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Abstract: We investigate a solution of a convex programming problem with a strongly convex
objective function based on the dual approach. A dual optimization problem has constraints on the
positivity of variables. We study the methods and properties of transformations of dual variables that
enable us to obtain an unconstrained optimization problem. We investigate the previously known
method of transforming the components of dual variables in the form of their modulus (modulus
method). We show that in the case of using the modulus method, the degree of the degeneracy of
the function increases as it approaches the optimal point. Taking into account the ambiguity of the
gradient in the boundary regions of the sign change of the new dual function variables and the increase
in the degree of the function degeneracy, we need to use relaxation subgradient methods (RSM) that
are difficult to implement and that can solve non-smooth non-convex optimization problems with a
high degree of elongation of level surfaces. We propose to use the transformation of the components
of dual variables in the form of their square (quadratic method). We prove that the transformed
dual function has a Lipschitz gradient with a quadratic method of transformation. This enables us
to use efficient gradient methods to find the extremum. The above properties are confirmed by a
computational experiment. With a quadratic transformation compared to a modulus transformation,
it is possible to obtain a solution of the problem by relaxation subgradient methods and smooth
function minimization methods (conjugate gradient method and quasi-Newtonian method) with
higher accuracy and lower computational costs. The noted transformations of dual variables were
used in the program module for calculating the maximum permissible emissions of enterprises (MPE)
of the software package for environmental monitoring of atmospheric air (ERA-AIR).

Keywords: convex programming; strongly convex functions; nonlinear programming; dual problem;
subgradient; subgradient methods; optimization algorithms

1. Introduction

Convex optimization [1–4] has become an efficient and important method to solve
multi-dimensional problems in many fields, such as energy management [5–7], transporta-
tion management [8], trajectory optimization [9–13], image restoration [14], text summa-
rization [15], cryptography [16], robotics [17], machine learning [18], and many others.

Methods for solving optimization problems using the dual approach are being in-
tensively developed [19–31] as they can greatly simplify the solution of certain types of
nonlinear programming problems. The dual approach is efficient at low computational
costs for obtaining the characteristics of the dual function, which is typical, for example, for
minimizing separable functions with linear constraints. When the number of constraints is
significantly less than the number of variables, the transition from the original problem to
the dual one enables us to obtain a problem of much smaller dimensionality.
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In the article, we consider methods for solving a convex programming problem with
a strongly convex objective function based on the dual approach. The complexity of
optimizing the dual function in the problem of convex programming, in contrast to the
dual functions considered in [19], lies in the presence of constraints on the positivity of the
variables. It seems reasonable to develop and investigate ways to reduce such a problem to
an unconstrained optimization problem, where modern efficient numerical methods for
optimizing smooth and non-smooth functions are applicable.

The standard way to reduce such a problem to an unconstrained optimization problem
is to replace the components of the dual variables by their moduli [32] (modulus method).
Given a strongly convex objective function in a convex programming problem, the dual
function is differentiable with a Lipschitz gradient in the range of positivity of the vari-
ables [33–37]. Replacing the components of the dual function variables by their moduli [32],
we obtain a multi-extremal function that is differentiable with a Lipschitz gradient in the
range of the sign constancy of the components of the generated variables (SCV) and having
a local extremum determining the extremal dual variables. The ambiguity of the gradient
arises in the regions of the sign change of the components of the transformed dual variables
corresponding to inactive constraints. The components of the gradients corresponding to
such variables at the boundary of adjacent SCV regions are equal in magnitude and have
opposite signs.

We show that the cone of possible directions (CPD) for improving the dual function
performance index, determined by a set of gradients in the neighborhood of a point from
the boundary region for adjacent SCV regions, narrows as it approaches the extremum.
RSM methods are suitable for such a situation [38–43]. The organization of RSM methods is
to find the descent direction that enables us to go beyond a particular neighborhood of the
current extremum [40–43], i.e., they find a descent direction that is gradient-consistent with
all gradients in the neighborhood of the current extremum approximation. The narrower
the CPD, the lower the convergence rate and the higher the computational cost of finding
the RSM optimum [40–43]. Thus, with the modulus method of transforming dual variables,
the dual function is non-smooth, and its degree of degeneracy increases as it approaches
the extremum. This negatively affects the convergence rate of the minimization method
and leads to a decrease in the accuracy of the resulting solution. In this case, it becomes
necessary to involve complex subgradient methods of accelerated convergence for solving
the problem.

Considering the noted shortcomings of the modulus transformation, it is important
to search for a transformation of dual variables without gradient discontinuities. Our
contribution is as follows. We propose a quadratic transformation of dual variables for
the optimization problems with the number of constraints much less than the number of
variables. The quadratic transformation method has proved successful in the problem
of imposing constraints on the pollutant emissions of enterprises [33], which aroused
interest in studying the properties of the function transformed in this way. In this work,
we prove that in the case of a quadratic transformation, the gradient of the newly formed
function is Lipschitz. In addition to subgradient methods, the noted property enables
us to exploit methods of unconstrained minimization of smooth functions in solving the
problem. As a result of a quadratic method compared to a modulus one, this is an increase
in the convergence speed of the minimization method and the accuracy of the resulting
solution when using well-studied and proven fast-converging methods for minimizing
smooth functions.

We conducted a computer experiment for practical analysis of the methods for trans-
forming dual variables. Models of convex programming problems similar in properties
to those used in the software package for environmental monitoring of atmospheric air
(ERA-AIR) [33] were taken as tests. Based on the extremum conditions, convex program-
ming problems with two-sided constraints were generated with a number of variables up
to 10,000 and a number of linear constraints up to 1000. The number of active two-sided
and linear constraints varied.
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To solve test problems, we used the multi-step subgradient method [43], subgradient
methods with a change in the space metric [40–42], the BFGS (Broyden–Fletcher–Goldfarb-
Shanno) quasi-Newtonian method [44–47], and the conjugate gradient method [34]. In the
case of a quadratic transformation, the number of iterations required to solve the problem
was reduced and the accuracy of its solution was increased. Problems with a quadratic
transformation of the dual function variables were also successfully solved by rapidly
converging methods for minimizing smooth functions: the conjugate gradient method [34]
and the quasi-Newtonian BFGS method [44–47].

The noted transformations of dual variables were used in the program module for
calculating the MPE, which is the part of the software package for environmental mon-
itoring of atmospheric air, ERA-AIR. In related literature, the authors present different
types of models for this applied problem: regression models [48,49], the particle swarm
optimization model [50], the fuzzy c-means model [50], and a nonlinear programming
model [51–53].

The rest of the paper is organized as follows. In Section 2, we formulate the dual
problem for a convex programming problem with a strongly convex objective function and
a summary of the results of the duality theory necessary for further research. In Section 3,
we study the previously known modulus method for reducing the dual problem to an
unconstrained optimization, and we propose the quadratic transformation of dual variables
in Section 4. In Section 5, we provide a description of test problems, and we present the
results of their solution in Section 6. In Section 7, we present the results of solving the
applied problem of calculating the MPE of enterprises using the software package for
environmental monitoring of atmospheric air. In Section 8, we summarize the work.

2. The Problem Formulation

Consider the convex programming problem:

min
x∈Q

f (x), Q ⊂ Rn, (1)

gi(x) ≤ 0, i = 1, 2, . . . , m. (2)

In contrast to [15], where linear equality constraints are used, constraints (2) have the
form of inequalities, which imposes restrictions on the positivity of dual variables.

Assumption 1. In problem (1)–(2), assume that f is a strongly convex function, gi are convex
functions, set Q ⊂ Rn is a convex closed bounded set, and the Slater condition is satisfied, i.e., there
is an interior point x0 of the set Q, such that the following conditions are satisfied:

gj(x0) < 0, j = 1, 2, . . . , m. (3)

We form the Lagrangian function

L(x, y) = f (x) + 〈y, g(x)〉, y ∈ Rm, y ≥ 0, x ∈ Q, (4)

where yT = (y1,y2, . . . ,ym) are the Lagrange multipliers and gT(x) = (g1(x), g2(x), . . . ,gm(x)).
Here and in the following, we denote by 〈y,g〉 the scalar product of vectors y,g.

According to [34], we introduce the dual function

ψ(y) = inf
x∈Q

L(x, y) = min
x∈Q

[ f (x) + 〈y, g(x)〉], y ≥ 0 (5)

and formulate the dual problem

maxψ(y), y ≥ 0. (6)
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Let us introduce the function φ(y) = −ψ(y), y ≥ 0. Instead of (6), we get the problem of
minimizing a convex function

min φ(y), y ≥ 0. (7)

If Assumption 1 holds, then the function ψ(y) is differentiable [34]. The gradients of
the functions ψ(y) and φ(y) are [19]:

∇ψ(y) = g( x(y) ), ∇φ(y) = −g( x(y) ), y ≥ 0, (8)

where x(y) = argmin
x∈Q

L(x, y). The gradient ∇φ(y) in the area y ≥ 0 satisfies the Lipschitz

condition [34,54]
||∇φ(y1)−∇φ(y2)|| ≤ Lφ||y1 − y2||. (9)

Here and below, ||a|| = (a, a)0.5 is the norm of the vector a.
For m << n and given a simple method for finding the minimum point of the La-

grangian with respect to x, the transition to the dual problem may simplify the solution.
The complexity of solving the problem (7) lies in the presence of the constraint y ≥ 0, which
prevents the use of efficient numerical methods of unconstrained optimization. In this paper,
we consider two ways to reduce the constrained optimization problem (7) to the uncon-
strained minimization problem and study their properties theoretically and experimentally.

3. Qualitative Analysis of the Modulus Transformation of Dual Variables

Assume that Assumption 1 holds for the primal convex programming problem (1),
(2). To reduce problem (7) to an unconstrained optimization problem, we use the following
transformation of variables [32]:

yT(u) = (|u1|, |u2|, . . . , |um|), i = 1, 2, . . . , m. (10)

The transformation method (10) was previously called the modulus method. Let us
denote θ(u) = φ(y(u)). The minimization problem (7) under such a variables substitution
takes the form

min θ(u), u ∈ Rm. (11)

The problem (11) is multi-extremal, but in each of the quadrants determined by the sign
constancy of the components of the variable u, the function is convex, and the components
of its gradient are given by the expression

∇θi(u) = −sign(ui) · gi( x(y(u)) ), i = 1, 2, . . . , m. (12)

In each of the quadrants, the gradient satisfies the Lipschitz condition. Note that,
because of the convexity of the function, the gradients in the corresponding quadrants are
also subgradients. At points on the boundaries of adjacent quadrants, we have gradients
of adjacent areas. For this reason, to solve the problem of minimizing the function (11),
we can use relaxation subgradient methods, in which the descent direction is chosen so
that leaving the neighborhood of the current minimum is possible by one-dimensional
minimization along this direction.

Using a two-dimensional problem as an example, let us consider the problem of
increasing the degree of conditionality of the problem at the extremum area. Let us assume
that the number of constraints in the problem (1), (2) is m = 2, and the minimum in the
corresponding problem (11) is at the point

(u∗)T = ( u∗1 > 0, u∗2 = 0). (13)
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Here, we assume that only the first condition is active. The gradients (12) at the
point (13) at u2 = 0, depending on whether they belong to the area u2 ≥ 0 or u2 ≤ 0,
respectively, have the form

(g∗+)
T = (0, −g∗2), (g∗−)

T = (0, g∗2). (14)

Since constraint g2(x) is inactive, g∗2 < 0.
For a small δ1 > 0, let us consider the gradients of problem (11) on the boundary of

the domains at u2 = 0 in the point

(u0)
T
= (u∗1 − δ1 > 0 , u0

2 = 0), (15)

determined by belonging to half-planes u2 ≥ 0 and u2 ≤ 0, respectively:

(g0
+)

T
= (ε1, −g∗2 + ε2), (g0

−)
T
= (ε1, g∗2 − ε2). (16)

Since the gradients in the half-planes u2 ≥ 0 and u2 ≤ 0 satisfy the Lipschitz condition
and ||u0 − u∗|| = δ1, the value δ1 determines the smallness of the values ε1 and ε2. Here
ε1 < 0, since the gradients (16) are subgradients of the function θ(u) that is convex in
the corresponding half-planes. Therefore, each subgradient represents a normal on the
tangential hyperplane to the level surface, and the reverse direction of the subgradients
shows the half-plane of the minimum point for this hyperplane.

In plane u1, u2, Figure 1 shows points u∗, u0, gradients g0
+, g0

− and the line segments
L+, L−, whose normals are the corresponding gradients g0

+, g0
−. The set G is the convex

hull of the gradients g0
+, g0

−. To reduce the function from the point u0, we need to find the
direction falling into the interior of the cone with the opening angle α, bounded by the lines
L+, L−. The value of the angle α is proportional to the component ε1. Since the gradients
of each of the half-planes satisfy the Lipschitz condition, the values of ε1 and ε2 decrease
as the minimum is approached, i.e., as the value δ1 in (15) decreases. Thus, the cone of
possible directions for decreasing the function narrows as it approaches the minimum.
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Let us consider the effect of the above feature on the convergence rate of relaxation
subgradient methods. According to research [40–43], an RSM contains a built-in algorithm
for finding the descent direction that forms an acute angle with all subgradients in the
neighborhood of the current minimum. Minimizing the function along the opposite direc-
tion (with a minus sign) allows us to go beyond the neighborhood of the current minimum.
RSMs are formed as follows. Let us consider the problem of minimizing a function f (x) in
Rn solved.
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In the RSM, successive approximations are built according to the equations [40–43]:

xk+1 = xk − γksk+1, γk = argmin
γ∈R

f (xk − γsk+1), (17)

where the descent direction sk is chosen as a solution to the system of inequalities [40–43]:

〈s, g〉 > 0, ∀g ∈ G. (18)

Here, G is the subgradient set in the neighborhood of the current minimum point xi.
The system of inequalities (18) in the RSM is solved by iterative methods, using subgradients
calculated on the descent trajectory of the minimization algorithm. As experience shows,
RSMs are suitable for solving smooth and non-smooth non-convex minimization problems.
Theoretical studies show that the speed of finding the descent direction is determined by
the ratio of the lengths of the minimum to the length of the maximum vectors of the convex
hull of subgradients in the current minimum domain. It decreases as the value of this ratio
decreases. In the example, this ratio for set G at the point u0 is equal to

τ =
|ε1|
||g0
−||

=
|ε1|
||g0

+||
→ 0 , by δ1 → 0. (19)

This means that the cost of finding the direction of descent in the RSM method is
increased at δ1 → 0.

Since the components of the gradients along u2 near the extremum are practically
fixed and non-zero in gradient-type methods, the region near u2 = 0 is the area of attraction
for the sequence of points searched for a minimum when approaching the extreme value
by subgradient methods. Therefore, it is appropriate to use the described problem of
narrowing the cone of permissible directions to decrease the objective function as one
approaches the extremum.

The narrowing of the cone of admissible directions leads to an increase in the compu-
tational cost of subgradient methods, which is confirmed by a computational experiment.
To improve the accuracy in solving the problem, it is necessary to apply more complex
subgradient methods with a change in the space metric [40–42] and use parameter settings
that significantly increase the computational cost.

4. Qualitative Analysis of the Quadratic Transformation of Dual Variables

Let assumption 1 be satisfied with respect to the primal problem of convex program-
ming (1), (2). To reduce the problem (7) to an unconstrained optimization problem, we use
the transformation of variables in the following form:

yT(u) = (u2
1, u2

2, . . . , u2
m), i = 1, 2, . . . , m. (20)

The transformation method (20) was previously called the quadratic method. Let us de-
note Φ(u) = φ(y(u)). The minimization problem (7) under such a change of variables becomes

min Φ(u), u ∈ Rm. (21)

Problem (21) is multiextremal, with each minimum u* giving the optimal value of
the dual variables y(u*). Given the expressions (8) for the function φ(y), the gradient
components of the function are given by

∇Φi(u) = −2uigi( x(y(u)) ), i = 1, 2, . . . , m. (22)

We want to show that the gradient of the function Φ(u) satisfies the Lipschitz condition.
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Theorem 1. Let Assumption 1 hold for the primal convex programming problem (1), (2) and, then,
in the bounded domain

||u|| ≤ R (23)

the gradient of the function satisfies the Lipschitz condition.

Proof of Theorem 1. Denote a, b ∈ Rm, ya = y(a), yb = y(b), ga = g(y(a)), gb = g(y(b))
and write the components of the gradient difference

(∇Φ(a)−∇Φ(b))i/2 = big
b
i − aig

a
i = ai(gb

i − ga
i ) + gb

i (bi − ai), i = 1, 2, . . . , m. (24)

Form vectors v, z ∈ Rm with components vi = ai(gb
i − ga

i ), zi = gb
i (bi− ai), i = 1, 2, . . . , m.

Taking into account the notation and properties of the norm, we obtain from (24)

||∇Φ(a)−∇Φ(b)||/2 = ||v + z|| ≤ ||v||+ ||z||. (25)

Let us estimate ||v||2 taking into account (9):

||v||2 =
m
∑

i=1
a2

i (gb
i − ga

i )
2 ≤

m
∑

i=1
a2

i

m
∑

i=1
(gb

i − ga
i )

2
= ||a||2 · ||gb − ga||2 ≤

Lφ||a||2 · ||yb − ya||2 ≤ Lφ||a||2 · ||a− b||2 · ||a + b||2.

Here, the last inequality is derived on the basis of the estimate

||yb − ya||2 =
m
∑

i=1
(a2

i − b2
i )

2
=

m
∑

i=1
(ai − bi)

2(ai + bi)
2 ≤

m
∑

i=1
(ai − bi)

2 m
∑

i=1
(ai + bi)

2 = ||a− b||2 · ||a + b||2.

Get an estimate of ||z||2:

||z||2 =
m

∑
i=1

(gb
i )

2
(bi − ai)

2 ≤
m

∑
i=1

(gb
i )

2 m

∑
i=1

(bi − ai)
2 ≤ ||gb||2 · ||b− a||2.

Finally, taking into account (23), we obtain the proof

||∇Φ(a)−∇Φ(b)|| ≤ 2(||v||+ ||z||) ≤
2Lφ||a|| · ||a− b|| · ||a + b||+ 2||gb|| · ||b− a|| ≤
4LφR2 · ||a− b||+ 2Cg · ||b− a|| ≤ LΦ||a− b||,

where Cg = max
x∈Q
||g(x)||. �

Gradient minimization methods are suitable for solving minimization problems with
a Lipschitz gradient [34].

5. Test Problems

We formed the following problems for testing:

min
x∈Q

f (x, c), c, x ∈ Rn, (26)

Ax ≤ b, b ∈ Rm, A ∈ Rm×n, (27)

Q = {x|a ≤ x ≤ d}, a, d ∈ Rn (28)

Here, the parameters c, A, b, d are defined when tests are created. The constraints (27)
together with (28) can be represented as follows

Ax− b ≤ 0, x− d ≤ 0,−x + a ≤ 0. (29)
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Denote ÂT = (AT , I, −I), b̂T = (bT , d, −a). Constraints (29) can be rewritten as

Âx− b̂ ≤ 0. (30)

For problem (26) and (30), we write the Lagrange function

L(x, ŷ) = f (x, c) +
〈

ŷ, Âx− b̂
〉

, (31)

where ŷ is the vector of Lagrange multipliers of the combined group of linear constraints (30)

ŷ ∈ Rm+n+n, ŷT = (yT
b , yT

d , yT
a ), yb ∈ Rm, yd, ya ∈ Rn ŷ ≥ 0. (32)

The optimality conditions for the problem (26), (30) includes the stationarity conditions

∇Lx(x, ŷ) = ∇ f (x, c) + ŷT Â = 0 (33)

and conditions of complementary slackness

ŷi(Âx− b̂)i = 0, i = 1, 2, . . . , m + 2n. (34)

In a linear programming problem, conditions (32)–(34) are sufficient for a feasible point
x to be a minimum point [30]. In a non-linear programming problem, conditions (32)–(34)
and ∇2Lxx〈x, ŷ〉 > 0 are sufficient for a feasible point x to be a local minimum [19]. Based
on the conditions (32)–(34), we will generate our test problems.

Algorithm for generating the test problem is as follows.

(1) Determine the number m of constraints, dimension n of the problem, the number
mb of active constraints in (27), the number md of active constraints from the set
of constraints x − d ≤ 0, the number ma of active constraints from the set of con-
straints −x + a ≤ 0. We assume that the active constraints in each group are the
first constraints.

(2) Define the elements of the matrix A according to the equation Aij = r(p,q), where r(p,q)
is a uniformly distributed random number on the interval [p,q], 0 < p < q.

for i: =1 to m do
for j: =1 to n do
A[i,j]: =r(5,10).

(3) Set the boundaries 0 ≤ a ≤ d of the set Q, the optimal point x and the Lagrange
multipliers yd,ya:yd = 0, ya = 0. Set the optimal point x by a generator of uniformly
distributed numbers a < x < d. Set the boundaries of set Q for i: =1 to n do

begin
a[i]: =5;
ya[i]: =0;
d[i]: =15;
yd[i]: =0;

end;
(4) To determine the first mb active constraints from the set of constraints Ax − b ≤ 0,

we set the mb components of the vectors yb and b (yb,i > 0, bi = (Ax)i). The remaining
components of the vector b are set according to the rule bi = (Ax)i(1 + 1/i + 0.1), and
the Lagrange multipliers for them are assumed to be zero: yb,i = 0. Calculate b = Ax.
for i: =1 to n do

b[i]: =0;
for i: =1 to m do

for j: =1 to n do
b[i]: =b[i] + A[i,j] × x[j];

Set Lagrange multipliers for the active constraints
for i: =1 to m do
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yb[i]: =0;
for i: =1 to mb do

yb[i]: =1;
Define the right side b for inactive constraints
for i: =mb + 1 to m do

b[i]: =b[i] × (1 + 1/I + 0.1);
(5) Find the parameters c in the representation of the function f (x,c) from (26), solving the

system of Equation (32) with respect to c.

Since the elements of the matrix A are positive, the problem generated by the presented
algorithm can be interpreted as a cost minimization problem under resource constraints.
The resulting test problems are of the form (26)–(28) with the parameters c, A, b, d deter-
mined by given: the number m of constraints, the dimension n, the number mb of active
constraints (27), the number of variables md lying on the upper boundary of the set Q, and
the number ma of variables lying on the lower boundary of the set Q.

Table 1 shows the form of the test functions f (x) and the corresponding names of the
dual functions.

Table 1. Test functions and their names.

F(x,c) θ(u) (11) Φ(u) (31)

f1 = 〈c, x〉 LP_R_Y1 LP_R_Y2
f2 = 〈c, x〉+ ε(x, x)/2 L2_Y1 L2_Y2

f3 = ∑n
i=1 ci/xi 1/x_Y1 1/x_Y2

A linear programming problem for the function f 1 was generated. Since some of the
constraints (27) may not be satisfied for known dual variables, a regularized function [34]
f1 = 〈c, x〉+ α(x, x)/2 was used to solve the generated problem, with α = 0.01. The function
f 2 has the parameter ε = 0.01.

Our functions are separable. Therefore, the solution of the problem x(y) = argmin
x∈Q

L(x, y)

necessary to obtain the dual function decomposes into a series of one-dimensional mini-
mization problems.

Consider the solution of the problem (21) with the function f (x,c) = f 2. Variables u and
y are related according to (20), which means

Φ(u) = φ(y(u)) = −ψ(y(u)) = −min
x∈Q

L(x, y(u)) = −min
x∈Q

[ f (x, c) + 〈y(u), g(x)〉] = −min
x∈Q

[〈c, x〉+ ε

2

n

∑
i=1

x2
i + 〈y(u), Ax− b〉]

Under the condition that there are no constraints on the variable x, having solved the system

∂L(x, y(u))
∂xi

= ci + εxi + [ATy(u)]i = 0

we obtain

x∗i = −
[ATy(u) + c]i

ε
, i = 1, 2, . . . , n. (35)

Given the constraints a ≤ x ≤ d, the solution x(y(u)) has the form

xi(y(u)) =


ai, ifx∗i ≤ ai,
di, ifx∗i ≥ di,
x∗i , ifai < x∗i < di,

i = 1, 2, . . . , n. (36)

The parameters u, x, y resulting from the solution of the minimization problem are denoted by
û, x̂, ŷ, and the optimal parameters are u∗, x∗, y∗. Having solved the unconstrained minimization
problem (21), we find the parameters û and Lagrange multipliers ŷ = y(û). The solution of the primal
problem follows from the Equations (35) and (36).

For the dual function (5), the following relations

f (x) ≥ ψ(y), f (x∗) = ψ(y∗) (37)
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are fulfilled for any admissible x and y. Therefore, to assess the quality of the obtained solution, we
will use the indicator

∆ψ = ( f (x∗)− ψ(ŷ))/| f (x∗)|. (38)

The second indicator will be obtained based on the assessment of the quality of the point x̂. The
obtained solution of the primal problem may not satisfy the constraints (27). Therefore, the value of
the objective function f (x̂) may turn out to be less than f (x∗) not suitable. In order to evaluate the
quality of the approximation of the minimum value, we need to obtain a solution in the admissible
area. Taking into account the specifics of the test problems, we will make its rough correction by
moving to the admissible region along the ray a− x̂, where the vector a is the lower bound of the
set Q. Let us denote v(β) = a + β (x̂− a). We set xD = v(βD), where βD is the maximum value β at
which the point satisfies the constraints (27). Taking into account that the inequality

fD ≥ f (x∗), (39)

is fulfilled, the quality of the approximation of the objective function is estimated using the indicator

∆ f = ( fD − f (x∗))/| f (x∗)| (40)

6. Solving Test Problems
Tables 2–5 show the results for dimensions n = 1000, m = 100. Each table contains the results of

calculations for three functions with two ways of dual variable transformation. The number mb of
active constraints is varied.

Table 2. Results of calculations for dimensions n = 1000, m = 100 with mb = 5.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 5, ma = 10, md = 10
sub 4.860 × 10−–1 1.098 × 10−5 104 208
Shor 4.860 × 10−1 1.561 × 10−5 323 644
yv 4.860 × 10−1 1.081 × 10−7 64 130

MsgrPPR 4.860 × 10−1 2.023 × 10−8 259 559
BFGS 4.860 × 10−1 1.770 × 10−5 102 263

Function LP_R_Y1 mb = 5, ma = 10, md = 10
sub 4.860 × 10−1 7.999 × 10−4 438 878
Shor 4.860 × 10−1 3.335 × 10−5 1471 3127
yv 4.860 × 10−1 1.747 × 10−4 443 843

Function L2_Y2 mb = 5, ma = 10, md = 10
sub 3.011 × 10−9 1.402 × 10−3 100 202
Shor 1.223 × 10−11 1.327 × 10−5 279 563
yv 1.380 × 10−12 1.019 × 10−6 58 120

MsgrPPR 2.328 × 10−8 2.394 × 10−4 107 242
BFGS 9.582 × 10−12 5.955 × 10−6 73 183

Function L2_Y1 mb = 5, ma = 10, md = 10
sub 1.635 × 10−6 3.738 × 10−3 427 856
Shor 7.250 × 10−9 5.664 × 10−4 1418 3001
yv 4.695 × 10−9 2.193 × 10−4 506 975

Function 1/x_Y2 mb = 5, ma = 10, md = 10
sub 9.478 × 10−13 3.952 × 10−7 95 192
Shor 1.307 × 10−11 1.086 × 10−6 69 130
yv 2.215 × 10−13 7.348 × 10−8 49 100

MsgrPPR 2.489 × 10−15 8.798 × 10−11 62 128
BFGS 0.129 × 10−12 1.825 × 10−7 40 86

Function 1/x_Y1 mb = 5, ma = 10, md = 10
sub 8.000 × 10−5 1.142 × 10−4 212 427
Shor 4.560 × 10−7 1.228 × 10−5 737 1560
yv 6.589 × 10−6 3.316 × 10−5 173 323
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Table 3. Results of calculations for dimensions n = 1000, m = 100 with mb = 25.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 25, ma = 10, md = 10
sub 4.853 × 10−1 2.032 × 10−4 242 486
Shor 4.853 × 10−1 8.940 × 10−6 414 784
yv 4.853 × 10−1 1.611 × 10−5 97 194

MsgrPPR 4.853 × 10−1 8.500 × 10−5 113 271
BFGS 4.853 × 10−1 6.074 × 10−7 164 362

Function LP_R_Y1 mb = 25, ma = 10, md = 10
sub 4.853 × 10−1 8.649 × 10−3 439 881
Shor 4.853 × 10−1 3.526 × 10−5 1070 2261
yv 4.853 × 10−1 5.491 × 10−5 568 1111

Function L2_Y2 mb = 25, ma = 10, md = 10
sub 2.819 × 10−11 2.345 × 10−4 249 500
Shor 2.116 × 10−12 1.049 × 10−5 404 778
yv 1.691 × 10−12 6.200 × 10−6 91 177

MsgrPPR 7.367 × 10−11 6.708 × 10−6 103 245
BFGS 5.803 × 10−13 1.865 × 10−6 140 313

Function L2_Y1 mb = 25, ma = 10, md = 10
sub 6.277 × 10−7 3.469 × 10−3 445 893
Shor 3.265 × 10−13 1.607 × 10−4 1082 2269
yv 1.143 × 10−9 1.793 × 10−4 435 859

Function 1/x_Y2 mb = 25, ma = 10, md = 10
sub 1.958 × 10−12 2.068 × 10−8 207 417
Shor 4.996 × 10−13 4.330 × 10−8 81 150
yv 2.571 × 10−13 7.876 × 10−9 56 114

MsgrPPR 3.721 × 10−16 1.670 × 10−11 94 192
BFGS 7.797 × 10−13 3.390 × 10−8 50 108

Function 1/x_Y1 mb = 25, ma = 10, md = 10
sub 3.233 × 10−7 1.502 × 10−5 206 415
Shor 2.434 × 10−3 6.075 × 10−4 53 109
yv 4.642 × 10−7 3.565 × 10−5 155 292

Table 4. Results of calculations for dimensions n = 1000, m = 100 with mb = 50.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 50, ma = 10, md = 10
sub 4.849 × 10−1 2.214 × 10−5 274 553
Shor 4.849 × 10−1 1.421 × 10−5 383 740
yv 4.849 × 10−1 1.481 × 10−5 113 223

MsgrPPR 4.849 × 10−1 1.562 × 10−4 129 329
BFGS 4.849 × 10−1 9.510 × 10−6 167 372

Function LP_R_Y1 mb = 50, ma = 10, md = 10
sub 4.849 × 10−1 5.526 × 10−3 1388 2724
Shor 4.849 × 10−1 2.283 × 10−5 1002 2066
yv 4.849 × 10−1 4.728 × 10−5 588 1163

Function L2_Y2 mb = 50, ma = 10, md = 10
sub 1.683 × 10−10 4.578 × 10−5 302 610
Shor 1.867 × 10−12 9.584 × 10−6 471 873
yv 3.489 × 10−13 2.129 × 10−6 113 223

MsgrPPR 5.736 × 10−8 3.649 × 10−4 103 262
BFGS 1.282 × 10−12 2.686 × 10−6 161 345
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Table 4. Cont.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function L2_Y1 mb = 50, ma = 10, md = 10
sub 3.784 × 10−8 8.079 × 10−4 535 1077
Shor 1.238 × 10−12 3.893 × 10−6 921 1901
yv 2.465 × 10−12 6.771 × 10−6 444 869

Function 1/x_Y2 mb = 50, ma = 10, md = 10
sub 2.081 × 10−13 8.761 × 10−9 220 442
Shor 4.956 × 10−13 3.592 × 10−8 57 115
yv 4.816 × 10−14 1.217 × 10−8 60 119

MsgrPPR 7.175 × 10−6 6.305 × 10−6 7 17
BFGS 1.600 × 10−13 1.933 × 10−7 50 106

Function 1/x_Y1 mb = 50, ma = 10, md = 10
sub 1.413 × 10−7 6.486 × 10−6 204 410
Shor 1.207 × 10−7 3.374 × 10−6 381 803
yv 1.584 × 10−7 3.113 × 10−6 149 296

Table 5. Results of calculations for dimensions n = 1000, m = 100 with mb = 75.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 75, ma = 10, md = 10
sub 4.850 × 10−1 3.150 × 10−4 429 860
Shor 4.850 × 10−1 3.128 × 10−5 341 655
yv 4.850 × 10−1 2.136 × 10−5 122 248

MsgrPPR 4.850 × 10−1 1.912 × 10−7 167 420
BFGS 4.850 × 10−1 1.163 × 10−5 170 372

Function LP_R_Y1 mb = 75, ma = 10, md = 10
sub 4.850 × 10−1 3.967 × 10−3 1016 2059
Shor 4.850 × 10−1 1.649 × 10−5 566 1141
yv 4.850 × 10−1 1.444 × 10−5 393 773

Function L2_Y2 mb = 75, ma = 10, md = 10
sub 1.957 × 10−11 4.027 × 10−4 348 703
Shor 2.678 × 10−11 1.657 × 10−5 468 881
yv 3.674 × 10−11 1.159 × 10−5 95 184

MsgrPPR 3.536 × 10−11 1.361 × 10−5 204 445
BFGS 1.440 × 10−12 3.770 × 10−6 159 370

Function L2_Y1 mb = 75, ma = 10, md = 10
sub 1.104 × 10−6 5.373 × 10−3 544 1097
Shor 6.602 × 10−11 1.385 × 10−5 580 1199
yv 8.253 × 10−11 3.199 × 10−5 369 710

Function 1/x_Y2 mb = 75, ma = 10, md = 10
sub 2.684 × 10−13 5.858 × 10−9 207 417
Shor 2.118 × 10−13 1.804 × 10−8 55 114
yv 1.320 × 10−15 2.850 × 10−9 64 125

MsgrPPR 1.651 × 10−16 8.098 × 10−11 101 207
BFGS 8.277 × 10−13 3.196 × 10−8 34 74

Function 1/x_Y1 mb = 75, ma = 10, md = 10
sub 1.611 × 10−7 1.764 × 10−5 214 430
Shor 1.076 × 10−8 2.246 × 10−6 210 450
yv 6.973 × 10−8 2.496 × 10−6 106 214

The tables use labels n for the number of variables of the primal problem (1), m for the number
of constraints in (2), mb for the number of active constraints in (2), md for the number of active
constraints from the set of constraints x− d ≤ 0 for Q, and ma for the number of active constraints
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from the set of constraints −x + a ≤ 0 for Q. Each of the problems is specified by the name of the
function from Table 1 and the parameters (N_F, nx, ny, mb, ma, md).

To solve problems (11), (31), we used the subgradient methods: sub [43], Shor [32], Orty [42],
and yv [41] implemented with the one-dimensional search from [41–43]. To solve problem (31), we
used additional methods for minimizing smooth functions: the Polak–Ribière–Polyak conjugate
gradient method (Msgr_PPR) [34] and the quasi-Newtonian method BFGS [44–47].

The following conclusions have been made:

1. When varying the number mb of active constraints, no important differences in accuracy and
number of function and gradient evaluations were found.

2. In the case of a modulus transformation of dual variables, due to manifestations of the degen-
eracy of the function, the calculation accuracy by the multi-step method sub is significantly
inferior compared to the method yv with a change in the space metric of the RSM.

3. Due to the low dimensionality of the dual problem, the quality of the solution is somewhat
lower for a modulus transformation of the dual variables than for the quadratic transformation
for RSM with a change in the space metric.

4. The cost of solving the problem with a modulus transformation of dual variables increases
significantly compared to a quadratic transformation.

5. The methods used for minimizing smooth functions (the conjugate gradient method and the
quasi-Newtonian method) have excellent results both in terms of accuracy and number of
function and gradient evaluations.

Tables 6–8 show the results for large-scale problems. The number mb of active constraints
is varied.

Table 6. Results of calculations for dimensions n = 10,000, m = 1000 with mb = 250.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 250, ma = 25, md = 25
sub 4.949 × 10−1 8.922 × 10−6 149 305
yv 4.949 × 10−1 7.680 × 10−5 231 490

MsgrPPR 4.949 × 10−1 9.844 × 10−6 468 1109
BFGS 4.949 × 10−1 2.817 × 10−6 468 1072

Function LP_R_Y1 mb = 250, ma = 25, md = 25
sub 1.203 × 10−1 1.248 × 10−2 1130 2257
yv 4.949 × 10−1 4.213 × 10−4 2503 4606

Function L2_Y2 mb = 250, ma = 25, md = 25
sub 9.330 × 10−12 1.708 × 10−5 119 243
yv 4.623 × 10−11 8.016 × 10−6 205 419

MsgrPPR 2.295 × 10−11 7.233 × 10−6 1297 2739
BFGS 8.929 × 10−11 5.816 × 10−5 297 636

Function L2_Y1 mb = 250, ma = 25, md = 25
sub 9.525 × 10−5 1.267 × 10−2 237 479
yv 2.157 × 10−9 3.622 × 10−4 3035 5534

Function 1/x_Y2 mb = 250, ma = 25, md = 25
sub 1.656 × 10−12 4.226 × 10−8 139 284
yv 7.935 × 10−15 3.233 × 10−9 113 233

MsgrPPR 8.434 × 10−12 8.817 × 10−8 19 45
BFGS 9.680 × 10−15 6.361 × 10−8 137 286

Function 1/x_Y1 mb = 250, ma = 25, md = 25
sub 1.334 × 10−5 7.513 × 10−6 112 229
yv 3.241 × 10−5 1.181 × 10−6 394 717
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Table 7. Results of calculations for dimensions n = 10,000, m = 250 with mb = 50.

Method ∆ψ ∆f Number of
Iterations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 50, ma = 25, md = 25
sub 3.134 × 10−8 3.134 × 10−8 971 1907
Shor 4.980 × 10−1 1.706 × 10−5 2495 4554
Orty 5.280 × 10−10 3.259 × 10−10 1864 3535
yv 4.952 × 10−9 3.044 × 10−9 507 1037

MsgrPPR 5.002 × 10−1 3.355 × 10−6 126 319
BFGS 2.701 × 10−1 7.262 × 10−11 656 1524

Function LP_R_Y1 mb = 50, ma = 25, md = 25
sub 4.980 × 10−1 6.439 × 10−3 1280 2540
Shor 4.980 × 10−1 2.210 × 10−6 2972 6250
Orty 4.980 × 10−1 2.057 × 10−6 1179 2189
yv 4.980 × 10−1 7.798 × 10−6 1121 2087

Function L2_Y2 mb = 50, ma = 25, md = 25
sub 3.967 × 10−10 4.126 × 10−5 178 371
Shor 1.065 × 10−12 1.988 × 10−5 2481 4541
Orty 5.418 × 10−12 3.259 × 10−5 909 1772
yv 8.057 × 10−11 1.533 × 10−5 284 609

MsgrPPR 2.745 × 10−5 4.235 × 10−3 58 151
BFGS 2.865 × 10−13 8.488 × 10−6 439 966

Function L2_Y1 mb = 50, ma = 25, md = 25
sub 2.252 × 10−7 9.320 × 10−3 2221 4269
Shor 5.502 × 10−11 4.765 × 10−6 2780 5871
Orty 3.657 × 10−15 4.047 × 10−7 2589 4639
yv 5.850 × 10−12 1.390 × 10−6 1668 3208

Function 1/x_Y2 mb = 50, ma = 25, md = 25
sub 2.771 × 10−13 1.434 × 10−8 130 267
Shor 5.433 × 10−13 2.314 × 10−8 71 149
Orty 1.521 × 10−12 1.813 × 10−7 193 399
yv 2.544 × 10−15 1.207 × 10−9 84 167

MsgrPPR 3.782E × 10−15 8.183 × 10−9 41 90
BFGS 9.539 × 10−15 1.098 × 10−8 86 181

Function 1/x_Y1 mb = 50, ma = 25, md = 25
sub 5.754 × 10−8 3.910 × 10−7 218 441
Shor 3.289 × 10−4 8.393 × 10−5 622 1340
Orty 7.004 × 10−5 2.455 × 10−5 289 512
yv 1.760 × 10−4 5.199 × 10−5 221 416

Table 8. Results of calculations for dimensions n = 5000, m = 500 with mb = 50.

Method ∆ψ ∆f Number of
Terations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y2 mb = 50, ma = 25, md = 25
sub 5.050 × 10−1 6.241 × 10−3 139 284
Shor 5.050 × 10−1 1.594 × 10−5 1926 3767
Orty 5.050 × 10−1 1.493 × 10−5 335 693
yv 5.050 × 10−1 2.622 × 10−6 181 348

MsgrPPR 5.079 × 10−1 1.973 × 10−3 200 448
BFGS 5.050 × 10−1 1.464 × 10−5 286 665
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Table 8. Cont.

Method ∆ψ ∆f Number of
Terations

Number of Evaluations
of Function and

Gradient

Function LP_R_Y1 mb = 50, ma = 25, md = 25
sub 5.050 × 10−1 6.822 × 10−5 2497 4998
Shor 5.050 × 10−1 1.832 × 10−4 4300 9000
Orty 5.050 × 10−1 8.383 × 10−4 1360 2374
yv 5.050 × 10−1 3.862 × 10−4 1751 3234

Function L2_Y2 mb = 50, ma = 25, md = 25
sub 1.915 × 10−8 4.225 × 10−4 154 313
Shor 6.302 × 10−12 1.926 × 10−5 2165 4259
Orty 4.738 × 10−12 8.416 × 10−6 361 741
yv 3.793 × 10−13 1.865 × 10−6 165 330

MsgrPPR 1.000 × 10−15 3.116 × 10−8 414 897
BFGS 1.359 × 10−12 3.216 × 10−5 124 272

Function L2_Y1 mb = 50, ma = 25, md = 25
sub 2.569 × 10−10 8.985 × 10−5 2577 5157
Shor 2.541 × 10−9 2.008 × 10−4 4317 9058
Orty 4.461 × 10−10 1.431 × 10−4 2516 4331
yv 4.310 × 10−10 1.019 × 10−4 2024 3708

Function 1/x_Y2 mb = 50, ma = 25, md = 25
sub 1.200 × 10−15 2.118 × 10−11 117 240
Shor 1.279 × 10−13 2.000 × 10−8 46 101
Orty 2.271 × 10−13 1.907 × 10−7 99 199
yv 3.357 × 10−13 1.299 × 10−7 80 144

MsgrPPR 1.375 × 10−13 1.243 × 10−8 53 110
BFGS 4.152 × 10−13 3.220 × 10−8 59 118

Function 1/x_Y1 mb = 50, ma = 25, md = 25
sub 2.023 × 10−6 6.824 × 10−5 1122 2249
Shor 6.456 × 10−4 1.764 × 10−4 1407 2951
Orty 1.790 × 10−4 6.067 × 10−5 284 523
yv 4.916 × 10−5 2.513 × 10−6 392 712

The performed computer experiment confirms the efficiency of the quadratic transformation.

7. Solving Applied Problem
For calculating MPE in the software package ERA-AIR [55], two optimization models of the

form (26)–(28) with objective functions f1 = (c, x) and f3 = ∑n
i=1 ci/xi are implemented. For f 1

components ci = −1, and for f 3 components ci = di, i = 1,2, . . . ,n, where di are vector d components
from (28). The variables xi of the problem are the volumes of atmospheric pollution from pollution
sources, the number of which can reach about 10,000. Constraints of the problem (27) are:

n

∑
i=1

Ajixi ≤ bj, j = 1, 2, . . . , m, (41)

where the left part in (41) is the total concentration for all sources of atmospheric pollution, bj is
permissible concentration at the j-th point, and Aji is concentration per volume of emission from source
i in quota location j. It is assumed that the vector x components satisfy two-sided constraints (28). In
(28), vector d is the current state of MPE limitations for sources, and a is the technical capability to
reduce emissions.

As an example, we present the data collected as a consolidated volume of MPE for Kemerovo
city in 2003 [56] and give a solution to the problem of emission quotas for 1085 sources. Sources emit
nitrogen dioxide into the atmosphere (MPC = 0.2 mg/m3). For air pollution and emission quotas
calculations (vector x), we used the ERA-AIR software complex [55]. The calculations were carried
out on a regular grid of 22 km by 24 km with a step of 250 m.

Figure 2 shows the area exceeding the maximum one-time surface concentrations, obtained
by calculating, according to the Russian regulatory methodology in search mode, the maximum in
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terms of the wind speed and direction. It can be seen that the pollution zone with an excess of the
MPC (inside the black line) covers the living sector closest to the industrial site, where compliance
with MPC is required. To select points for the constraints (27) on the concentration, an additional
calculation was performed to cover the living sector with 300 calculated points, which will be the set
of quota points.
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To solve the problem in the selected quota points, the influence coefficients Aji are calculated,
which form the matrix A. All elements of the bj vector in this example are equal to MPC, but their
individual values can be set. The vectors a and d of constraints (28) on the solution search area x
are given as follows: the vector d is a set of emissions from all 1085 sources for which the initial
calculation was carried out, and the vector a = 0.1d. Thus, the MPE for each source cannot exceed its
existing emission, and the allowable emission reduction at the source cannot be more than 90%. The
problem was solved by various methods. The coefficients of socio-economic significance [57] were
chosen to be the same and were given above, and, in this example, these are the components of the
vector C.

The ERA-AIR software package includes modules for calculating source emission reductions
(necessary to achieve MPC) using methods [58,59]. The first of them [58] enables one to find a unique
solution to the system of inequalities (41), but it is not an optimization one. The second [59] makes it
possible to achieve MPC with a minimum reduction in emissions, with a total for the entire set of
emission sources in the city. Recently, a method for solving problem (3–5) [57] considered in [33] has
been added to them.

In this work, we used the modulus and quadratic methods of transforming the variables of the
dual function. We used the linear programming model with regularization f1 = (c, x) [59] and the
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non-linear emission quota model f3 = ∑n
i=1 ci/xi [57]. Due to property (37) for the function f 3, we

can use a criterion for evaluating the quality of the solution, similar to (38)

∆ψ = ( fD − ψ(ŷ))/| fD|, (42)

where fd is calculated by the previously described method (39), (40), and the point ŷ is the solution
found for the dual problem.

Using the quadratic method, we obtained solutions for the model f 3 with an accuracy ∆ψ ≤ 10−9

by each of the above methods. For the modulus method ∆ψ ≤ 10−6, at the same time, the cost
of the function and the gradient calculations is approximately two times higher than with the
quadratic method.

Table 9 shows the results of changes in total emissions when MPC is reached in a living sector.

Table 9. Existing cumulative emission and cumulative emission value (MPE) to achieve MPC.

Method Total Value of Existing Emissions
before Reduction, g/s

Total Value of Emissions That Ensure
the Achievement of MPC, g/s

Equal quota [58] 1042.89 607.83
Linear programming model with

regularization f1 = (c, x) [59] 1042.89 833.56

Nonlinear model f3 = ∑n
i=1 ci/xi [57] 1042.89 689.73

The solution of the optimization problem with the function f 1 makes enables us to provide
limits on pollution while leaving a noticeably larger total value of emissions compared to the other
two methods. The main purpose of the numerical experiment is to demonstrate the efficiency of
the proposed methods in solving the problems of calculating quotas for a fairly large industrial city.
The necessary preliminary testing of the methods was carried out in order to ensure the trouble-free
operation of the minimization methods built into the system when calculating numerous variants of
the problem that arise due to the dependence of the coefficients of the matrix A on air temperature,
wind strength, and direction.

8. Conclusions
In the problem of convex programming with a strongly convex objective function, we studied

the possibility of reducing the dual problem to an unconstrained minimization problem under the
constraint of positivity of the variables. Two methods of transforming the components of the dual
variables were studied. In the case of a modulus transformation of dual variables, it is shown that the
dual function is non-smooth, and its degree of degeneracy increases as it approaches the extremum.
This fact negatively affects the convergence rate of the minimization method and leads to a decrease
in the accuracy of the resulting solution. This leads to the necessity of involving complex subgradient
methods of accelerated convergence with a change in the space metric for solving the problem.

The proposed quadratic method for transforming dual variables has been investigated theo-
retically. We have proved that in the case of a quadratic transformation of dual variables, the dual
function has a Lipschitz gradient. This property of the gradient makes it possible to apply efficient
methods of unconstrained minimization of smooth functions. In this case, in comparison with the
modulus method, the convergence rate of the minimization method and the accuracy of solving the
problem increase. Our computer experiment confirms the efficiency of the quadratic transformation.

Based on the research conducted, the following general conclusions can be drawn.
Firstly, in the case of modulus transformation of dual variables at high dimensions, due to the

high degree of the function degeneracy, in order to obtain sufficient computational accuracy, it is
necessary to use subgradient minimization methods with a change in the space metric, which is
confirmed by comparing the results of the multi-step sub method and the yv method.

Secondly, the quality of the solution of the dual minimization problem with the modulus method
is significantly reduced in comparison with the quadratic transformation.

Thirdly, the cost of solving the dual minimization problem with the modulus method increases
significantly compared to the quadratic transformation.

Fourthly, the methods used for minimizing smooth functions (the conjugate gradient method
and the quasi-Newtonian method) have results both in accuracy and in the cost of the function and
gradient calculations commensurate with the best results for RSMs.
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The results of solving an applied problem are commensurate in accuracy and quality with the
results for similar test problems.
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