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Abstract
This paper presents a dynamic model based on neutrosophic numbers and a neutrosophic
logic engine. The introduced neutrosophic logic/fuzzy adaptive Zeroing Neural Network
dynamic is termed NSFZNN and represents an improvement over the traditional Zeroing
Neural Network (ZNN) design. The model aims to calculate the matrix pseudo-inverse and
the minimum-norm least-squares solutions of time-varying linear systems. The improve-
ment of the proposed model emerges from the advantages of neutrosophic logic over fuzzy
and intuitionistic fuzzy logic in solving complex problems associated with predictions,
vagueness, uncertainty, and imprecision. We use neutrosphication, de-fuzzification, and de-
neutrosophication instead of fuzzification and de-fuzzification exploited so far. The basic
idea is based on the known advantages of neutrosophic systems compared to fuzzy systems.
Simulation examples and engineering applications on localization problems and electrical
networks are presented to test the efficiency and accuracy of the proposed dynamical system.

Keywords Time-varying problems · Moore–Penrose inverse · Zeroing neural network
(ZNN) · Neutrosophic logic · Localization problem · Electrical network

1 Introduction and Preliminary Motivation

The problem addressed in this paper is to calculate the following time-varying (TV) matrix
expression:

Y (t) := M†(t)L(t), (1)

in which M(t) ∈ R
m×n is an arbitrary TV matrix, L(t) ∈ R

m×k , k ≥ 1 and M†(t) ∈ R
n×m

is the Moore-Penrose (MP) inverse (or pseudo-inverse) of M(t).
The main problem in defining an appropriate ZNN design is the permanent imperfection,

which is fundamentally caused by the absence of the best or unique value of the varying-gain
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parameter involved in the ZNN design. The starting point of our discussion is an approach
based on fuzzy logic in developing ZNN dynamics. This paper presents a neutrosophic
logic/fuzzy adaptive ZNNmodel (termed asNSFZNNmodel) for calculating the best approx-
imate solutions to TV problems (1). The basic principle in defining the scaling parameter
was the fact that fuzzy logic (FL), intuitionistic fuzzy logic (IFL) and Neutrosophic logic
(NL) appear as efficient tools for handling mathematical models with uncertainty, fuzziness,
ambiguity, inaccuracy, incomplete certainty, inconsistency, and redundancy.

The current research is important because of two main principles: the generality and
applicability of the problem (1), as well as known advantages of neutrosophic systems,
compared to the fuzzy systems used so far. Amore detailed description of the basic principles
follows in the rest of this section.

1.1 Importance of Least Squares Solutions

The expressions Y (t) of the general form (1) are intensely applicable in science and in
numerous and various engineering applications. The most important cases of (1) are listed
below.

(i) In the case L(t) = I , the expression (1) becomes the MP inverse M†(t), which coin-
cides with the usual inverseM−1(t) in the case of a nonsingularM(t). TheMP inverse
is widely used in various fields of science but also in practical applications, mainly
in biology [7], power forecasting [23], robotics [20] as well as in image restoration
[34]. For more information on the history and properties of the MP inverse, the reader
is referred to [3, 4]. The MP inverse has been used in many ways to solve linear
systems of vector and matrix equations. The expression Y = M†L represents the
unique best-approximate solution of the linear matrix equations (LME) MY = L ,
i.e., the unique solution of the minimal norm ‖M†L‖ between least-squares solutions
‖MY − L‖ ≥ ‖MM†L − L‖ [25]. It is worth mentioning that the best-approximate
solution M†L has been used to reconstruct blurry digital images [34].

(ii) For M ∈ R
m×n and L = b ∈ R

m , the MP inverse solution M†b is the unique solution
of minimum-norm among the least-squares solutions to My = b, i.e., ‖My − b‖ ≥
‖MM†b − b‖ and ‖M†b‖ < ‖y‖ for all y �= M†b satisfying My = b [25].

(iii) Consider the case M = L A, for A ∈ R
m×n and L ∈ R

s×m . Then (1) produces the
generalized inverse Y = (L A)† L ∈ A{2, 4} which satisfies the matrix equations
Y AY = Y and (Y A)∗ = Y A. It is worth noting that Y AY = Y and (Y A)∗ = Y A,
respectively, are the MP equations 2 and 4, while A{2, 4} is the set of generalized
inverses that satisfy these two equations [3, 4].

(iv) Many efficient algorithms have been developed for calculating theMP inverse, mainly
based on iterations [12], singular value decomposition [38] or Greville’s recursive
method [49]. It is well recognized that the efficiency and applicability of standard
numerical algorithms applied to input matrices constant throughout time are limited
in the TV case. The zeroing neural network (ZNN) dynamical approach is an effi-
cient tool for solving TVproblems [35]. The ZNNalgorithmwas initially proposed for
solving the TVmatrix inversion problem [43]. In [44], the authors proposed and inves-
tigated various ZNN models for solving online the time-varying reciprocal problem.
By generalizing the field of application, a more general ZNN design for calculating
the TV MP inverse of a full-column or full-row rank matrix was proposed in [45].
Five complex ZFs and accordingly developed ZNNs for calculating the TV complex
MP inverse were proposed in [19].
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This fact is a clear motivation for using ZNN dynamical systems to calculate the
expression (1).

(v) The time-varying linear matrix equation (LME) M(t)Y (t) = L(t) ∈ R
m×m , where

M(t) ∈ R
n×n is nonsingular, L(t) ∈ R

n×m , and Y (t) ∈ R
n×m is the unknown matrix

of interest, was considered in [40]. In addition, the LME M(t)Y (t) = L(t) ∈ R
m×m ,

where M(t) ∈ R
m×n , L(t) ∈ R

m×k , and Y (t) ∈ R
n×k is the unknown matrix of

interest, was investigated in [16] in terms of the QR decomposition. It is important to
mention that (1) provides the best approximate solution to M(t)Y (t) = L(t) in the
case of arbitrary matrix M(t) and an arbitrary vector or matrix L(t).

(vi) Let A(t) ∈ R
m×n be of constant rank r , G(t) ∈ R

n×m
s be of a constant rank s such

that 0 < s ≤ r , and let F(t) ∈ R
n×m be arbitrary. In the case

M(t) = G(t)A(t) + μI , μ > 0, L(t) = F(t), (2)

the general problem (1) produces the following result:

Y (t) = (G(t)A(t) + μI )−1 F(t), (3)

where the most popular choices of A, F,G and initiated limit values

lim
μ→0

(G(t)A(t) + μI )−1 F(t) (4)

were surveyed in [32, 33].
(vii) Various ZNN models for solving an arbitrary system of linear equations M(t)y(t) =

b(t) were presented in [31].
(viii) Numerous applications have employed ZNN dynamics to solve TV problems with

global convergence [16–18, 39, 41, 47].

1.2 Neutrosophy’s Justification and Expectations in the ZNN Dynamics

The development of ZNN models enhanced by the advantages of fuzzy logic systems is a
current trend in ZNN development. The term fuzzy logic system (FLS) is derived from the
fuzzy set theory [42], and it can handle uncertainties, ambiguities, vagueness, and impre-
cision. An arbitrary FLS is based on fuzzy rules and linguistic rules. Due to such ability,
FLSs have been studied in many research articles [36, 37] and have been applied to various
scientific fields [10, 26]. As a consequence, recent research has focused on incorporating
fuzzy control into ZNN design [6, 9, 14, 15, 17].

The basis for establishing fuzzy numbers and neutrosophic numbers is the universe
of discourse U and a subset N ⊆ U . The fuzzy set theory enables the use of the
membership function TN (x) ∈ [0, 1] [42]. Intuitionistic fuzzy set theory is based on
the additional non-membership function FN (x) ∈ [0, 1] which satisfies the restriction
0 ≤ TN (x) + FN (x) ≤ 1 [2]. Smarandache in [28] extended the intuitionistic fuzzy set
theory by introducing the indeterminacy-membership function. Consequently, in the neutro-
sophic set theory [28, 29], each element of N is defined by three independent membership
functions: the truth-membership function TN (x), the indeterminacy-membership function
IN (x), and the falsity-membership FN (x) function. Entries of a neutrosophic set (NS) N
are neutrosophic numbers of the form N = {〈x : TN (x), IN (x), FN (x)〉| x ∈ U} , where
TN (x), IN (x), and FN (x) are the truth-membership function, indeterminacy-membership
function, and falsity-membership function, respectively. Values of these functions are inde-
pendent of each other and within [0, 1]. It is important to note that NSs have essential uses in
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denoising, clustering, segmentation, classification, and numerous medical image-processing
applications [5].

The main contributions of this research include the following highlights.

• This paper offers an improvement in the Zeroing Neural Network (ZNN) design based
on the application of neutrosophic numbers (NSFZNN model).

• The application of the NSFZNN dynamics in computing the MP inverse M†(t) and the
best approximate solution Y (t) = M†(t)L(t) of a large class of TV matrix or vector
equations M(t)Y (t) = L(t) is presented.

• The convergence characteristics of the NSFZNN dynamics are investigated.
• Various numerical experiments present a comparison of numerical results obtained using

neutrosophy versus numerical results obtained using known fuzzy approaches.
• The NSFZNN model’s application in the domain of engineering is explored.

Sections within this paper are scheduled in the following manner. Existing Fuzzy Neural
Network models are surveyed in Sect. 2 to highlight the position of ongoing research. In line
with the examination of well-known methods, the motivation of our work is described in the
same section. The general FZNN model based on the neutrosophic set theory is described
in Sect. 3. Application of the general model in solving a class of TV problems is presented
in Sect. 4. Simulation experiments in solving matrix equations and applications in solving
practical linear systems are presented in Sect. 5. Some concluding remarks are given in Sect. 6.

2 Survey of Existing Fuzzy Neural NetworkModels andMotivation

Following the description in [43], three global steps are recognizable during the definition of
the traditional ZNN (TZNN) model. These three steps are described as follows:
Step ZNN1. Define the error function (or Zhang function, ZF), denoted by �(t).
Step ZNN2. Calculate the time derivative �̇(t) = d�(t)

dt .
Step ZNN3. Utilize �(t) to force each element to converge to zero in accordance with the
dynamic rule:

�̇(t) = −λ(t) �(t), (5)

where λ(t) > 0 is an appropriately defined varying scaling parameter which can adjust the
convergence rate.

Nevertheless, many heterogeneous rules for determining gain parameters have been pro-
posed and applied in developing ZNN dynamics. Initial research in this direction was done
in [46] in which the time-variant parameter λ(t) := λ + λt was proposed and used as an
efficient tool for solving a TV linear matrix equation. With the aim to solve the time-variant
overdetermined system of linear equations, Zhang et al. in [48] proposed a varying-parameter
λ(t) := λet , λ > 0, inside the ZNN.

The approach that determines proper values of the varying scaling parameterλ(t) by utiliz-
ing appropriate fuzzy control systems has become an upward trend in the ZNN development.
The intention in [47] was the usage of a proper fuzzy value ν with the aim to replace the
standard acceleration value λwith the fuzzy parameter λ(t) := λ+ν, wherein ν is defined by
utilizing an appropriate fuzzy logic control system. Furthermore, the adaptive fuzzy recurrent
neural network (AFRNN) proposed in [47] was successfully employed in the motion control
problem.

Using a combination of ZNN and an appropriate fuzzy logic system (FLS), the authors
in [14] originated the fuzzy-power ZNN (FPZNN) for solving the TV pseudo-inversion
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problem of full-row or full-column rank input matrices. To be more precise, the acceleration
parameter in [14] is set to λ(t) := λ1 + λν

2, such that λ1 > 0, λ2 > 1, and the value ν is
the output of a properly defined FLS. In [15], the authors included a fuzzy-gain acceleration
in the ZNN dynamical system in the AFT-ZNN dynamics solving quadratic problems with
the acceleration gain parameter λ(t) := λ + ν, where λ > 0 is the classical acceleration,
and ν > 0 is an appropriate fuzzy control value. A recent result regarding the inclusion of
fuzzy-gain acceleration in the ZNN dynamical system was proposed in [17] based on the
dynamical flow

�̇(t) = −λν
�(t), (6)

where λ > 1 is the classical acceleration, and ν is a proper exponent generated as a fuzzy
number within an appropriate FLC.

Our main goal is to initiate a new trend in defining the fuzzy parameter ν. The approach is
based on the usage of neutrosophic set theory and neutrosophic logic (NL). The leading idea
for incorporating NL fuzziness into the ZNN evolution is to make decisions about values
ν within an appropriate NL control (NLC), based on the Frobenius norm ‖�(t)‖F error
function.

Further predictions regarding the decision-making problems on gain parameters depend
on ‖�(t)‖F and are associated with uncertainties and predictions. Thus, it is reasonable to
allow the use of fuzzy numbers and neutrosophic triples in making decisions on the fuzzy
value ν and, accordingly, on the composite gain acceleration λν . Our goal is to apply NL
principles which are more general and closer to human thinking than FL. NLC is a better
choice than FL and IFL in representing real-world data and their implementation for several
reasons.

(a) FL and IFL systems neglect the importance of indeterminacy. A fuzzy logic controller
(FLC) is based on the membership and non-membership of a particular element to a
particular set and does not consider the indeterminate nature of generated data. The
importance of uncertainty is fully addressed in NLC-controlled systems. We expect that
the experience in FL, IFL, and NLC, gained in many areas of science and applications,
such as neutrosophic set/logic/probability/statistics/measure/integral, will stay valid in
dynamic systems.

(b) FL or IFL systems are further constrained by the fact that the sumofmembership and non-
membership values is limited to 1. Trustiness and falsity in NL systems are independent,
whereas in IFL are dependent. More details are available in [30].

(c) NL reasoning clearly distinguishes between the concepts of absolute truth and relative
truth by assuming the existence of absolute truth with the assigned value 1+.

(d) NL is applicable in situations of overlapping regions of fuzzy systems [1].
(e) NL is known as a generalization of the IFL [28]. Consequently, using NL allows greater

and more varied choices in numerical experiments and decision-making.
(f) A hesitancy in an IFL specifies indeterminacy so that IFL-based systems are not efficient

in handling inconsistent information. On the other hand, an NL system can handle both
indeterminacy and inconsistency [22].

3 NSFZNNModel Based on Neutrosophic Set Theory

The proposed fuzzy ZNN model for solving (1) is based on the application of an appropriate
NLC in defining λ(t) := λν > 0 and will be termed as NSFZNN. Neutrosophication aims to
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solve the indeterminacy and selectivity of parameters involved in dynamical systems. Its goal
is a transformation of crisp values into appropriate neutrosophic ordered triples. On the other
hand, a unique approach to de-fuzzification and de-neutrosophication, i.e., transforming a
neutrosophic number into a corresponding crisp number, is proposed. The basic stages in
defining the NLC can be highlighted as follows.

(1) Neutrosophication. Using three membership functions, NL-based fuzzification maps the
input ϑ := ‖�(t)‖F , where �(t) is appropriately defined ZF and ‖�(t)‖F is the Frobe-
nius norm of �(t). The values of the gain parameter λν are defined based on estimates
and predictions based on the truth, the indeterminacy, and the falsity percentage. Since
the final goal is �(t) = 0, it is suitable to use ϑ := ‖�(t)‖F as a measure in devel-
oped NLC. The neutrosophication exploited in this paper transforms the input set in
the fuzzy input set I and the output set into the fuzzy output set in the neutrosophic
format O = {TN , IN , FN }. According to the general NL, it will be appropriate to
use three membership functions for generating an output set, corresponding to TN (ϑ),

IN (ϑ), FN (ϑ). The truth-membership function is defined as the sigmoid membership
function

T(ϑ) = 1/(1 + e−c1(ϑ−c2)), (7)

in which the parameter c1 is responsible for its slope at the crossover point ϑ = c2. The
falsity-membership function is defined as the Z-shaped membership function

F(ϑ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, ϑ ≤ c1

1 − 2
(

ϑ−c1
c2−c1

)2
, c1 ≤ ϑ ≤ c1+c2

2

2
(

ϑ−c2
c2−c1

)2
, c1+c2

2 ≤ ϑ ≤ c2
0, ϑ ≥ c2

, (8)

where the parameter c1 signifies the shoulder of the function, and c2 signifies its foot.
The indeterminacy-membership function is the Gaussian membership function

I(ϑ) = e− (ϑ−c2)2

2σ2 , (9)

where the parameter σ signifies the standard deviation, and the parameter c2 signifies
the mean. The neutrosophication of the crisp value ϑ ∈ R is its transformation into
〈ϑ : T (ϑ), I (ϑ), F(ϑ)〉, where the membership functions are defined in (7), (8) and
(9). Graphs of T(ϑ), I(ϑ),F(ϑ) with c1 = 2, c2 = 3, σ = 1 in 7, 8, 9 are presented in
Fig. 1a for ϑ ∈ [0, 6]. Since θ ≥ 0, we will continue to use c2 = 0 in further. Graphs
of T(ϑ), I(ϑ),F(ϑ) for c1 = 1, c2 = 0, σ = 0.9 in 7, 8, 9 are presented in Fig. 1b for
ϑ ∈ [0, 6]. Graphs of T(ϑ) + I(ϑ) + F(ϑ) for c1 = 2, c2 = 3, σ = 1 are presented in
Fig. 2for ϑ ∈ [0, 6]. Fulfillment of the condition 0 ≤ T(ϑ)+ I(ϑ)+F(ϑ) ≤ 3 is evident
and observable in this figure.

(2) Neutrosophic inference engine: The neutrosophic rule between the fuzzy input set I and
the fuzzy output set under the neutrosophic format O = {TN , IN , FN } is described as
the following “IF-THEN" rule:

R : If I = HE then O = {TN , IN , FN },
where HE represents a fuzzy set that indicates a significant error. The rule R is obtained
asO = I ◦ R, where ◦ means the fuzzy transformation symbol. Furthermore, it follows
that κI◦R(ζ ) = κI◦R and κI◦R = κI ∧ κO, where ∨ and ∧ are the maximum and
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Fig. 1 Graphs of T(ϑ), I(ϑ), F(ϑ) under different parameters settings in 7, 8, 9 and their ν(ϑ, t) values for
k1 = 1, k2 = 6 and ϑ ∈ [0, 100], t ∈ [0, 6]

Fig. 2 Graphs of
T(ϑ) + I(ϑ) + F(ϑ) for
c1 = 2, c2 = 3, σ = 1

minimum values operators, respectively. The following defuzzification method, called
centroid, is employed to obtain the fuzzy vector ζ = [TN , IN , FN ]:

ζ =
∫

O ζ κI◦R(ζ )dζ
∫

O κI◦R(ζ )dζ
. (10)
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Fig. 3 The NLC structure

So, we will consider the dynamic neutrosophic set (DNS) of ordered triples D :={〈T(ϑ), I(ϑ),F(ϑ)〉|ϑ ∈ R
+
0

}
, where R

+
0 denotes nonnegative real numbers. The defini-

tion of the setD fulfils formal requirements of theDNS from [27], becauseϑ := ‖�(t)‖F
is the function of the time t .

(3) De-neutrosophication. This step assumes the conversion 〈ϑ : T (ϑ), I (ϑ),

F(ϑ)〉 → ν(ϑ, t) ∈ R, resulting to a single (crisp) value ν(ϑ, t). The following
de-neutrosophication rule is proposed to obtain the parameter ν(ϑ, t):

ν(ϑ, t) = k1 + k2
T (ϑ) + I (ϑ) + F(ϑ)

t + 1
. (11)

The parameter k1 ≥ 1 in (11) indicates the lower limit of (11), the parameter k2 ≥ 0 is
used to adjust the upper limit of (11), and t ≥ 0 is a real number which satisfies t ∈ R

+
0 .

The process of obtaining initiated output ν is illustrated in Fig. 3.

Based on the general ZNN strategy, our imperative requirement is ν(ϑ, t) ≥ 1. The results
of Lemma 1 define criteria for fulfilling that requirement.

Lemma 1 Under the constraints

k1 ≥ 1, k2 ≥ 0, t ∈ R
+
0 , (12)

the de-neutrosophy rule (11) satisfies

k1 + 3k2
t + 1

≥ ν(ϑ, t) ≥ k1 ≥ 1. (13)

Proof Since T (ϑ), I (ϑ), F(ϑ) ∈ [0, 1] in (7), (8), (9), it follows that 3 ≥ T (ϑ) + I (ϑ) +
F(ϑ) ≥ 0. Furthermore, based on the assumptions in (12), we conclude for arbitrary t ≥ 0

ν(ϑ, t) =
{
k1 + k2 (T (ϑ) + I (ϑ) + F(ϑ)) ∈ [k1, k1 + 3k2], t = 0

k1 + k2
T (ϑ)+I (ϑ)+F(ϑ)

t+1 ∈ [k1, k1 + 3k2
t+1 ], t > 0.

(14)

In addition, as t → ∞ it follows

lim
t→∞ ν(ϑ, t) = lim

t→∞

(

k1 + k2
T (ϑ) + I (ϑ) + F(ϑ)

t + 1

)

= k1, (15)

which completes the proof. ��
In each time instant t defined by the NSFZNN evolution, ν(ϑ, t) takes one unique value,

depending on the value ϑ . Values ν(ϑ, t) for T(ϑ), I(ϑ),F(ϑ) defined with c1 = 2, c2 = 3,
σ = 1 in (7), (8), (9) and k1 = 1, k2 = 6, ϑ ∈ [0, 100], t ∈ [0, 6] are presented in Fig. 1c,
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while values ν(ϑ, t) for T(ϑ), I(ϑ),F(ϑ) with c1 = 1, c2 = 0, σ = 0.9 in (7), (8), (9) and
k1 = 1, k2 = 6, ϑ ∈ [0, 100], t ∈ [0, 6] are presented in Fig. 1d.

The following generic dynamics will represent both the ZNN and NSFZNN dynamic
systems:

�̇(t) = −λν(ϑ,t)
�(t), (16)

where ν(ϑ, t) is defined in (11). Notice that the dynamics (16) will be denoted by NSFZNN.
Moreover, the general NSFZNN dynamics is described by Algorithm 1.

Algorithm 1 General NSFZNN dynamics.
1: Input: Appropriate input matrices, the time interval [0, T ], and the parameters c1, c2, σ , k1, k2.
2: Define the error function �(t).
3: Set t := 0.
4: while t ≤ T do
5: Compute ϑ := ‖�(t)‖F .
6: Compute T(ϑ), I(ϑ), F(ϑ) based on the neutrosophic inference engine.
7: Compute ν(ϑ, t) using (11).
8: Solve (16) in expanded form and find new time instant t .
9: end while
10: return The variable state matrix X(t) included in �(t).

4 Problem andModel Description

This section describes the NSFZNN model. To calculate Y (t) = M†(t)L(t), we follow the
process described in Sect. 2 using NSFZNN of dynamics (16) or TZNN of design (5). As a
result, the evolution of NSFZNN dynamics is developed in the following three steps.
Step NSZNN1. Define the ZF denoted as �1(t), which forces the state variables matrix
X(t) on the convergence X(t) �−→ M†(t), and the ZF �2(t), which forces the convergence
Y (t) − X(t)L(t) �−→ 0.
Given TV arbitrary matrix M(t) ∈ R

m×n ; the ZF �1(t) which forces the convergence
X(t) �−→ M†(t) ∈ R

n×m in the case rank(M(t)) = min{m.n} is defined by [11]

�1(t) =
{

�α(t)≡MT(t)M(t)X(t)−MT(t), m ≥ n
�β(t)≡ X(t)M(t)MT(t)−MT(t), m < n.

(17)

Then, for an arbitraryTVmatrixY (t) ∈ R
m×k , theZF for findingY (t) := M†(t)L(t) ∈ R

n×k

is defined as

�2(t) = Y (t) − X(t)L(t) ∈ R
m×k . (18)

Zeroing the ZFs in (17) and (18) at the same time, we are able to find both X(t) = M†(t)
and Y (t) = M†(t)L(t).
Step NSZNN2. Compute the time derivatives �̇1(t) and �̇2(t). The time-derivative of �1(t)
is

�̇1(t) =
{

�̇α(t), m ≥ n
�̇β(t), m < n

(19)

where

�̇α(t) = MT(t)M(t)Ẋ(t) + Hα(t), (20)
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with

Hα(t) = ṀT(t)M(t)X(t) + MT(t)Ṁ(t)X(t)−ṀT(t), (21)

and

�̇β(t) = Ẋ(t)M(t)MT(t) + Hβ(t) (22)

with

Hβ(t) = X(t)Ṁ(t)MT(t) + X(t)M(t)ṀT(t) − ṀT(t). (23)

The time-derivative of �2(t) is equal to

�̇2(t) = Ẏ (t) − Ẋ(t)L(t) − X(t)L̇(t). (24)

StepNSZNN3.According to stepsNSZNN1andNSZNN2, defineNSFZNNdynamic system
for computing M†(t)L(t), with the dynamic flow which is based on Y (t)− X(t)L(t) �−→ 0,
where X(t) �−→ M†(t).
Replacement of �1(t) and �̇1(t) into the NSFZNN of (16) implies

{
�̇α(t) = −λν(ϑ,t)

�α(t), m ≥ n
�̇β(t) = −λν(ϑ,t)

�β(t), m < n
(25)

or equivalently
{
MT(t)M(t)Ẋ(t) = −λν(ϑ,t)

�α(t) − Hα(t), m ≥ n
Ẋ(t)M(t)MT(t) = −λν(ϑ,t)

�β(t) − Hβ(t), m < n.
(26)

Applying the Kronecker product ⊗ in conjunction with the vectorization operator vec(), the
dynamic flow (26) is transformed into the equivalent vector form

{ (
Im ⊗ MT(t)M(t)

)
ẋ(t)=vec(−λν(ϑ,t)

�α(t) − Hα(t)), m ≥ n(
M(t)MT(t) ⊗ In

)
ẋ(t)=vec(−λν(ϑ,t)

�β(t) − Hβ(t)), m < n,
(27)

where Ip signifies the p × p identity matrix and ẋ(t) = vec(Ẋ(t)).
It is known that the invertibility of the coefficient matrices of ẋ(t) in the left hand sides

of (27) is sufficient to find ẋ(t). Assuming that M(t) fulfills rank(M(t)) < min{m, n}, the
Tikhonov regularization should be applied on the results obtained in [21]. As a result, using
the mass matrix

K (t) =

⎧
⎪⎪⎨

⎪⎪⎩

Im ⊗ MT(t)M(t), rank(M(t)) = n ≤m
M(t)MT(t) ⊗ In, rank(M(t)) = m < n
Im ⊗ MT(t)M(t) + δ Imn, rank(M(t)) < n ≤ m
M(t)MT(t) ⊗ In + δ Imn, rank(M(t)) < m < n

(28)

with δ > 0 signifies the ridge parameter, and gives

h(t) =
{
vec(−λν(ϑ,t)

�α(t) − Hα(t)), m ≥ n
vec(−λν(ϑ,t)

�β(t) − Hβ(t)), m < n.
(29)

In this way, (27) can be modified to satisfy both of its cases for an arbitrary TV matrix M(t),
as follows:

K (t)ẋ(t) = h(t). (30)

Further, replacing �2(t) and �̇2(t) in NSFZNN (16), it is concluded

�̇2(t) = −λν(ϑ,t)
�2(t) (31)
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or equivalently

Ẏ (t) − Ẋ(t)L(t) = −λν(ϑ,t)
�2(t) + X(t)L̇(t). (32)

Applying the Kronecker product in common with the vectorization, the evolution (32)
becomes the flow

ẏ(t) − (
LT(t) ⊗ In

)
ẋ(t) = z(t), (33)

where ẏ(t) = vec(Ẏ (t)) and

z(t) = vec
(
−λν(ϑ,t)

�2(t) + X(t)L̇(t)
)

. (34)

A combination of (30) and (33) leads to the dynamics

K (t) 0mn×nk

− (
LT(t) ⊗ In

)
Ink

· ẋ(t)
ẏ(t)

= h(t)
z(t)

, (35)

where 0mn×nk denotes the mn × nk zero matrix. It is worth noting that (35) is the proposed
NSFZNN model for calculating the expression (1). Also keep in mind that (35) is solved
using the ordinary differential equation (ode) Matlab solver.

Note that the invertibility of K (t) is a prerequisite for the applicability of (30). The
invertibility of K (t) is verified in Theorem 1.

Theorem 1 Let M(t) ∈ R
m×n is an arbitrary TV matrix, L(t) ∈ R

m×k , k ≥ 1 be given.

(a) The mass matrix K (t) required in (30) and defined in (28), is nonsingular for δ > 0 with
the inverse

K−1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Im⊗
(
MT(t)M(t)

)−1
, rank(M(t))=n≤m

(
M(t)MT(t)

)−1⊗ In , rank(M(t))=m<n

Im⊗
(
MT(t)M(t)+δ In

)−1
, rank(M(t))<n≤m

(
M(t)MT(t)+δ Im

)−1⊗ In , rank(M(t))<m<n.

(36)

(b) Furthermore, the following limits hold:

lim
δ→0

x(t)=vec(M†(t))

lim
δ→0

y(t)=vec
(
M†(t)L(t)

)
.

(37)

Proof (a) The inverse K−1(t) as in (36) is obtained by applying the main properties of the
Kronecker product. The matrix MT(t)M(t) is invertible in the case rank(M(t)) = n,
which implies the invertibility of K (t) = Im ⊗ MT(t)M(t) in this case. On the other
hand, M(t)MT(t) is invertible if rank(M(t)) = m, which implies that M(t)MT(t) ⊗ In
is invertible in this case. In the rank-deficient environment rank(M(t)) < min{m, n}, the
inverse K−1(t) exists on the basis of the assumption δ > 0.

(b) On the basis of results derived in [11, 45] it is concluded X(t) → M†(t), which in
common with ẋ(t) = vec(Ẋ(t)) implies

lim
δ→0

x(t) = lim
δ→0

vec(X(t)) = vec(M†(t)), (38)
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which coincides with the first statement in (37). Finally, the ZNN dynamics (31) implies
�2(t) → 0, which implies Y (t) = X(t)L(t) → M†(t)L(t), which in view of ẏ(t) =
vec(Ẏ (t)) leads to

lim
δ→0

y(t) = lim
δ→0

vec(Y (t)) = vec(M†(t)L(t)). (39)

So, the second statement in (37) is confirmed.

The NSFZNN model, compared to the FZNN models for calculating the MP inverse, has
a unique design with the following novelties:

• NSFZNN simultaneously calculates the MP inverse M†(t) and the minimal-norm least-
squares solution Y (t) = M†(t)L(t) for the TV linear systems M(t)Y (t) = L(t).

• Based on vectorization and regularization, NSFZNN accepts an arbitrary real TV matrix
M(t), which makes it universally applicable. In this way, we overcome one of the ZNN
approaches’ drawbacks in computing the MP inverse, which assumes the invertibility of
the mass matrix and causes some restrictions on the input matrix.

• NSFZNN uses an adaptive NLC based on three membership functions to increase the
convergence speed of the FZNN design. The NLC, based on three membership functions,
is capable of handling problems inwhich indeterminacy is present, allowing it to calculate
the theoretical solution faster.

• Moreover, numerical comparison of NSFZNN dynamics against FZNN dynamics and
experience gained in two applications have proven that NLC is credible in creating
dynamic systems.

5 Simulative Experiments and Applications

This section presents two examples and two engineering applications designed to test the
efficiency and accuracy of the NSFZNN model (35). The applications include solving the
Angle of Arrival (AoA) localization and computing the dynamic alternating current (AC)
of an electrical network. Inhere, the TZNN in (5) and the FZNN dynamic from [14] are
the designs compared against the proposed NSFZNN model (35). Note that all the designs
are employed under the linear activation function. In all examples and the applications, the
TZNN, FZNN, and NSFZNN designs are evaluated with the gain value λ = 10, inside the
time interval [0, 10], which assumes the start time t0 = 0 and the end time t f = 10. Initial
states that are used in all the designs for producing their solutions are zero matrices for X(0)
and identity matrices for Y (0), of appropriate dimensions, while the ode15s MATLAB
solver is being used. The FZNN parameters are set as proposed in [14], while the NSFZNN
parameter values are set as presented in Table 1. Notice that the notations “XTZNN", “XFZNN",
“XNSFZNN" and “YTZNN", “YFZNN", “YNSFZNN" involved in the figures’ legends correspond
to the solutions to X and Ygenerated by TZNN, FZNN, and NSFZNN, respectively.
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Table 1 NLC’s parameters

Module Function Range Neutrosophic set Parameters Weight

Neutrosophic Input Sigmoid [0,10] HE c1 = 0.6, c2 = 0 1

Inference Sigmoid [0,1] TN c1 = 5.4, c2 = 0.5 1

Engine Output Gaussian [0,1] IN c2 = 0.2, σ = 0.5 1

Z-shaped [0,1] FN c1 = −0.5, c2 = 1.5 1

De-neutrosophication (9) – – k1 = 1, k2 = 6 –

5.1 Example 1

Let us consider the following matrices

M(t) =

⎡

⎢
⎢
⎣

1 + cos(t) 1 + cos(t) 6 + sin(2t)
5 + sin(2t) 5 + sin(2t) −4 − sin(t)
3 + cos(t) 3 + cos(t) −6 + cos(t)
3 + cos(t) 3 + cos(t) −6 + cos(t)

⎤

⎥
⎥
⎦ ,

L(t) =

⎡

⎢
⎢
⎣

4 + cos(t) 2 + sin(t)
−2 + sin(t) 3 − sin(t)
−2 + cos(2t) 7 + cos(t)
1 + cos(t) −1 + cos(2t)

⎤

⎥
⎥
⎦ ,

where M(t) is a rank-deficient matrix of rank 2. The results generated during the calculation
of the MP inverse M†(t) and the expression M†(t)L(t) with the regularization parameter
δ = 1e−6 are presented in Fig. 4.

5.2 Example 2

This example deals with the following matrices:

M(t) =
[

4 + cos(t) 4 + cos(t)
2 . . . 4 + cos(t)

n

]
� 1m×n,

L(t) =

⎡

⎢
⎢
⎢
⎣

1 + sin(t)
2 + sin(t)

2
...

m + sin(t)
m

⎤

⎥
⎥
⎥
⎦

� 1m×k �

⎡

⎢
⎢
⎢
⎣

1
2
...

m

⎤

⎥
⎥
⎥
⎦

,

where � denotes the Hadamard product and 1m×n ∈ R
m×n , 1m×k ∈ R

m×k are matrices of
ones. It is worth noting that M(t) is rank-deficient and of rank 1. Setting m = 5, n = 10,
k = 6, the results generated during the calculation of M†(t)L(t) and during solving the LME
M(t)Y (t) = L(t) with δ = 1e−6 are presented in Fig. 5.

5.3 Discussion of Examples 1 and 2

The results of the TZNN, FZNN and NSFZNN models for finding the MP inverse of M(t)
are depicted in Fig. 4a, c in the case of Ex. 5.1 and in Fig. 5a, c in the case of Ex. 5.2, while
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Fig. 4 The Frobenius norms values of ZFs, MP inverse trajectories and the LME solutions’ trajectories in
Ex. 5.1

the results in finding the expression M†(t)L(t) are depicted in Fig. 4b, d in the case of Ex.
5.1 and in Fig. 5b, d in the case of Ex. 5.2.

It is noticeable that the values of Frobenius norms ‖�1(t)‖F in Figs. 4a and 5a, and
‖�2(t)‖F in Figs. 4b and 5b are minimal and, at the same time, almost similar across the
time interval [0, 10] in the cases of Ex. 5.1 and 5.2, respectively. However, it is also observ-
able that the NSFZNN model converges faster to zero than FZNN, while the FZNN model
converges faster to zero than TZNN. Another observation is that the MP inverse solutions’
state trajectories, arranged in Figs. 4c and 5c, as well M†(t)L(t) solutions’ state trajectories,
arranged in Figs. 4d and 5d, follow the same conclusion in the cases of Ex. 5.1 and 5.2,
respectively. The conclusion is that NSFZNN converges faster to the solutions’ state trajec-
tories than FZNN, while the FZNNmodel converges faster to the solutions’ state trajectories
than TZNN.

General conclusions from Ex. 5.1 and 5.2 are that the NSFZNN model (35) generates the
MP inverse of an arbitrarymatrixM(t) and, at the same time, computesM†(t)L(t).Moreover,
the NSFZNNmodel performs better than FZNN,while the FZNNmodel performs better than
TZNN. An important observation from Figs. 4 and 5 is that the NSFZNN design achieves
the fastest convergence in the initial part of the considered time interval. This observation
confirms the fastest convergence of NSFZNN compared to FZNN and TZNN. In order to
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Fig. 5 The Frobenius norms values of ZFs, MP inverse trajectories and the LME solutions’ trajectories in
Ex. 5.2

highlight such a situation, we have singled out the initial parts of some figures as involved
sub-images. According to figures 4b, 5b, 7b, and 8b, the suggested NSFZNN model doubles
the improved performance of FZNN compared to TZNN. The general conclusion is that the
NSFZNN model performs better than FZNN, while the FZNN model performs better than
TZNN.

5.4 Application on Solving Localization Problem

A specific solution to the AoA method in estimating a mobile object localization based on
solving TV linear matrix equations and the QR decomposition was proposed in [16]. Inhere,
we demonstrate applications of the TZNN, FZNN, and NSFZNN models in mobile object
localization, based on the AoA algorithm. It is worth noting that AoA is commonly employed
in the navigation [8], localization system [13], and wireless communication [24].

For convenience, a two-dimensional localization is examined in-depth, although this strat-
egy can be extended to three-dimensional localization. The angle of incidence of the signal
emitted by the mobile item determines the passive sensor array of each base station (BS), as
shown in Fig. 6. At the time t , assume that the incident angles of four BSs areα1(t), . . . , αd(t)
and the mobile object position is the target of straight lines each passing through a BS. The
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Fig. 6 Illustration of the AoA
technique for the estimation of
mobile object location

coordinates of i th BS are (xi , yi )T, i = 1, 2, . . . , d , and the mobile object’s TV coordinates
are (u(t), v(t))T. According to the geometrical treatment, the AoA localization is reduced to
the linear system M(t)Y (t) = L(t), where

M(t) =

⎡

⎢
⎢
⎢
⎣

− tan α1(t) 1
− tan α2(t) 1

...
...

− tan αd(t) 1

⎤

⎥
⎥
⎥
⎦

, L(t) =

⎡

⎢
⎢
⎢
⎣

y1 − x1 tan α1(t)
y2 − x2 tan α2(t)

...

yd − xd tan αd(t)

⎤

⎥
⎥
⎥
⎦

. (40)

The best approximate solution to (40) is given by Y (t) = M†(t)L(t). We will use the TZNN,
FZNN, and NSFZNNmodels to M†(t) and, at the same time, to calculate M†(t)L(t). In this
way, the movable object’s coordinates (u(t), v(t))T can be tracked by M†(t)L(t).

Consider the case d = 4 and the actual trajectory (AT) of the mobile object location
defined by u(t) = t/2 − 3.6 and v(t) = t/5 + cos(t)/2 − 1.5, while the four BSs (BSi ,
i = 1, . . . , 4) have coordinates (2, 3)T, (5,−4)T, (2, 5)T and (3,−3)T, respectively. That is,
M(t) ∈ R

4×2 and L(t) ∈ R
4. The input matrix is of rank 2 and the regularization parameter

is δ = 0. The results generated during the LME solution are depicted in Fig. 7a–d, while a
3D representation of the actual trajectories (AT) along with the estimated trajectories (ET)
of the mobile object is depicted in Fig. 10. A successful solution to the path-tracking task of
the mobile object is observable.

The results of the TZNN, FZNN and NSFZNNmodels for finding theMP inverse of M(t)
are depicted in Fig. 7a, c. It is observable that the values of the Frobenius norms ‖�1(t)‖F in
Fig. 7a and ‖�2(t)‖F in Fig. 7b are minimal and, at the same time, almost similar across the
time interval [0, 10]. However, it is also observable that the NSFZNNmodel converges faster
to zero than FZNN, while the FZNN model converges faster to zero than TZNN. Moreover,
the state trajectories ofM†(t) arranged in Fig. 7c as well as the state trajectories ofM†(t)L(t)
arranged in Fig. 7d follow the same trajectory. The ET of the NSFZNNmodel converge faster
to the AT than the ET of the FZNN, while the ET of the FZNN model converges faster to
the AT than the ET of the TZNN. In conclusion, the NSFZNN model performs better than
FZNN, while the FZNN model performs better than TZNN.

The general conclusion from Sect. 5.4 is that the NSFZNN model (35) generates the MP
inverse of an arbitrary matrix M(t) and, at the same time, computes M†(t)L(t). In addition,
the NSFZNN model performs better than FZNN, while the FZNN model performs better
than TZNN.
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Fig. 7 The Frobenius norms values of ZFs, MP inverse trajectories and the LME solutions’ trajectories in
Sect. 5.4

5.5 Application on Computing the Dynamic AC of an Electrical Network

The electronic circuit is presented in Fig. 9, and V (t) is a dynamic AC voltage source. The
TZNN, FZNN, and NSFZNNmodels are applied to calculate the dynamic AC currents of the
circuit. According to the loop-current method and Kirchhoff’s voltage law, the linear circuit
equations are obtained in the form

⎧
⎪⎪⎨

⎪⎪⎩

(R1 + R2)I1 − R2I3 = V(t)
(R2 + 2R3)I2 − R3I3 = 0
(R2 + 2R3)I3 − R2I1 − R3I2 − R3I4 = 0
(R2 + R3 + R4)I4 − R3I3 = 0

where R1,R2,R3,R4 are the electrical resistance, V(t) is the dynamic AC voltage source
and I1, I2, I3, I4 are the electric currents of each loop to be solved.

The electronic circuit equation above can be represented as the linear system M(t)Y (t) =
L(t) with
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Fig. 8 The Frobenius norms values of ZFs, MP inverse trajectories and the LME solutions’ trajectories in
Sect. 5.5

Fig. 9 The actual and the
estimated trajectories of the
mobile object in Sect. 5.4
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Fig. 10 Electrical network

M(t) =

⎡

⎢
⎢
⎣

R1 + R2 0 −R2 0
0 R2 + 2R3 −R3 0

−R2 −R3 R2 + 2R3 −R3

0 0 −R3 R2 + R3 + R4

⎤

⎥
⎥
⎦

L(t) =

⎡

⎢
⎢
⎣

V(t)
0
0
0

⎤

⎥
⎥
⎦ , Y (t) =

⎡

⎢
⎢
⎣

I1
I2
I3
I4

⎤

⎥
⎥
⎦ ,

where the unknown matrix to be obtained is the current matrix Y (t). Setting R1 = 1�,R2 =
4�,R3 = 2�,R4 = 6� and V(t) = cos(2t), the input matrix M(t) is of rank 4 and, hence,
the regularization parameter is set to δ = 0. The results generated during the LME soling are
depicted in Fig. 8a–d.

The findings of the TZNN, FZNN, and NSFZNNmodels for calculating theMP inverse of
M(t) are depicted in Fig. 8a, c. The values of the Frobenius norms ‖�1(t)‖F and ‖�2(t)‖F
are minimal with the NSFZNN model producing lower overall error than FZNN and TZNN
across the time interval [0, 10] in Fig. 8a, while all the errors are almost similar in Fig. 8b.
Note that, in Fig. 8a and b, the NSFZNN model converges faster to the zero vector than
FZNN, which converges faster to zero than the TZNNmodel. The state trajectories of M†(t)
are arranged in Fig. 8c and the state trajectories of M†(t)L(t) are arranged in Fig. 8d. The
NSFZNN model performs better than FZNN, and the FZNN model performs better than
TZNN.

The general conclusion that emerges from Sect. 5.5 is that the NSFZNN model (35) gen-
erates the MP inverse of an arbitrary matrix M(t) and simultaneously calculates M†(t)L(t).
Furthermore, theNSFZNNmodel outperforms theFZNNmodel,whereasFZNNoutperforms
the TZNN model. Graphs included in Figs. 7 and 8 reaffirm that NSFZNN design achieves
the fastest convergence in initial time instants. This fact confirms the fastest convergence of
NSFZNN compared to FZNN and TZNN in both considered applications.

6 Conclusion and Vision of Further Research

The best approximate solution Y (t) = M†(t)L(t) of an LME M(t)Y (t) = L(t), based on
the MP inverse of an arbitrary TV matrix M(t), is approached by the fuzzy ZNN (FZNN)
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method enhanced by the neutrosophic system. A novel FZNN model, termed NSFZNN, is
introduced based on the neutrosophic set theory. The solution Y (t) includes various useful
cases in linear algebra. The most important cases are the inverse of a nonsingular TV matrix,
the MP inverse of a singular square, full-row or full-column rank, or rank-deficient real TV
matrix. Based on the inverse or the MP inverse, the proposed dynamic system can solve an
arbitrary LME or system of linear equations. Overall experience is that dynamical systems
based on the NSFZNN reach a more rapid convergence than the FZNN and TZNN dynamics.
Convergence characteristics on arbitrary order models are explored in performed simulation
experiments. Applications are used to verify the obtained theoretical statements.

Some areas of future study can be featured as follows.

1. Various nonlinear activation functions, which may cause terminal convergence, can be
considered as an approach to accelerate the NSFZNN model’s flow.

2. Further research may involve the application of the NSFZNN evolution in approximating
diverse matrix functions.

3. One of the advantages arising from the use of fuzzy and neutrosophic logic is the
possibility of analyzing different scenarios, such as: pessimistic, realistic, and optimistic.
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Lin Xiao6 · Dragiša Stanujkić7 · Darjan Karabašević8
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