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Abstract: One of the most often used approaches for approximating various matrix equation problems
is the hyperpower family of iterative methods with arbitrary convergence order, whereas the zeroing
neural network (ZNN) is a type of neural dynamics intended for handling time-varying problems. A
family of ZNN models that correlate with the hyperpower iterative methods is defined on the basis of
the analogy that was discovered. These models, known as higher-order ZNN models (HOZNN), can
be used to find real symmetric solutions of time-varying algebraic Riccati equations. Furthermore, a
noise-handling HOZNN (NHOZNN) class of dynamical systems is introduced. The traditional ZNN
and HOZNN dynamic flows are compared theoretically and numerically.

Keywords: zeroing neural networks; hyperpower iterations; algebraic Riccati equations; dynami-
cal system

MSC: 15A24; 65F20; 68T05

1. Introduction and Preliminaries

Since Kalman demonstrated the widespread use of algebraic Riccati equations (ARE)
in filtering theory and optimal control [1], ARE have drawn significant attention in sci-
ence, applied mathematics, and a variety of engineering problems, including controlling
doubly-fed wind generators [2], wheeled inverted pendulums [3], and linear multi-agent
systems [4]. Particularly, the continuous-time algebraic Riccati equation (CARE) [5–10],

ATV + VA−VBV + Q = 0, (1)

is a quadratic matrix equation that is essential to Kalman filtering [5], linear–quadratic
regulator, linear–quadratic–Gaussian and H2/H∞ control [6–8], and co-prime or spectral
factorizations [9,10]. Note that the superscript ()T signifies transposition, 0 ∈ Rn×n signifies
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the n× n zero matrix and all the coefficient matrices in (1) belong to Rn×n, whereas B and
Q are symmetric and non-negative definite matrices (i.e., B = BT ≥ 0 and Q = QT ≥ 0).
The solution set for the CARE can either have an infinite or finite number of symmetric
or non-symmetric solutions V ∈ Rn×n with indefinite or definite signs. In this study,
the following time-varying ARE (TV-ARE) [11,12] is addressed using the zeroing neural
network (ZNN):

AT(t)V(t) + V(t)A(t)−V(t)B(t)V(t) + Q(t) = 0, (2)

where t signifies the time, all the time-varying coefficient matrices belong to Rn×n, and the
matrices B(t), Q(t) are symmetric and non-negative definite. More specifically, this study
proposes and examines two models: a higher-order ZNN (HOZNN) model that produces
numerical TV-ARE real symmetric solutions, and a noise-handling HOZNN (NHOZNN)
model that produces numerical TV-ARE real symmetric solutions when noise is present. It
is important to mention that the TV-ARE (2) is based on the frozen-time (or forward-in-time)
ARE [13,14] and has widely been used in the field of optimal control to stabilize linear time-
varying systems with excellent performance; applications include controlling a Quanser
3 DOF Hover system [14], a spring-constrained mass with time-dependent stiffness [11],
an elastic beam [13], and various numerical control cases [12,15]. Additionally, linear time-
varying systems may be stabilized more effectively the faster the ZNN model for solving
the TV-ARE converges, which improves the ZNN-based controller’s performance [11,12].
The novel NZNN and NHOZNN designs for solving the TV-ARE are particularly valuable
for future research because ZNN models have not yet been employed in linear time-varying
systems with noise. Therefore, it is crucial to conduct more research on ZNN models for
addressing the TV-ARE (2).

The ZNN approach, created by Zhang et al. in [16], is based on the Hopfield neural net-
work and is utilized to generate online solutions to time-varying problems. It is important
to note that the great majority of ZNN dynamical systems fall within the class of recurrent
neural networks, which are employed for finding equation zeros. The ZNN approach has
been extensively studied and has been applied to a wide range of time-varying problems,
with the principal applications being problems of matrix equation systems [17,18], tensor
and matrix inversion [19], quadratic optimization [20], linear equations systems [18,19], gen-
eralized inversion [21], and approximation of many matrix functions [22–24]. Defining an
error matrix equation (EME), Z(t) ∈ Rn×n, for the underlying problem is the initial step in
producing ZNN dynamics. The next step takes advantage of the dynamical evolution [16]:

Ė(t) =
dE(t)

dt
= −λF (E(t)), (3)

where λ > 0 is a design parameter that is utilized to scale the convergence, (̇) signifies the
time derivative, whereas F (·) : Rn×n → Rn×n denotes element-wise utilization of an odd
and increasing activation function (AF) on E(t).

The family of hyperpower iterations has undergone substantial study and modification
in recent years [25–29]. However, because iterative methods are implementable to discrete-
time models and since these methods typically need initial conditions that are estimated
and occasionally may not be easily satisfied, numerous continuous-time HOZNN models
were introduced and examined in [22,30,31]. Starting from the following hyperpower
iterations with order p ≥ 2 [29,30]:

Vk+1 = Vk

p−1

∑
i=0

Ei
k, (4)
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where Ek ∈ Rn×n signifies an appropriate time-invariant EME, the time-invariant (4) can
be extended to a time-varying case. That is, considering the EME below:

Ep
H(t) =

p−1

∑
i=1

Ei(t), (5)

where p ≥ 2 and Ei(t) ∈ Rn×n, the general HOZNN dynamical evolution can be obtained
by combining the ZNN design and the hyperpower iterations method [22,30,31]:

Ė(t) ≈ Ėp
H(t) =

dEp
H(t)
dt

= −λF
(

Ep
H(t)

)
, (6)

for finding the online solution to a time-varying problem. In this study, we investigate the
HOZNN evolution (6) under the linear AF, which results in the following:

Ė(t) ≈ −λEp
H(t). (7)

A modified noise-handling model for addressing time-varying problems was intro-
duced and studied in [32] due to the fact that every type of noise has a great effect on
the proposed ZNN methods’ accuracy and that any preprocessing for a noise reduction
adds time, jeopardizing desired real-time requirements. Particularly, the following noise-
handling ZNN (NZNN) dynamical system was defined [32]:

Ė(t) = −λE(t)− ζ
∫ t

0
E(τ)dτ + N(t), (8)

where λ and ζ are design parameters which monitor the convergence of NZNN and N(t)
signifies the matrix-form noises of appropriate dimensions. Note that the generalization
of the NZNN design to the NHOZNN form for approximating a time-varying problem
was introduced and investigated in [31]. With the same principle as the HOZNN design
in (5)–(7), the general NHOZNN dynamical evolution can be obtained by combining the
NZNN design and the hyperpower iterations method:

Ė(t) ≈ −λEp
H(t)− ζ

∫ t

0
Ep

H(τ)dτ + N(t). (9)

The following are the main points of this research:

• A new HOZNN model that produces numerical TV-ARE real symmetric solutions.
• A novel NHOZNN model that produces numerical TV-ARE real symmetric solutions

when noise is present.
• All models are effective for solving the TV-ARE, according to two numerical experi-

ments that include three different types of noise. Both the HOZNN and NHOZNN
models converge to the TV-ARE solution faster than the corresponding ZNN and
NZNN models.

Few of the paper’s basic symbols are also worth noting: 1 and I signify the all-ones
and identity matrices with dimensions n× n, respectively; 0̃ signifies the zero matrix with
dimensions n2 × (n2 + n)/2; Ĩ signifies the identity matrix with dimensions n2 × n2; ⊗
denotes the Kronecker product; vec(·) denotes the vectorization procedure; ‖·‖F denotes
the matrix Frobenius norm.

The following is the structure of the paper: The HOZNN model that produces numeri-
cal TV-ARE solutions is defined and analyzed in Section 2, while the NHOZNN model that
produces numerical TV-ARE solutions when noise is present is described and analyzed in
Section 3. The results of two experiments for addressing the TV-ARE under three differ-
ent types of noise are shown and analyzed in Section 4. Last, Section 5 includes the last
comments and inferences.
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2. Higher-Order ZNN for Solving the TV-ARE

This section introduces and analyzes the HOZNN model that solves the TV-ARE (2).
Based on the following EME of ZNN design from [11]:

E(t) = AT(t)V(t) + V(t)A(t)−V(t)B(t)V(t) + Q(t), (10)

where V(t) is the unknown solution of the TV-ARE, while its derivative is

Ė(t) =ȦT(t)V(t) + AT(t)V̇(t) + V̇(t)A(t) + V(t)Ȧ(t)− V̇(t)B(t)V(t)

−V(t)Ḃ(t)V(t)−V(t)B(t)V̇(t) + Q̇(t).
(11)

the following EME is defined in the case of the HOZNN design:

Ep
H(t) =

p−1

∑
i=1

(
AT(t)V(t) + V(t)A(t)−V(t)B(t)V(t) + Q(t)

)i
, (12)

while its derivative is:

Ėp
H(t)=

p−1

∑
i=1

i−1

∑
j=0

(
AT(t)V(t)+V(t)A(t)−V(t)B(t)V(t)+Q(t)

)j
(t)
(

ȦT(t)V(t)

+AT(t)V̇(t)+V̇(t)A(t)+V(t)Ȧ(t)−V̇(t)B(t)V(t)−V(t)Ḃ(t)V(t)

−V(t)B(t)V̇(t)+Q̇(t)
)(

AT(t)V(t)+V(t)A(t)−V(t)B(t)V(t)+Q(t)
)i−1−j

,

(13)

the replacement AT(t)V(t) + V(t)A(t)−V(t)B(t)V(t) + Q(t) = 0 in (13) transforms each
of the summations into zero matrices, except the summand corresponding to i = 1, j = 0.
Hence, (13) is approximated as:

Ėp
H(t)≈ȦT(t)V(t)+AT(t)V̇(t)+V̇(t)A(t)+V(t)Ȧ(t)−V̇(t)B(t)V(t)

−V(t)Ḃ(t)V(t)−V(t)B(t)V̇(t)+Q̇(t)=Ė(t),
(14)

where Ė(t) is the first derivative of E(t) defined in (11). This leads to the following
dynamical system:

Ė(t) = −λ
p−1

∑
i=1

Ei(t). (15)

Theorem 1. Assume that A(t), B(t), Q(t) ∈ Rn×n are differentiable and B(t), Q(t) are non-
negative definite and symmetric matrices. The dynamical system (15) converges to the theoretical
solution V∗(t) of TV-ARE (2), for each integer p ≥ 2. Based on Lyapunov, the solution is stable.

Proof. The substitution Ṽ(t) := V∗(t)−V(t) implies V(t) = V∗(t)− Ṽ(t), where V∗(t) is
a theoretical solution. The time derivative of V(t) is V̇(t) = V̇∗(t)− ˙̃V(t). Notice that

AT(t)V∗(t) + V∗(t)A(t)−V∗(t)B(t)V∗(t) + Q(t) = 0, (16)

and its first derivative

ȦT(t)V∗(t) + AT(t)V̇∗(t) + V̇∗(t)A(t) + V∗(t)Ȧ(t)− V̇∗(t)B(t)V∗(t)

−V∗(t)Ḃ(t)V∗(t)−V∗(t)B(t)V̇∗(t) + Q̇(t) = 0.
(17)
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As a result, after substituting V(t) = V∗(t)− Ṽ(t) into (12), one can verify

Ẽp
H(t) =Ep

H(Ṽ(t), t) =
p−1

∑
i=1

(
AT(t)Ṽ(t) + Ṽ(t)A(t)−V∗(t)B(t)Ṽ(t)

− Ṽ(t)B(t)V∗(t)− Ṽ(t)B(t)Ṽ(t)
)i

,

(18)

Further, the implicit dynamics (15) imply

˙̃Ep
H(t) =Ėp

H(Ṽ(t), t) = ȦT(t)Ṽ(t) + AT(t) ˙̃V(t) + ˙̃V(t)A(t) + Ṽ(t)Ȧ(t)− ˙̃V(t)B(t)Ṽ(t)

− ˙̃V(t)B(t)V∗(t)− V̇∗(t)B(t)Ṽ(t)− Ṽ(t)Ḃ(t)Ṽ(t)− Ṽ(t)Ḃ(t)V∗(t)

−V∗(t)Ḃ(t)Ṽ(t)− Ṽ(t)B(t) ˙̃V(t)− Ṽ(t)B(t)V̇∗(t)−V∗(t)B(t) ˙̃V(t)

= −λEp
H(Ṽ(t), t).

(19)

To confirm convergence, the candidate Lyapunov function is determined as follows:

L(t) = 1
2

∥∥∥Ẽp
H(t)

∥∥∥2

F
=

1
2

Tr
(

Ẽp
H(t)

(
Ẽp

H(t)
)T
)

. (20)

Then, the next identities can be verified:

L̇(t) =
2Tr
((

Ẽp
H(t)

)T ˙̃Ep
H(t)

)
2

= Tr
((

Ẽp
H(t)

)T ˙̃Ep
H(t)

)
= −λTr

((
Ẽp

H(t)
)T

Ẽp
H(t)

)
. (21)

Consequently, it holds

dL(Ṽ(t), t)
dt

{
< 0, Ep

H(Ṽ(t), t) 6= 0

= 0, Ep
H(Ṽ(t), t) = 0,

⇔L̇(t)
{
< 0, AT(t)Ṽ(t) + Ṽ(t)A(t)−V∗(t)B(t)Ṽ(t)− Ṽ(t)B(t)V∗(t)− Ṽ(t)B(t)Ṽ(t) 6= 0

= 0, AT(t)Ṽ(t) + Ṽ(t)A(t)−V∗(t)B(t)Ṽ(t)− Ṽ(t)B(t)V∗(t)− Ṽ(t)B(t)Ṽ(t) = 0,

⇔L̇(t)
{
< 0, Ṽ(t) 6= 0

= 0, Ṽ(t) = 0.
(22)

Since Ṽ(t) is the equilibrium point of the system (19) and Ep
H(0) = 0, we have that:

dL(Ṽ(t), t)
dt

≤ 0, ∀ Ṽ(t) 6= 0. (23)

The equilibrium state Ṽ(t) = V∗(t)−V(t) = 0 is stable as a result of the Lyapunov
stability theory. Consequently, V(t)→ V∗(t) as t→ ∞.

Therefore, in view of (15), it follows the expanded HOZNN design for addressing the
TV-ARE problem:

ȦT(t)V(t) + AT(t)V̇(t) + V̇(t)A(t) + V(t)Ȧ(t)− V̇(t)B(t)V(t)

−V(t)Ḃ(t)V(t)−V(t)B(t)V̇(t) + Q̇(t) = −λEp
H(t),

(24)

or equivalently

AT(t)V̇(t) + V̇(t)A(t)− V̇(t)B(t)V(t)−V(t)B(t)V̇(t) =

− λEp
H(t)− ȦT(t)V(t)−V(t)Ȧ(t) + V(t)Ḃ(t)V(t)− Q̇(t).

(25)
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In order to solve (25) through the HOZNN approach, V̇(t) cannot be contained in the
mass matrix of (25). As a result, we set s(t) the vectorized right part of (25), i.e.,

s(t) = vec
(
− λEp

H(t)− ȦT(t)V(t)−V(t)Ȧ(t) + V(t)Ḃ(t)V(t)− Q̇(t)
)

(26)

and vectorize the left part of (25), i.e.,

vec
(

AT(t)V̇(t) + V̇(t)A(t)− V̇(t)B(t)V(t)−V(t)B(t)V̇(t)
)
=(

I ⊗ AT(t) + A(t)T ⊗ I − I ⊗V(t)B(t)−
(

B(t)V(t)
)T ⊗ I

)
vec
(
V̇(t)

)
.

(27)

As the goal of this research is to explicitly discover real symmetric solutions, we
only have to locate the components of V(t) positioned on and above its main diagonal.
Therefore, it is significant to use ẋ(t) in place of V̇(t) by positioning the aforementioned
components of V(t) into the vector x(t). In this approach, the dimension of (27) is reduced,
while V(t) is compelled to be a symmetric matrix.

Therefore, the next equation that substitutes vec(V̇(t)) in (27) can be derived by
employing the r = (n2 + n)/2 components on and above the main diagonal of V(t):

vec(V̇(t)) = Zẋ(t), (28)

where the matrix Z ∈ Rn2×r is an operational matrix, which may be constructed by
utilizing Algorithm 1. Note that the definitions of the notations zeros(·), mod(·), and
floor(·) in Algorithm 1 match those of the respective MATLAB functions [33]. Furthermore,
the components on and above the main diagonal of V̇(t) are stacked to form the column
vector ẋ(t) ∈ Rr.

Algorithm 1 Calculation method for the operational matrix Z.

Require: The columns or rows number n of a real symmetric matrix.
1: Put r = (n2 + n)/2 and Z = zeros(n2, r)
2: for q = 1 : n2 do
3: Put d = mod(q− 1, n) + 1 and h = floor( q−1

n ) + 1
4: if h ≥ d then
5: Put Z

(
q, d + h h−1

2

)
= 1

6: else
7: Put Z

(
q, h + d d−1

2

)
= 1

8: end if
9: end for

10: return Z
Ensure: The matrix Z.

Additionally, by setting

Y(t) =
(

A(t)T ⊗ I + I ⊗ AT(t)−
(

B(t)V(t)
)T ⊗ I − I ⊗V(t)B(t)

)
Z, (29)

then, (26), (28), (29) combined with (25) provide the next implicit dynamics:

Y(t)ẋ(t) = s(t). (30)

The next unified HOZNN model is obtained by multiplying both sides by YT(t):

YT(t)Y(t)ẋ(t) = YT(t)s(t). (31)

Therefore, (31) is the recommended HOZNN model that may effectively be addressed
by utilizing an ode MATLAB solver. It is worth noting that the product YT(t)Y(t) ∈ Rr×r is
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a state-dependent mass matrix.According to Theorem 2, the HOZNN model (31) converges
to the theoretical solution. It is important to mention that the HOZNN model (31) for p = 2
becomes the ZNN model in [11].

Theorem 2. Assume that A(t), B(t), Q(t) ∈ Rn×n are differentiable and B(t), Q(t) are non-
negative definite and symmetric matrices. At each time t ∈ [0, t f ) ⊆ [0,+∞), if the product
YT(t)Y(t) ∈ Rr×r with r = (n2 + n)/2 in (31) is non-singular then the HOZNN model (31)
converges to the symmetric theoretical solution of TV-ARE (2) exponentially, beginning from any
primary price x(0), for each integer p ≥ 2.

Proof. The proof is omitted since it is similar to the proof in [11] (Theorem 3.1) after
replacing [34] (Theorem 1) with Theorem 1.

3. Noise-Tolerant HOZNN for Solving the TV-ARE

This section introduces and analyzes the NHOZNN model that solves the TV-ARE (2)
when noise is present. Consider the EMEs E(t) in (10) and Ep

H(t) in (12), as well as their
derivatives Ė(t) in (11) and Ėp

H(t) in (13). Replacing Ep
H(t) and Ėp

H(t) into the NZNN
design (8), we have

Ėp
H(t) = −λEp

H(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t), (32)

or equivalent

p−1

∑
i=1

i−1

∑
j=0

(
AT(t)V(t)+V(t)A(t)−V(t)B(t)V(t)+Q(t)

)j
(t)
(

ȦT(t)V(t)+AT(t)V̇(t)

+V̇(t)A(t)+V(t)Ȧ(t)−V̇(t)B(t)V(t)−V(t)Ḃ(t)V(t)−V(t)B(t)V̇(t)+Q̇(t)
)(

AT(t)V(t)

+V(t)A(t)−V(t)B(t)V(t)+Q(t)
)i−1−j

=−λ
p−1

∑
i=1

(
AT(t)V(t)+V(t)A(t)−V(t)B(t)V(t)

+Q(t)
)i
−ζ

∫ t

0

p−1

∑
i=1

(
AT(τ)V(τ)+V(τ)A(t)−V(τ)B(t)V(τ)+Q(t)

)i
dτ+N(t).

(33)

The replacement AT(t)V(t) + V(t)A(t)−V(t)B(t)V(t) + Q(t) = 0 on the left-hand
side of (33) transforms each of the summations there into zero matrices, except the sum-
mand corresponding to j = 0, i = 1. As a result, we ended up with the following
approximated higher-order design:

ȦT(t)V(t)+AT(t)V̇(t)+V̇(t)A(t)+V(t)Ȧ(t)−V̇(t)B(t)V(t)−V(t)Ḃ(t)V(t)

−V(t)B(t)V̇(t)+Q̇(t)=−λ
p−1

∑
i=1

(
AT(t)V(t)+V(t)A(t)−V(t)B(t)V(t)+Q(t)

)i

−ζ
∫ t

0

p−1

∑
i=1

(
AT(τ)V(τ)+V(τ)A(t)−V(τ)B(t)V(τ)+Q(t)

)i
dτ+N(t),

(34)

or equivalent

Ė(t) = −λEp
H(t)− ζ

∫ t

0
Ep

H(τ)dτ + N(t). (35)

The performance of NHOZNN dynamics (35) is investigated in the following theorems
aimed to solve various types of noise, and restated from [31].

Theorem 3 ([31]). Assume that A(t), B(t), Q(t) ∈ Rn×n are differentiable and B(t), Q(t) are
non-negative definite and symmetric matrices. Then the NHOZNN dynamics (35) globally converge
to the theoretical solution, despite the constant noise N(t) = N ∈ Rn×n.
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Theorem 4 ([31]). Under the suppositions of Theorem 3, the NHOZNN dynamics (35) pol-
luted with the linear noise N(t) = Nt ∈ Rn×n is convergent towards the theoretical solution,
with the upper bound of the EME fulfilling limt→∞ ‖E(t)‖F = ‖N‖F

ζ . In addition, E(t) satisfies
limt→∞ ‖Ep

H(t)‖F ↓ 0, as ζ → +∞.

Theorem 5 ([31]). Under the suppositions of Theorem 3, the NHOZNN dynamics (35) when there
is bounded random noise N(t) := σ(t) = [σij(t)]i,j=1,...,n ∈ Rn×n, retain bounded residual
error ‖Ep

H(t)‖F. In addition, limt→∞ ‖Ep
H(t)‖F of NHOZNN is bounded by

2n sup
0≤τ≤t

|σij(τ)|/R1/2 , R > 0

4ζn sup
0≤τ≤t

|σij(τ)‖/(−R)1/2 , R < 0

where R = γ2− 4ζ with parameters γ, ζ > 0. Consequently, the upper bound of limt→∞ ‖Ep
H(t)‖F

is in roughly inverse proportion to γ, and limt→∞ ‖Ep
H(t)‖F becomes arbitrarily low for sufficiently

big γ and appropriate ζ in the instance of R 6= 0.

Consequently, in view of (35), it follows the expanded NHOZNN design for addressing
the TV-ARE problem, when noise is present:

ȦT(t)V(t) + AT(t)V̇(t) + V̇(t)A(t) + V(t)Ȧ(t)− V̇(t)B(t)V(t)−V(t)Ḃ(t)V(t)

−V(t)B(t)V̇(t) + Q̇(t) = −λEp
H(t)− ζ

∫ t

0
Ep

H(τ)dτ + N(t),
(36)

or equivalently

AT(t)V̇(t) + V̇(t)A(t)− V̇(t)B(t)V(t)−V(t)B(t)V̇(t) = −λEp
H(t)− ȦT(t)V(t)

−V(t)Ȧ(t) + V(t)Ḃ(t)V(t)− Q̇(t)− ζ
∫ t

0
Ep

H(τ)dτ + N(t).
(37)

In order to solve (37) through the HOZNN approach, V̇(t) cannot be contained in the
mass matrix of (37). Also note that the intention of this research is to explicitly discover real
symmetric solutions V(t). As a consequence, we use ẋ(t) instead of V̇(t) as defined in (28).

Furthermore, since the left part of (37) is identical to the left part of (25), we use the
vectorized left part Y(t) as defined in (29) and vectorize the right part of (37), that is

k(t) = vec
(
− λEp

H(t)− ȦT(t)V(t)−V(t)Ȧ(t) + V(t)Ḃ(t)V(t)− Q̇(t)− ζK(t) + N(t)
)

, (38)

where

K(t) =
∫ t

0
Ep

H(τ)dτ. (39)

Then, (38), (39), (28), (29)
Y(t)ẋ(t) = k(t). (40)

The fact that E(t) is symmetric (see [5]) implies that Ep
H(t) and K(t) are symmetric

matrices as well.Therefore, it is significant to apply ṙ(t) in place of K̇(t) by separating the
K(t) components that are positioned on and above its main diagonal into the vector r(t).
We may therefore set the following:

vec(K̇(t)) = Zṙ(t). (41)

Furthermore, to simplify the process of finding the matrix r(t), we set

d(t) =
[

r(t)
x(t)

]
, ḋ(t) =

[
ṙ(t)
ẋ(t)

]
and W(t) =

[
ĨZ 0̃
0̃ Y(t)

]
. (42)
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As a result, we have the following dynamics instead of (40):

W(t)ḋ(t) =
[

vec(Ep
H(t))

k(t)

]
. (43)

The next unified NHOZNN model is obtained by multiplying both sides by WT(t):

WT(t)W(t)ḋ(t) = WT(t)
[

vec(Ep
H(t))

k(t)

]
. (44)

Therefore, (44) is the recommended NHOZNN model that may effectively be ad-
dressed by utilizing an ode MATLAB solver. It is worth mentioning that the product
WT(t)W(t) ∈ R2r×2r is a state-dependent mass matrix. Note that, with the exception
of the difference between the solved problems, (39) is calculated separately from the
model’s dynamics described in [31], whereas (39) is incorporated into the dynamics of
the NHOZNN model (44) to reduce the computational cost in this paper. According to
Theorem 6, the NHOZNN model (44) converges to the theoretical solution when noise
is present.

Theorem 6. Assume that A(t), B(t), Q(t) ∈ Rn×n are differentiable and B(t), Q(t) are non-
negative definite and symmetric matrices. At each time t ∈ [0, t f ) ⊆ [0,+∞), if the product
WT(t)W(t) ∈ R2r×2r with r = (n2 + n)/2 in (44) is non-singular then the NHOZNN model (44)
converges to the theoretical solution d∗(t) when noise is present exponentially, beginning from any
primary price d(0). Furthermore, the symmetric theoretical solution of TV-ARE (2) when noise is
present, for each integer p ≥ 2, is the last r components of d∗(t).

Proof. The proof is omitted since it is similar to the proof in [11] (Theorem 3.1) after
replacing [34] (Theorem 1) with Theorems 3–5 for the constant noise, the linear noise and
the bounded random noise, respectively.

4. Computational Assessments

This section investigates the performance of the HOZNN (31) and NHOZNN (44)
models in two numerical experiments (NEs), which involve solving the TV-ARE (2). On
the one hand, to investigate the performance of the HOZNN model, two different initial
conditions (ICs) are used. Under the first IC (IC1), the HOZNN model produces the unique
non-negative solution of the TV-ARE. The figures in this instance also include the Schur
method solution [5], which generates this specific solution. Under the second IC (IC2),
the HOZNN model produces a random symmetric solution of the TV-ARE. On the other
hand, to investigate the performance of the NHOZNN model, three different noises are
used under IC2. These noises are the following:

• Constant noise (CN): N(t) = 10× 1;
• Linear noise (LN): N(t) = (2 + t/4)× 1;
• Bounded random noise (BRN): N(t) = (2 + sin(t))× 1.

It is important to note that in the figures legend, the subscript number to HOZNN
and NHOZNN refer to the value of p. Furthermore, it is important to mention that the
HOZNN (31) and NHOZNN (44) models for p = 2 become the traditional ZNN models.
That is, ZNN≡HOZNN2 and NZNN≡NHOZNN2. Additionally, each model’s convergence
is represented by its EME value (Error) for the corresponding model in terms of time per
second (Time/s). Finally, during the computation of all NEs, the MATLAB solver ode15s is
used under the time interval [0, 10], with the parameters λ = 10 and ζ = 10.
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4.1. Numerical Experiment 1

Consider the following 2× 2 input matrices:

A(t) =
[
−2 cos(t) + 4 cos(t)− 3

sin(2t) + 5 6 sin(t)− 17

]
, B(t) =

[
sin(2t) + 3 cos(2t) + 2
cos(2t) + 2 − sin(2t) + 7

]
,

Q(t) =
[

4 sin(t) + 8 − sin(t)− 3
− sin(t)− 3 3 cos(2t) + 2

]
.

By defining the ICs as below:

IC1: x(0) = [2,−0.5, 0]T

IC2: x(0) = r(0) = [0, 0, 0]T

the findings of HOZNN and NHOZNN for p = 2, 3, 4 are depicted in Figures 1 and 2.
Specifically, the error

∥∥∥Ep
H(t)

∥∥∥
F
, referring to the HOZNN solutions V(t) convergence, is

presented in Figure 1a,c for IC1 and IC2, respectively, while the trajectories of these solutions
are shown in Figure 1b,d. Under IC2, the error

∥∥∥Ep
H(t)

∥∥∥
F

referring to the NHOZNN

solutions V(t) convergence is shown in Figure 2a,c,e for CN, LN, and BRN, respectively,
whereas the trajectories of these solutions are depicted in Figure 2b,d,f.

4.2. Numerical Experiment 2

Consider the following 3× 3 input matrices:

A(t) =

 cos(t) + 7 sin(t) + 5 − cos(2t) + 5
sin(t) + 5 sin(t) + 8 sin(t)− 4
− cos(2t) + 5 sin(t)− 4 − sin(2t) + 9

,

B(t) =

 3 cos(t) + 8 − sin(3t)− 2 0
− sin(3t)− 2 sin(t) + 6 4

0 4 6

,

Q(t) =

2 sin(t) + 7 cos(t)− 4 sin(2t) + 6
cos(t)− 4 8 − cos(t)− 4
sin(2t) + 6 − cos(t)− 4 cos(2t) + 8

.

After defining the next ICs:

IC1: x(0) = [3, 2, 8,−0.3,−6, 7]T

IC2: x(0) = r(0) = [0, 0, 0, 0, 0, 0]T

the results of HOZNN and NHOZNN for p = 2, 4, 6 are depicted in Figures 1 and 2. Partic-
ularly, the error

∥∥∥Ep
H(t)

∥∥∥
F

referring to the HOZNN solutions V(t) convergence is presented
in Figure 2e,g for IC1 and IC2, respectively, whereas the trajectories of these solutions are
shown in Figure 2f,h. Under IC2, the error

∥∥∥Ep
H(t)

∥∥∥
F

referring to the NHOZNN solutions

V(t) convergence is shown in Figure 2g,i,k for CN, LN, and BRN, respectively, whereas the
trajectories of these solutions are depicted in Figure 2h,j,l.
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Figure 1. Trajectories of the HOZNN’s solutions and convergence in NEs Sections 4.1 and 4.2 under
IC1 and IC2. (a) NE Section 4.1 under IC1: convergence. (b) NE Section 4.1 under IC1: solutions
trajectories. (c) NE Section 4.1 under IC2: convergence. (d) NE Section 4.1 under IC2: solutions
trajectories. (e) NE Section 4.2 under IC1: convergence. (f) NE Section 4.2 under IC1: solutions
trajectories. (g) NE Section 4.2 under IC2: convergence. (h) NE Section 4.2 under IC2: solutions
trajectories.
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Figure 2. Trajectories of the HOZNN’s solutions and convergence in NEs Sections 4.1 and 4.2 with
CN, LN, and BRN. (a) NE Section 4.1 with CN: convergence. (b) NE Section 4.1 with CN: solution
trajectories. (c) NE Section 4.1 with LN: convergence. (d) NE Section 4.1 with LN: solution trajectories.
(e) NE Section 4.1 with BRN: convergence. (f) NE Section 4.1 with BRN: solution trajectories. (g) NE
Section 4.2 with CN: convergence. (h) NE Section 4.2 with CN: solution trajectories. (i) NE Section 4.2
with LN: convergence. (j) NE Section 4.2 with LN: solution trajectories. (k) NE Section 4.2 with BRN:
convergence. (l) NE Section 4.2 with BRN: solution trajectories.

4.3. Numerical Experiments Discussion

The performance of the HOZNN and NHOZNN models for solving the TV-ARE is
investigated through NEs Sections 4.1 and 4.2. Keep in mind that when the EME of the
ZNN, HOZNN, NZNN, and NHOZNN models converge to the zero matrix, the models
converge to the theoretical solution. In other words, the solution generated by the ZNN,
HOZNN, NZNN, and NHOZNN models makes the equality in the TV-ARE true. As a
consequence, by looking at the EME values in the related figures, we can trust the solutions
produced by the models.

In the case of the HOZNN model, the findings are presented in Figure 1. As can be
observed in Figure 1b,f, the HOZNN model yields the unique non-negative solution of
the TV-ARE under IC1, which is identical to the Schur method solution. However, as can
be seen in Figure 1d,h, the HOZNN model yields a random symmetric solution of the
TV-ARE under IC2. This means that different symmetric TV-ARE solutions are produced
from the HOZNN model for different ICs. The EME convergence of the HOZNN models is
depicted in Figure 1a,c for the NE Section 4.1, and Figure 1e,g for the NE Section 4.2. In all
of these figures, we observe that the EME of the HOZNN models convergence begins at
t = 0 with values in the range [10, 102], but it ends before t = 1 with lowest values in the
range [10−4, 10−2]. That is, the EME of the HOZNN models begins from a non-optimal
IC and convergence to the zero matrix. Additionally, Figure 1a,c,e,g illustrate that the
convergence occurs more quickly the higher the value of the parameter p. In other words,
for p = 4 the HOZNN model converges more quickly than for p = 3, and for p = 3, the
HOZNN model converges more quickly than for p = 2 in NE Section 4.1. Furthermore,
for p = 6, the HOZNN model converges more quickly than for p = 4, and for p = 4, the
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HOZNN model converges more quickly than for p = 2 in NE Section 4.2. The graphs
in Figure 1b,d,f,h behave in the same way due to the convergence tendency of the EME
convergence of the HOZNN models. In other words, the solution trajectories associated
with the HOZNN models in these figures begin at t = 0 in a very different value from the
objective and reach it before t = 1. As a result, it is evident that Theorem 2 is proven true
since we assume that A(t), B(t), Q(t) are differentiable and B(t), Q(t) are non-negative
definite and symmetric matrices.

In the case of the NHOZNN model, the findings are presented in Figure 2. As can be
observed in Figure 2b,d,f,h,j,l, the NHOZNN model produces a random symmetric solution
to the TV-ARE of NEs Sections 4.1 and 4.2 under IC2 with three different types of noise,
CN, LN, and BRN. Further, Figure 2a,c,e,g,i,k show that for every type of noise that was
utilized, the NHOZNN model converges to the TV-ARE solution. Particularly, we observe
that the EME of the NHOZNN models convergence begins at t = 0 with values in the range
[10, 102] and, at t = 0.5, takes values in the range [1, 10−1]. Until t = 10, the EME of the
NHOZNN models values continue to drop, with lowest values in the range [10−1, 10−4].
That is, the EME of the NHOZNN models begin from a non-optimal IC and convergence to
the zero matrix. Notice also in these figures that the convergence occurs more quickly as
the parameter p increases in value. The graphs in Figure 2b,d,f,h,j,l behave in the same way
due to the convergence tendency of the EME convergence of the NHOZNN models under
three different types of noise, CN, LN, and BRN. In other words, the solutions trajectories
associated with the NHOZNN models in these figures begin at t = 0 in a very different
value from the objective and continue to drop until t = 10 under three different types
of noise. As a result, it is evident that Theorem 6 is proven true since we assume that
A(t), B(t), Q(t) are differentiable and B(t), Q(t) are non-negative definite and symmetric
matrices.

The following is deduced from the NEs of this section. As the parameter p increases
in value, the HOZNN and NHOZNN models perform better at solving the TV-ARE than
the traditional ZNN and NZNN models, i.e., HOZNN and NHOZNN with p = 2. In other
words, the HOZNN and NHOZNN models provide the smallest Frobenius norm for the
EMEs when the parameter p increases in value. It is also important to note that the models
will converge more quickly the larger the value of the design parameter λ. In essence,
the HOZNN and NHOZNN models outperform the traditional ZNN and NZNN models,
respectively, in solving the TV-ARE.

5. Conclusions

In this paper, the problems of solving the TV-ARE is addressed by employing a family
of ZNN models that correlate to the hyperpower iterative methods. As a consequence, this
study proposed and examined two models: a HOZNN model that produces numerical
TV-ARE real symmetric solutions, and a NHOZNN model that produces numerical TV-
ARE real symmetric solutions when noise is present. The HOZNN and NHOZNN models’
exponential convergence has been demonstrated theoretically, and NEs have demonstrated
that the suggested models outperform the traditional ZNN and NZNN models, respectively,
at addressing the TV-ARE. Particularly, two NEs demonstrate that, beginning from non-
optimal ICs, both the NHOZNN model under three distinct types of noise and the HOZNN
model converge to the symmetric theoretical solutions of TV-ARE. The efficacy of the
suggested models has thus been theoretically and numerically confirmed.

Some potential study topics are listed below.

1. Future studies might examine the use of well chosen fuzzy parameters to create
HOZNN dynamics enhancements.

2. Applications in engineering [35–37] could demonstrate the reliability of the HOZNN
dynamics in practical scenarios.
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Nomenclature List
The following abbreviations and parameters are used in this manuscript:

ARE algebraic Riccati equations
CARE continuous-time algebraic Riccati equation
TV-ARE time-varying algebraic Riccati equation
ZNN zeroing neural network
HOZNN higher-order zeroing neural network
NHOZNN noise-handling higher-order zeroing neural network
AF activation function
EME error matrix equation
NEs numerical experiments
ICs initial conditions
IC1 first initial condition
IC2 second initial condition
CN constant noise
LN linear noise
BRN bounded random noise

λ
a design parameter that is utilized to scale the convergence of the zeroing neural
network dynamics and the noise-handling zeroing neural network dynamics

ζ
a design parameter that is utilized to scale the convergence of the
noise-handling zeroing neural network dynamics
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30. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Gerontitis, D. A higher-order zeroing neural network for pseu-
doinversion of an arbitrary time-varying matrix with applications to mobile object localization. Inf. Sci. 2022, 600, 226–238.
[CrossRef]
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