18) fulfill

(dk+1
i )2 ≤ δ2(dk

i )
2, (47)

wherein

δ = max
{

1− σλ1

2λn
,

λn

λ1
− 1
}

, (48)

and
lim
k→∞
‖gF(M)SM

k ‖ = 0. (49)

Proof. Let {xk} be the output of Algorithm 3 and {v1, . . . , vn} be orthonormal eigenvectors
of A. In this case, for a random vector xk in (40), there exist real constants dk

1, dk
2, . . . , dk

n
such that

gk =
n

∑
i=1

dk
i vi. (50)

Now, using (18), we have

gk+1 = Axk+1 − b

= A
(

xk − νktkωk(γ
F(M)SM
k )−1gk

)
− b

= Axk − b− νktkωk(γ
F(M)SM
k )−1 Agk

= gk − νktkωk(γ
F(M)SM
k )−1 Agk

=
(

I−νktkωk(γ
F(M)SM
k )−1 A

)
gk.

Next, using the (50), we obtain

gk+1 =
n

∑
i=1

dk+1
i vi =

n

∑
i=1

(
1−νktkωk(γ

F(M)SM
k )−1λi

)
dk

i vi. (51)

To prove (47), it is enough to show that
∣∣∣∣1− λi

(νktkωk)−1γ
F(M)SM
k

∣∣∣∣ ≤ δ. Two cases are observable.

Firstly, if λi ≤
γ

F(M)SM
k
νktkωk

using (41), we deduce

1 >
λi

νktkωk)−1γ
F(M)SM
k

≥ σλ1

2λn
=⇒ 1− λi

(νktkωk)−1γ
F(M)SM
k

≤ 1− σλ1

2λn
≤ δ. (52)

Now, let us examine another case γ
F(M)SM
k
νktkωk

< λi. Since

1 <
λi

(νktkωk)−1γ
F(M)SM
k

≤ λn

λ1
, (53)

it follows that ∣∣∣∣∣1− λi

(νktkωk)−1γ
F(M)SM
k

∣∣∣∣∣ ≤ λn

λ1
− 1 ≤ δ. (54)
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Now, we use the orthonormality of the eigenvectors {v1, . . . , vn} and (50) and obtain

‖gk‖2 =
n

∑
i=1

(dk
i )

2. (55)

Since (47) holds and 0 < δ < 1, based on (55), it follows that (50) holds, which completes
the proof.

4. Numerical Experiments

In this section, we prove the numerical efficiency of the gradient methods based on
a dynamic neutrosophic set (DNS). We consider six methods, of which three are FMSM,
FSM, and FGD based on DNS, while the other three methods, MSM, SM, and GD, are well-
known in the literature. To this aim, we perform competitions on standard test functions
with given initial points from [33,34]. We compare the MSM, SM, GD, FMSM, FSM, and
FGD methods on three criteria:

• The CPU time in seconds—CPUts.
• The number of iterative steps—NI.
• The number of function evaluations—NFE.

The methods which participate in the competition are presented in Section 2 (Table 1).
Test problems in ten dimensions [100, 500, 1000, 3000, 5000, 7000, 8000, 10,000, 15,000, 20,000]
are considered. The codes are tested in MATLAB R2017a and an LAP (Intel(R) Core(TM)
i3-6006U, up to 2.0 GHz, 8 GB Memory) with the Windows 10 Pro operating system.

Algorithms MSM, SM, GD, FSM, FGD, and FMSM are compared using the back-
tracking line search with parameters σ = 0.0001, β = 0.8 and the stopping criterion

‖gk‖ ≤ ε and
|∆k|

1 + | fk|
≤ δ,

where ε = 10−6 and δ = 10−16. Specific parameters used only in the FSM, FGD, and
FMSM methods are given in Table 2.

In the following, we give a double analysis of the obtained numerical results. One
analysis of the numerical results is based on the Dolan–Moré performance profile, and the
other on the ranking of the optimization methods.

4.1. Comparison Based on the Dolan–Moré Performance Profile

In this subsection, we give numerical results for the FSM, FGD, and FMSM meth-
ods and then compare them with the numerical results obtained for the MSM, SM, and
GD methods.

Summarized numerical results for the competition (between MSM, SM, GD, FSM,
FGD, and FMSM methods), obtained by testing 30 test functions (300 tests), are given in
Tables 3–5. Tables 3–5 include numerical results obtained by monitoring the criteria NI,
NFE, and CPUts.

Table 3. Summary of NI results for MSM, SM, GD, FSM, FGD, and FMSM.

Test Function
No. of Iterations

MSM FMSM SM FSM GD FGD

Extended Penalty Function 651 377 549 372 1255 1250
Perturbed Quadratic function 44,419 75,431 77,458 74,473 372,356 369,992
Raydan 1 function 12,965 12,437 15,913 11,035 58,743 58,594
Raydan 2 function 90 87 90 94 67 129
Diagonal 1 function 52,527 11,571 8955 12,189 41,208 42,290
Diagonal 2 function 26,215 24,866 30,912 29,957 543,249 543,054
Diagonal 3 function 7545 12,586 13,892 13,050 62,128 61,072
Hager function 28,073 800 839 817 3104 2956
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Table 3. Cont.

Test Function
No. of Iterations

MSM FMSM SM FSM GD FGD

Generalized Tridiagonal 1 function 290 440 270 376 656 665
Extended TET function 130 248 130 225 1974 1856
Extended quadratic penalty QP1 function 328 189 246 177 563 549
Extended quadratic penalty QP2 function 1538 2105 3302 3564 134,401 122,926
Quadratic QF2 function 44,911 14,203 83,957 11,488 409,859 411,364
Extended quadratic exponential EP1 function 87 100 64 109 496 528
Extended tridiagonal 2 function 568 421 419 415 1145 1099
Almost perturbed quadratic function 44,029 78,452 80,559 79,793 374,841 375,518
ENGVAL1 function (CUTE) 363 298 302 291 573 557
QUARTC function (CUTE) 185 216 246 211 524,612 524,612
Diagonal 6 function 90 87 90 95 67 129
Generalized quartic function 150 150 157 238 1453 1751
Diagonal 7 function 124 113 90 136 543 570
Diagonal 8 function 100 86 103 89 583 573
Diagonal 9 function 16,920 17,221 11,487 17,752 195,362 195,155
HIMMELH function (CUTE) 100 90 100 90 90 90
Extended Rosenbrock 50 50 50 50 50 50
Extended BD1 function (block diagonal) 189 204 191 223 650 682
NONDQUAR function (CUTE) 42 39 42 35 33 30
DQDRTIC function (CUTE) 827 635 1263 497 15,320 15,398
Extended Beale function 480 980 639 831 12,834 12,826
EDENSCH function (CUTE) 337 314 275 275 663 705

Table 4. Summary of NFE results for MSM, SM, GD, FSM, FGD, and FMSM.

Test Function
No. of Funct. Evaluation

MSM FMSM SM FSM GD FGD

Extended Penalty Function 3527 2585 2394 2388 47,378 48,057
Perturbed quadratic function 257,063 438,335 439,924 423,195 16,171,466 16,069,927
Raydan 1 function 89,508 69,791 87,508 61,595 1,667,238 1,658,647
Raydan 2 function 190 233 190 235 144 291
Diagonal 1 function 526,958 56,914 47,874 58,155 1,615,828 1,664,760
Diagonal 2 function 158,515 144,005 171,300 166,567 1,086,508 1,086,118
Diagonal 3 function 41,528 71,024 76,336 70,540 2,407,025 2,364,254
Hager function 271,940 3402 3308 3165 56,824 54,818
Generalized tridiagonal 1 function 1012 1587 931 1445 10,867 11,432
Extended TET function 440 681 440 601 19,800 18,859
Extended quadratic penalty QP1 function 1918 1992 2507 1842 10,771 11,268
Extended quadratic penalty QP2 function 10,731 14,285 24,234 26,528 3,875,768 3,545,317
Quadratic QF2 function 245,407 102,882 465,615 80,626 19,072,367 19,141,623
Extended quadratic exponential EP1 function 807 604 587 830 13,643 14,852
Extended tridiagonal 2 function 2550 2123 2285 2111 9570 9464
Almost perturbed quadratic function 259,487 452,388 452,360 445,028 16,285,621 16,309,931
ENGVAL1 function (CUTE) 1974 2700 2098 2315 8787 8593
QUARTC function (CUTE) 420 492 542 472 1,049,274 1,049,304
Diagonal 6 function 229 335 229 263 158 332
Generalized quartic function 409 470 423 781 19,062 25,071
Diagonal 7 function 458 547 293 1094 3348 4286
Diagonal 8 function 326 462 980 612 3921 4078
Diagonal 9 function 141,781 90,948 71,353 89,023 8,449,946 8,455,412
HIMMELH Function (CUTE) 210 190 210 190 190 190
Extended Rosenbrock 110 110 110 110 110 110
Extended BD1 function (Block Diagonal) 558 696 598 691 7660 8452
NONDQUAR function (CUTE) 2084 2085 2057 2060 2500 2501
DQDRTIC function (CUTE) 4090 2805 6518 2542 395,014 400,147
Extended Beale function 2200 4720 3277 3416 207,852 208,551
EDENSCH function (CUTE) 1198 1213 956 872 9403 10,615
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Table 5. Summary of CPUts results for MSM, SM, GD, FSM, FGD, and FMSM.

Test Function
CPU Time

MSM FMSM SM FSM GD FGD

Extended penalty function 3.734 1.969 1.969 1.844 17.672 19.078
Perturbed quadratic function 167.063 323.266 298.813 317.250 10,163.688 9771.406
Raydan 1 function 46.813 35.141 50.953 30.234 727.281 667.094
Raydan 2 function 0.453 0.281 0.281 0.344 0.250 0.531
Diagonal 1 function 522.703 86.500 59.297 99.953 1836.766 2091.281
Diagonal 2 function 236.531 228.188 271.094 276.281 2105.219 2158.156
Diagonal 3 function 75.484 172.250 139.859 157.594 3842.625 4025.688
Hager function 384.438 9.594 9.453 9.250 116.922 118.609
Generalized tridiagonal 1 function 2.656 3.188 2.000 3.797 11.641 14.875
Extended TET function 0.953 1.313 0.906 1.359 15.922 16.281
Extended quadratic penalty QP1 function 1.688 1.625 1.875 1.578 4.203 4.391
Extended quadratic penalty QP2 function 5.844 9.891 7.203 10.516 746.328 770.500
Quadratic QF2 function 124.344 47.875 243.688 35.359 7611.656 8436.359
Extended quadratic exponential EP1 function 0.969 0.594 0.469 1.109 5.281 7.297
Extended tridiagonal 2 function 1.906 1.313 1.609 1.266 3.359 3.766
Almost perturbed quadratic function 135.484 314.953 238.625 267.750 9271.016 13,902.047
ENGVAL1 function (CUTE) 2.031 1.797 1.844 1.828 4.125 4.422
QUARTC function (CUTE) 2.813 2.984 3.250 3.219 6253.828 8032.547
Diagonal 6 function 0.328 0.219 0.344 0.484 0.203 0.438
Generalized quartic function 0.344 0.266 0.438 0.625 6.766 11.922
Diagonal 7 function 0.953 0.797 0.531 1.813 3.672 4.406
Diagonal 8 function 0.781 0.922 1.797 1.047 5.578 4.469
Diagonal 9 function 249.875 74.484 53.234 77.219 2478.422 2705.781
HIMMELH function (CUTE) 0.797 0.594 0.781 0.797 0.609 0.641
Extended Rosenbrock 0.203 0.094 0.156 0.203 0.219 0.141
Extended BD1 function (block diagonal) 0.766 0.766 0.859 0.969 4.984 4.469
NONDQUAR function (CUTE) 7.266 8.891 7.797 9.047 9.406 10.406
DQDRTIC function (CUTE) 2.516 1.500 2.906 1.500 118.250 127.844
Extended Beale function 7.219 18.734 9.766 16.016 488.328 546.359
EDENSCH function (CUTE) 6.141 6.422 4.016 5.063 24.672 36.766

The performance profiles given in [35] are applied to compare numerical results for the
criteria CPUts, NI, and NFE, generated by considered methods. The method that achieves
the best results generates the upper performance profile curve.

In Figure 4 (resp. Figure 5), we compare the performance profiles NI (resp. NFE) for
the MSM, SM, GD, FSM, FGD, and FMSM methods based on numerical values included
in Table 3 (resp. Table 4). A careful analysis reveals that the FMSM method solves 20.00%
of the test problems, with the least NI compared with MSM (33.33%), SM (26.67%), FSM
(33.33%), GD (13.33%), and FGD (10.00%). From Figure 4, it is perceptible that the FMSM
graph attains the top level first, which indicates that FMSM outperforms other methods
with respect to NI.

From Figure 5, we see that the FMSM and FSM methods are more efficient than the
MSM, SM, GD, and FGD methods, with respect to NFE, since they solve FMSM (10.00%)
and FMS (33.33%) of the test problems with the least NFE compared with MSM (40.00%),
SM (26.67%), GD (13.33%), and FGD (6.67%). From Figure 5, it can be observed that the
FMSM and FSM graphs first come to the top, so that FMSM and FSM are the winners
relative to NFE. On the other hand, the slowest iterations are GD and FGD.

Figure 6 shows the performance profile of the considered methods based on the CPUts
for the numerical values included in Table 5. The FMSM method solves 23.33% of the
test problems with the least CPUts compared with MSM (30.00%), SM (23.33%), FSM
(23.33%), GD (6.67%), and FGD (0%). According to Figure 6, the FMSM and FSM graphs
achieve the upper limit level 1 first, which verifies their dominance considering CPUts.
Moreover, GD and FGD are the slowest methods.
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Figure 4. NI performance profiles for the MSM, SM, GD, FSM, FGD, and FMSM methods.
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Based on the data involved in Tables 3–5 and graphs in Figures 4–6, it is noticed that
the FMSM and FSM methods achieved the best results compared with the MSM, SM, GD,
and FGD methods, with respect to three basic criteria: NI, NFE, and CPUts.

Table 6 contains the average CPU time, average number of iterations, and the average
number of function evaluations for all 300 numerical experiments. Minimal values are
marked in bold.

Table 6. Average numerical outcomes for 30 test functions tested on 10 numerical experiments.

Average Performances MSM FMSM SM FSM GD FGD

Average no. of iterations 9477.43 8493.20 11,086.33 8631.57 91,962.60 91,565.67
Average no. of funct. evaluation 67,587.60 49,020.13 62,247.90 48,309.73 2,416,934.77 2,406,242.00
Average CPU time (s) 66.44 45.21 47.19 44.51 1529.30 1783.27

The average results in Table 6 confirm that the average results for FMSM and FSM
are smaller with respect to the corresponding values for MSM and SM relative to NI, NFE,
and CPUts. Such observation leads us to conclude that the use of a dynamic neutrosophic
set (DNS) in gradient methods enables an improvement in the numerical results.

4.2. Closer Examination of the Optimization Methods

A closer examination of the optimization methods is presented in this subsection. The
optimization methods GD, SM, MSM, FGD, FSM, and FMSM are used to solve two test
functions from Tables 3–5 under different initial conditions (ICs). These functions are the
Extended Penalty and the Diagonal 6, while the ICs were set to IC1: 1.5 · 1100, IC2: −1100,
and IC3: 4.5 · 1100 for the former and IC1: 1.5 · 1100, IC2: 2.5 · 1100, and IC3: 3.5 · 1100 for the
latter. It is important to note that 1100 denotes a vector of ones with dimensions 100× 1.
The results of the optimization methods are depicted in Figure 7.
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Figure 7. Convergence of the optimization methods under different ICs. (a) Extended Penalty
function with IC1. (b) Extended Penalty function with IC2. (c) Extended Penalty function with IC3.
(d) Diagonal 6 function with IC1. (e) Diagonal 6 function with IC2. (f) Diagonal 6 function with IC3.
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In the case of the Extended Penalty function, Figure 7a–c show, respectively, the
convergence of the optimization methods with IC1, IC2 and IC3. Therein, the convergence
of FGD and FSM are identical in the cases of IC1 and IC2, whereas the convergence of
FGD is slightly faster than GD’s, and the convergence of FSM is slightly faster than SM’s
in the case of IC3. The convergence of FMSM is faster than MSM’s in the cases of IC2 and
IC3, but it is slower than the convergence of FGD and FSM in the case of IC1. Additionally,
FMSM finds the function’s minimum point for all ICs with greater accuracy than the
other methods.

In the case of the Diagonal 6 function, Figure 7d–f show, respectively, the convergence
of the optimization methods with IC1, IC2, and IC3. Therein, the convergence of GD and
FGD are identical for all ICs, whereas the convergence of FSM is faster than SM’s for all
ICs. The convergence of FMSM is faster than MSM’s in the cases of IC1 and IC2 and
slower in the case of IC3. However, FMSM finds the function’s minimum point in the
cases of IC2 and IC3 with greater accuracy than the other methods, while MSM finds the
function’s minimum point in the case of IC1 with greater accuracy than the other methods.
Additionally, GD and FGD have the fastest convergence in the case of IC1, while FSM has
the fastest convergence in the cases of IC2 and IC3.

In general, all the optimization methods presented here were able to find the minimum
of the Extended Penalty and the Diagonal 6 functions. The ICs have a significant impact on
the optimization methods’ accuracy and speed of convergence. However, FGD, FSM, and
FMSM have faster convergence than GD, SM, and MSM, respectively, in most cases.

4.3. Ranking the Optimization Methods

In this subsection, the performances of the optimization methods GD, SM, MSM,
FGD, FSM, and FMSM on solving the 30 test functions included in Table 3–5 are ranked
from best to worst, i.e., rank 1 to rank 6, respectively.After determining the rank for each
test function for each method, it is necessary to calculate the final rank of the methods. The
final rank of the methods is based on the average of the ranks obtained for each method in
relation to the observed test functions. The method with the lowest average has the highest
rank, i.e., rank 1, while the method with the highest average has the lowest rank, i.e., rank 6.
We denote by nm (resp. nt f ) the number of methods (resp. the number of test functions).
Given a set of methods M and a set of functions F, the rank of the method x on the function
y is defined by rx,y. In our case, rx,y stands rank method x for the observed test function
y and can have rank 1 to rank 6. The average rank of method x ∈ M is calculated in the
following way:

ARx =
∑y∈F rx,y

nt f
,

where ARx represents the average of all ranks of the observed method x. The final average
rank in our case is obtained when all average ranks are ranked from best to worst, i.e.,
rank 1 to rank 6, respectively.

Figure 8 shows the iterations’ performance rank of the optimization methods on
30 functions and their average iterations’ rank. Note that a method is regarded as rank 1
if it requires the fewest iterations out of all the considered methods. If a method has the
second-fewest iterations compared with all the compared methods, it would be considered
rank 2, and so on. Particularly, Figure 8a displays the number of functions in which each
method is ranked as rank 1, rank 2, etc., while Figure 8b displays the final rank of the
methods based on the average of the results presented in Figure 8a.
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Figure 8. Iterations’ performance ranks of the optimization methods on 30 functions and their average
rank. (a) Iterations’ performance. (b) Average of iterations’ performance.

For example, in Figure 8a, MSM reached rank 1 in the same or a higher number of
test functions than FSM and FMSM. However, because MSM achieved rank 6 in many
more functions than FSM and FMSM in Figure 8b, MSM has an average rank 3, FSM
an average rank 2, and FMSM an average rank 1. In other words, FMSM outperforms
FSM and MSM in terms of iteration performance. Moreover, the fact that FMSM and FSM
iterations outperform their corresponding original methods is another important discovery
from Figure 8b.

Figure 9 shows the function evaluations performance ranking on 30 functions and their
average rank. Note that a method is regarded as rank 1 if it requires the fewest number of
function evaluations out of all the considered methods. If a method has the second-fewest
function evaluations compared with all the compared methods, it would be considered
rank 2, and so on. Particularly, Figure 9a displays the number of functions in which each
method is ranked as rank 1, rank 2, etc., whereas Figure 9b displays the final function
evaluation ranks of the methods based on the average of the results presented in Figure 9a.
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Figure 9. Function evaluation performance ranks of the optimization methods on 30 functions and their
average rank. (a) Function evaluations performance. (b) Average of function evaluation performance.

MSM achieved rank 1 positions in a higher number of functions than all the methods
considered in Figure 9a, whereas FGD was considered rank 6 in a higher number of
functions than all the methods that were considered. As a result, MSM has the average
rank 1, and FGD takes the average rank 6 in Figure 9b. That is, MSM outperforms all the
considered methods in terms of function evaluation performance. Moreover, the fact that
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FSM, the fuzzy method, outperforms the original SM method is another crucial discovery
from Figure 9b.

Figure 10 shows the CPU time consumption performance rank of the optimization
methods on 30 functions and their average rank. A method is of rank 1 if it requires the
least amount of CPU time compared with all the methods considered. A method achieves
rank 2 if it requires the second-least amount of CPU time compared with all the methods,
and so on. Particularly, Figure 10a displays the number of functions in which each method
is ranked as rank 1, rank 2, etc., whereas Figure 10b displays the final rank of the methods,
based on the average of the results presented in Figure 10a.
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Figure 10. CPU time consumption performance ranks of the optimization methods on 30 functions and
their average rank. (a) Time consumption’s performance. (b) Average of time consumption’s performance.

MSM is observed as rank 1 in a higher number of functions than all the methods
considered in Figure 10a, whereas FGD was considered rank 6 in a higher number of
functions than all the compared methods. As a result, MSM has an average rank 3 and
FGD an average rank 6 in Figure 10b. If we look at Figure 10b, we can see that FMSM
outperforms all the methods considered in terms of CPU time consumption performance.

To summarize, all the fuzzy methods work excellently in finding the minimum of the
30 functions. In general, FMSM has the best iteration performance, MSM has the best function
evaluation performance, and FMSM has the best CPU time consumption performance.

We use the notationMi ≺Mj to signify that the methodMi is ranked better thanMj.

Figure 8b leads to the conclusion FMSM ≺ FSM ≺ MSM ≺ SM ≺ GD ≺ FGD.
Figure 9b leads to the conclusion MSM ≺ FSM ≺ SM ≺ FMSM ≺ GD ≺ FGD.
Figure 10b leads to the conclusion FMSM ≺ SM ≺ MSM ≺ FSM ≺ GD ≺ FGD.

In general, FMSM has the best iteration performance, MSM has the best function
evaluation performance, and FMSM has the best CPU time consumption performance.
An interesting conclusion is GD ≺ FGD in the last positions according to all criteria. A
particularly interesting observation is that the proposed fuzzy parameter νk improves the
SM and MSM methods, but it is not suitable for GD. The logical conclusion is that the
fuzzy parameter νk is not desirable to use in the role of an isolated parameter, but it is
preferable to use it in combination with other scaling parameters.

4.4. Application of the Fuzzy Optimization Methods to Regression Analysis

Regression analysis is an important statistical tool commonly used in the fields of
accounting, economics, management, physics, finance, and many more. This tool is used to
study the interaction between independent and dependent variables of various data sets.
The classical function of regression analysis is defined as

y = f (x1, x2, . . . , xk + ε), (56)
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where xi, i = 1, 2, . . . , k, k > 0 are predictor variables, y is the response variable, and ε is the
error. The linear regression function is obtained by a straight line relationship between y
and x

y = a0 + a1x1 + a2x2 + · · ·+ akxk + ε, (57)

where a0, a1, . . ., ak are the parameters of the regression. The main aim of regression analysis
is to estimate the parameters a0, a1, . . ., ak so that the error ε is minimized. However, the
linear relationship rarely occurs. Thus, a nonlinear regression scheme is frequently used. In
this paper, we considered the quadratic regression model. The least squares method is the
most popular approach to fitting a regression line and is defined by

y = a0 + a1x + a2x2. (58)

The errors for a set of data (xi, yi), i = 1, 2, . . . , n are defined as follows

Ei(a) = yi − (a0 + a1xi + a2x2
i ), a = (a0, a1, a2). (59)

The main goal would be to fit the “best” line through the data in order to minimize the sum
of the residual error squares for all the available data

min
a∈R3

n

∑
i=1

E2
i (a), a = (a0, a1, a2). (60)

The data set in Table 7 is a detailed description of people killed in traffic accidents in Serbia
from 2012–2021. This set was considered based on the annual reports of the Agency for
Traffic Safety of the Republic of Serbia. The ordinal number of the year of data collection is
denoted by the x variable and the number of people killed in traffic accidents in Serbia is
represented by the y variable. Moreover, only data from 2012–2020 would be considered
for the data fitting, while data for 2021 would be reserved for the error analysis.

Table 7. The number of people killed in traffic accidents in Serbia from 2012 to 2021.

Year Number of Data (x) The Number of People Killed in Traffic Accidents in Serbia (y)

2012 1 688
2013 2 650
2014 3 536
2015 4 599
2016 5 607
2017 6 579
2018 7 548
2019 8 534
2020 9 492
2021 10 521

The least squares, FMSM, FSM, and FGD methods are used for fitting the regression
models to the data collected. The least squares method is frequently used to solve overde-
termined linear systems, which usually occurs when the given equations are greater than
the number of unknowns [36]. The least squares method includes determining the best
approximating line by comparing the total least squares error.

The approximate function for the nonlinear least squares method derived using the
data in Table 7 is defined as follows:

f (x) = 0.5303030303031x2 − 24.1030303030320x + 685.1666666666750. (61)

For more details on how the approximate function (61) is calculated, see [36]. Let xi
denote the ordinal number of the year and yi be the number of people killed in traffic
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accidents in that year. Then, the least squares method (58) is transformed into the following
unconstrained minimization problems:

min
a∈R3

f (a) = min
a∈R3

n

∑
i=1

E2
i (a) =

n

∑
i=1

(
yi − (a0 + a1xi + a2x2

i )
)2

, a = (a0, a1, a2). (62)

where n = 9, i.e., i has values from 1 to 9, corresponding to the years 2012 to 2020. The data
from 2012–2020 are utilized to formulate the nonlinear quadratic model for the least square
method and the corresponding test function of the unconstrained optimization problem.
However, the data for 2021 are excluded from the unconstrained optimization function so
that it could be used to compute the relative errors of the predicted data. The relative error
is calculated using the following formula to measure the precision of a regression model:

Relative Error =
|Exact value− Approximate value|

|Exact value| . (63)

The regression model with the least relative error is considered the best.
The application of the conjugate gradient method in regression analysis to the opti-

mization problems in finding the regression parameters a0, a1, . . ., ak was considered in
[37–40]. To overcome the difficulty of computing the values of a0, a1, and a2 using the
matrix inverse, the researchers employed the proposed FMSM, FSM, and FGD methods to
solve the test function (62), and the result is presented in Table 8.

Table 8. Test results for optimization of quadratic model for the FMSM, FSM, and FGD methods.

Method Initial Point NI NFE CPUts
Regression Parameters (a0, a1, a2)

a0 a1 a2

FMSM (1,1,1) 28,998 119,898 1.484 685.166632504562 −24.1030144870845 0.530301492634611
FSM (1,1,1) 29,612 120,545 1.609 685.166666629541 −24.1030302889654 0.530303029090458
FGD (1,1,1) 173,004 7,861,471 35.125 685.161769964723 −24.1009143873562 0.530114238129987

FMSM (5,5,5) 29,791 126,449 1.750 685.166627004962 −24.102996538241 0.530299060289809
FSM (5,5,5) 29,504 119,706 1.406 685.166666659503 −24.1030303019929 0.530303030290009
FGD (5,5,5) 172,876 7,855,584 36.812 685.161745521808 −24.1009038359837 0.530113219772043

FMSM (−1,−1,−1) 29,259 120,695 1.484 685.166666761033 −24.1030303425383 0.530303033790302
FSM (−1,−1,−1) 29,513 119,912 1.328 685.166388359794 −24.1029100449169 0.530292483042678
FGD (−1,−1,−1) 173,698 7,893,030 37.797 685.161987072222 −24.1010082057947 0.530122579942827

The statistics of people killed in traffic accidents in Serbia is estimated using the
proposed FMSM, FSM, FGD, least squares, and trend line methods. The trend line is
plotted based on the real data obtained from Table 7 using Microsoft Excel and is shown in
Figure 11. The equation for the trend line is in the form of a nonlinear quadratic equation

y = 0.5303x2 − 24.103x + 685.17. (64)

If we compare the approximation functions (61) and (64), as well as the regression parame-
ters from Table 8 obtained using the FMSM, FSM, and FGD methods, we can see that there
are small differences in the values of the parameters a0, a1, and a2.
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Figure 11. Nonlinear quadratic trend line for people killed in traffic accidents in Serbia.

The functions of the trend line (64) and the least square method (61) are compared with
approximation functions from the FMSM, FSM, and FGD methods obtained by substituting
the values of the parameters a0, a1, and a2 in (58) for the initial point (1,1,1).

The primary aim of regression analysis is to estimate the parameters a0, a1, . . ., ak such
that the error ε is minimized. From Table 9, the proposed FMSM, FSM, and FGD methods
have similar relative errors compared with the least square and trend line methods.

Table 9. Estimation point and relative errors for 2021 data.

Method Estimation Point Relative Error

FMSM 497.16664 0.045745419
FSM 497.16667 0.045745362
FGD 497.16405 0.045750384

Least Square 497.16667 0.045745361
Trend line 497.17000 0.045738964

Thus, we can conclude that the proposed FMSM, FSM, and FGD methods are applica-
ble to real-life situations.

5. Conclusions

It is known that iterations for solving nonlinear unconstrained minimization are based
on the step size defined by the inexact line search. Such step size enables just a sufficient
decrease in the value of the objective function. However, after that, there are plenty of
possibilities for future adjustments based on the behavior of the objective function. Our
goal is to use additional step length parameters to improve convergence. One of these
parameters is the gammak parameter, which is defined in previous works based on Taylor
expansion of the objective function. The second parameter, νk, is defined in this paper
using neutrosophic logic and the behavior of the objective function in two consecutive
iterations. The enhancements of main line search iterations for solving unconstrained
optimization are provided based on application of netrosophic logic. Using an appropriate
neutrosophic logic, we propose an additional gain parameter νk to solve uncertainty in
defining parameters of nonlinear optimization methods. The parameter arises as the
output from an appropriately defined neutrosophic logic system, and it is usable in various
gradient descent methods as a corrective step size.

Performed theoretical analysis reveals convergence of novel iterations under the same
conditions as for corresponding original methods. Numerical comparison and statistical
ranking point out better results generated by the proposed enhanced methods compared
with some existing methods. Moreover, statistical measures reveal advantages of fuzzy
and neutrosophic improvements compared with original line search optimization methods.
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Precisely, our numerical experience shows that the neutrosophic parameter νk is particularly
efficient as an additional step size composed with previously defined parameters. Direct
application of νk is not so effective.

Additional research includes several new directions. First of all, other strategies in
neutrosophication and de-neutrosophication are possible, as well as other frameworks
parallel to neutrosophic sets, known as picture fuzzy sets and spherical fuzzy sets, discussed
in the following articles [41,42]. These can be discussed in future research.

Empirical evaluation shows high sensitivity of the results on the choice of the pa-
rameters that define the truth, falsity, and indeterminacy membership functions. Such
experience confirms the assumption that a different configuration of parameters, as well
as improvements in the neutrosophic logic engine, can lead to further improvements of
defined methods. The possibility to define if–then rules in a more sophisticated way based
on the history of the obtained values of f (x) remains an open topic for future research.
Another topic of future study is the investigation of a neutrosophic approach to enhance
stochastic optimization methods. In addition, positive definite matrices Bk are usable as
more precise approximations of the Hessian compared with simplest diagonal approxi-
mations. Finally, continuous-time nonlinear optimization assumes time-varying scaling
parameters inside a selected time interval.
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