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Abstract

We introduce, investigate and apply two types of generalized inverses for square complex matrices using an
arbitrary inner inverse of the input matrix and its core-EP inverse. Introduced combinations of inner inverses
and the core-EP inverse are termed as inner core-EP (ICEP) and core-EP inner (CEPI) inverse. Additionally,
we extend the notion of the P-core inverse for square matrices with arbitrary index. A few equivalent
characterizations and effective representations of the introduced generalized inverses are suggested. In
addition, the representations of these inverses are established via core-EP and HS decompositions. Induced
binary relations for these inverses are introduced and their properties are considered. An application of
these inverses in solving linear systems also discussed.
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1. Introduction

The matrix generalized inverses and their applications were systematically studied in monographs [5, 37,
41]. Generalized inverses are very useful tools in graph theory, special matrices, difference equations, and
singular differential equations (for example; see [6],[8] and [44]). The notion of core inverse was introduced
originally by Baksalary and Trenkler in [1, 2] and then extended by the core-EP inverse to square matrices of
arbitrary index [25]. Further, it has extended to rectangular matrices [3, 11, 35], and a few representations
& characterizations have been discussed in [13, 21, 14, 46, 45]. Prasad and Raj [26] proposed the bordering
method [23] for calculating the core-EP inverse. An iterative method for approximating the core-EP inverse
was derived by Prasad et al. in [24]. The extension of the core-EP inverse to bounded operators in a
Hilbert space was studied in [32, 28]. Mosić in [30], introduced the core-EP inverse of elements in a Banach
algebra and then extended it to the elements in C∗−algebras [31], tensors [38], the elements in a ring
[12, 29], and matrices over the quaternion skew field [20]. Generalized inverses have found applications
in solving various optimization optimization and approximation problems. The Moore-Penrose generalized
inverse A† of A generates best approximate solution A†b of the system of linear equations Ax = b, such that
‖Mx− v‖ ≥ ‖MM †v− v‖ for arbitrary matrix M ∈ Cm×n and arbitrary vector v ∈ Cm [36]. Moreover, for
the matrix equation MX = V it is known that [36] ‖MM †V − V ‖ ≤ ‖MX − V ‖, ∀X and
‖MM †V − V ‖ = ‖MX − V ‖ ⇐⇒ X = M †V + (I −M †M)Q, such that Q is arbitrary.
Moreover, ‖M †V ‖ ≤ ‖M †V + (I −M †M)Q‖. These extremely useful results about least squares and best
approximate solutions have initiated a large number of researches on the topic of generalized inverses.



A combination of the Moore–Penrose inverse with the core-EP inverse for bounded linear operators in
Hilbert space, known as MPCEP, and its dual CEPMP inverses, was introduced in [7]. The authors o that
paper have addressed the equivalent relationships among Moore-Penrose, generalized Drazin (gD), gDMP,
MPgD, and core-EP inverses using appropriate idempotents. Behera et al. [4] presented W -weighted MP
core-EP inverse and its dual for rectangular matrices. The notion of the DMP inverse and its properties
for square matrices was introduced by Malik it et al. in [22] by combining the Drazin and MP inverse. On
the other hand, the MPD inverse for square matrices was studied in [20]. In [27], Mehdipour and Salemi
introduced CMP inverse by combining the core part of a square matrix and its MP inverse. The expressions
of MP1 and MP2 inverse for rectangular matrices, characterizations, and applications, as well as for their
duals, were given by Hernández et al. in [17, 18] respectively. The OMP, MPO, and MPOMP inverses for
rectangular matrices were discussed in [33]. Using GD and MP inverse Hernández et al. [16] introduced the
properties and characterizations of GDMP-inverse and its dual for square matrices. The additive property,
forward, and reverse order laws for GDMP, and W -weighted GDMP inverses are recently investigated by
Amit et al. [19].

Motivated by the work of [16, 17, 18], in in current research we establish and examine main propertied and
representations of inner core-EP (ICEP), its dual termed as core-EP inner (CEPI) inverses, and P-core-EP
inverse. The main contributions of the manuscript are as follows.

• We introduce two classes of generalized inverses: ICEP inverse (inner and core-EP inverse), its dual
called CEPI inverse, and P-core-EP inverse.

• A few representations and characterizations of these inverses are investigated.

• Representations of theses inverses based on core-nilpotent decomposition and the Hartwig and Spin-
delböck decomposition are established.

• A binary relation based on introduced inverses is derived and its properties are considered.

The overall organization of sections is as follows. Introduction to basic results and motivation for the
research are presented in Section 1. Some preliminaries are presented in Section 2. The class of ICEP
Inverses is introduced and investigated in Section 3. A relation defined on the class of matrices using ICEP
inverse is introduces in the same section. The notion of the CEPI inverse is introduced in Section 4. Section
5 introduces and investigates an extension of the P-core inverse for matrices of arbitrary index in the form
of a new generalized inverse which is called the P-core-EP inverse. Section 6 considers the solution of linear
certain equations in terms of ICEP inverses, CEPI inverses and the P-core-EP inverse. Some concluding
remarks and vision of further research are given in the last section.

2. Preliminaries

First, we will discuss a few useful notations and definitions of some generalized inverses. The set of all
complex m× n matrices will be marked with Cm×n. For A ∈ Cm×n, the conjugate transpose, range space,
and null space of A, respectively denoted as A∗, R(A), and N (A). We denote an n× n identity matrix by
In and an orthogonal projection on R(A) by PA. The index of a matrix A means the smallest non-negative
integer k = ind(A) satisfying rank(Ak) = rank(Ak+1). Next, we will define the generalized inverse using the
matrix equations as given in Table 1. Let Λ be a nonempty subset of elements from {1, 2, 3, 4, 5, 1k, 6, . . .}.

Table 1: Matrix equations for defining generalized inverses

Label (1) (2) (3) (4)
Equation AZA = A ZAZ = A (AZ)∗ = AZ (ZA)∗ = ZA

Label (5) (1k) (6)

Equation AZ = ZA ZAk+1 = Ak AZ2 = Z

If a matrix Z ∈ Cn×m satisfies equation (i) for each i ∈ Λ then Z is called a {Λ}-inverse of A. We denote
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such an inverse by A(λ) and set of all {Λ}-inverse of A by A{Λ}. Using these representations, we now restate
definitions of the following generalized inverses.

Definition 2.1. [5] Let A ∈ Cm×n. A matrix Z is called:

(a) An inner inverse of A if it fulfills equation (1) and denoted by A−.

(b) An outer inverse of A if Z ∈ A{2} and denoted as A=. Further, if R(Z) = L and N (Z) = M then

we denote it by A
(2)
L,M .

(c) The Moore-Penrose inverse A† of A if Z ∈ A{1, 2, 3, 4} [36].

Definition 2.2. Let A ∈ Cn×n and ind(A) = k. A matrix Z is called:

(a) the Drazin inverse of A if Z ∈ A{2, 5, 1k} and denoted by AD [10];

(b) the core-EP inverse of A if if Z ∈ A{2, 1k, 6} and denoted by A †© [25].

Lemma 2.1. ([25]) Let A ∈ Cn×n. Then the Core-EP inverse satisfies the following :

A †©AA †© = A †© and R(A †©) = R((A †©)∗) = R(Ak).

Lemma 2.2. ([12]) Let A ∈ Cn×n. For l > k, the core-EP inverse of A is given by

A †© = ADAl(Al)† = Al
(

Al+1
)†

.

A few composite inverses have been studied in recent years, as restated below in definitions 2.3 and 2.4.

Definition 2.3. Let A ∈ Cn×n and ind(A) = k. Then

(a) the DMP inverse of A is denoted by AD,† and defined as AD,† = ADAA† [22].

(b) the MPD inverse of A is defined as A†,D = A†AAD [22].

(c) the CMP inverse of A is denoted as Ac,† and defined by A†AADAA†.

(d) the MPCEP inverse of A is defined as A†, †© = A†AA †© [7, 34].

(e) the ∗CEPMP is defined as A †©,† = A †©AA†, [7].

Definition 2.4. [33] Let A ∈ Cm×n and suppose the existence of A
(2)
T,S exists.

(a) The OMP inverse of A is defined as A
(2),†
T,S = A

(2)
T,SAA

†.

(b) The MPO inverse of A is defined as A
†,(2)
T,S = A†AA

(2)
T,S .

(c) The MPOMP inverse of A is defined as A
†,(2),†
T,S = A†AA

(2)
T,SAA

†.

Based on the presented representations of composite generalized inverses, we note that combinations
of outer inverses were a popular topic of scientific research. The subject of our research in this paper is
combinations of inner generalized inverses with outer inverses. Particularly, we investigate combinations of
inner inverses with the core-EP inverse.

3. ICEP Inverses

In this section, we define ICEP inverses for square matrices and discuss a few representations and character-
izations of these inverses. To simplify presentation, A ∈ Cn×n will be supposed and an arbitrary G ∈ A{1}
is considered. Such environment situation will be denoted by A⊲nG. For the remaining of this paper, unless
otherwise specified, it is understood that all input matrices A will be square and of index k.

Theorem 3.1. For A ⊲n G, the matrix Z = GAA †© is the unique solution to the matrix equations

ZAZ = Z, ZA = GAA †©A, and AZ = AA †©. (3.1)
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Proof. Let Z = GAA †©. Then AZ = AGAA †© = AA †©, ZA = GAA †©A, and

ZAZ = GAA †©AGAA †© = GAA †©AA †© = GAA †© = Z.

Thus Z satisfies (3.1). Suppose Z1 and Z2 are two solutions of the system (3.1). From AZ1 = AA †© = AZ2

and Z1A = GAA †©A = Z2A we get

Z1 = Z1(AZ1) = Z1(AZ2) = (Z1A)Z2 = (GAA †©A)Z2 = Z2AZ2 = Z2.

Hence Z is the unique solution to (3.1).

In the light of Theorem 3.1, we define the ICEP inverse of a square matrix as given below.

Definition 3.1. For A ⊲n G, the ICEP inverse of A is denoted by A−, †©
G and defined as A−, †©

G = GAA †©.

Remark 3.1. Notice that every fixed inner inverse G ∈ A{1} of A may give rise to a different ICEP inverse
of A. Henceforth, if we mention the ICEP inverse of A, then it includes previously fixed inner inverse. The
set of all ICEP inverses of A is defined by A {−, †©} =

{

GAA †©| G ∈ A{1}
}

= A{1}AA †©.

Example 3.1 verifies that the ICEP inverse of a matrix A ∈ Cn×n differs from composite generalized
inverses defined so far.

Example 3.1. Let A =









1 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0









. Clearly, ind(A) = 1, which leads to the calculation

A† =









1
2 0 0 0
0 0 0 0
0 1 0 0
1
2 0 0 0









, AD = A
(

A3
)†

A =









1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









, A †© = A
(

A2
)†

=









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Further evaluation gives

Ac,† = A†AADAA† =









1
2 0 0 0
0 0 0 0
0 0 0 0
1
2 0 0 0









, A†,D = A†AAD =









1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2









,

AD,† = ADAA†A =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

A†, †© = A†AA †© =









1 0 0 0
0 0 0 0
0 0 0 0
1
2 0 0 0









, A †©,† = A †©AA† =









1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

For a fixed inner inverse G =









1 1 5 2
1 6 0 9
0 1 3 0
0 −1 4 −2









∈ A{1}, further calculation gives

AD,− = ADAG =









1 0 9 0
0 0 0 0
0 0 0 0
0 0 0 0









, A−,D = GAAD =









1 0 0 1
1 0 0 1
0 0 0 0
0 0 0 0









, A−, †©
G = GAA †© =









1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0









.

Now, it is easy to verify A−, †©
G /∈ {A−,D, A†, †©, A†,D, AD,†, Ac,†, A †©,†}.
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Example 3.2. For the matrix A from Example 3.1, the general solution to the matrix equation AXA = A
gives the set of inner inverses as

A{1} =























x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

0 1 x3,3 x3,4

1− x1,1 −x1,2 x4,3 x4,4









| xij ∈ C















.

Then

A {−, †©} = A{1}AA †© =























x1,1 0 0 0
x2,1 0 0 0
0 0 0 0

1− x1,1 0 0 0









| xij ∈ C















.

Clearly, A−, †©
G from Example 3.1 can be obtained in the particular case x11 = x21 = 1 in A {−, †©}.

Now, we derive an expression for the ICEP inverse with the fixed inner inverse G via the core-EP
decomposition. The core-EP decomposition [42] of A ∈ Cn×n is equal to

A = U

[

T1 T2

0 N

]

U∗, (3.2)

where U is a unitary matrix, T1 ∈ Cr×r is a non-singular matrix, and N ∈ C(n−r)×(n−r) is nilpotent. Now,
we express an inner inverse of A ∈ Cn×n as

G = U

[

Z1 Z2

Z3 Z4

]

U∗, (3.3)

where T1Z1 + T2Z3 = Ir, (T1Z2 + T2Z4)N = 0, NZ3 = 0, and Z4 ∈ N{1}. In [42], the core-EP inverse of
A is expressed as

A †© = U

[

T−1
1 0
0 0

]

U∗. (3.4)

Theorem 3.2 is stated applying decompositions of A, G and A †©.

Theorem 3.2. A⊲n G. Consider the decompositions of A, G, and A †© respectively as given in (3.2), (3.3),
and (3.4), respectively. Then ICEP inverse of A is represented as

A−, †©
G = U

[

Z1 0
Z3 0

]

U∗,

where T1Z1 + T2Z3 = Ir and NZ3 = 0. Consequently, A−, †©
G = A †© if and only if Z3 = 0.

3.1. Characterization of ICEP inverses

We will discuss a few characterizations of ICEP inverses and their relationship with other classes of outer
inverses.

Corollary 3.1. Let A ⊲n G and l > k = ind(A) be an arbitrary integer. The following statements are valid
in such circumstances:

(i) A−, †©
G = GAl(Al)† = GPR(Al);

(ii) A−, †©
G = A

(2)

R(GAl), N ((Al)∗)
= A

(2)

R(GAl(Al)∗), N (GAl(Al)∗)
;

(iii) Al+1A−, †©
G = A2l(Al)†;

(iv) A−, †©
G Al = GAl;
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(v) A−, †©
G = GAl

(

(Al)∗AGAl
)†

(Al)∗ = GAl
(

(Al)∗Al−1
)†

(Al)∗ ⇐⇒ rank((Al)∗Al−1) = rank((Al)∗) =
rank(GAl).

Proof. (i) Choose l ≥ k. Then by Lemma 2.2, we have A †© = ADAl(Al)†. Now

A−, †©
G = GAA †© = GAADAl(Al)† = GAl(Al)†.

Using PR(Al) = Al(Al)†, we conclude GAl(Al)† = GPR(Al).

(ii) From part (i), we get A−, †©
G = GAl(Al)†. Now

R(GAl) = R
(

GAl(Al)∗
)

= R
(

GAl(Al)†
)

= R(A−, †©
G ).

Further it follows

(Al)∗ = (Al(Al)†Al)∗ = (Al)∗Al(Al)† = (Al)∗AGAl(Al)† = (Al)∗AA−, †©
G

and

A−, †©
G = GAl(Al)† = G(Al(Al)†)∗ = G[(Al)†]∗(Al)∗

Thus we get N
(

(Al)∗
)

= N (A−, †©
G ).

(iii) Al+1A−, †©
G = (Al+1GA)A †© = Al+1ADAl(Al)† = A2l(Al)†.

(iv) Using A †© = ADAl(Al)†, we calculate

A−, †©
G Al = GAA †©Al = GAADAl(Al)†Al = GAADAl = GAl.

(v) The representations in this statement are derived from the representation of outer inverses

B(CAB)†C = A
(2)
R(B),N (C) ⇐⇒ rank(CAB) = rank(B) = rank(C),

given by the Urquhart representation [40] and its extensions given in [39].

Example 3.3. Consider the input matrix of index ind(A) = 3:

A =

















a 0 0 a 0 0
0 a 0 0 a 0
0 0 a 0 0 a
0 0 0 0 b 0
0 0 0 0 0 b
0 0 0 0 0 0

















,

such that a, b are two left unassigned symbols with values from the set of complex numbers C. The set of
inner inverses is equal to

A{1} =















































x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

0 1
a

0 − 1
b

0 x2,6

0 0 1
a

0 − 1
b

x3,6
1
a
− x1,1 −x1,2 −x1,3 −x1,4 −x1,5 x4,6

0 0 0 1
b

0 x5,6

0 0 0 0 1
b

x6,6

















| xij ∈ C































.

Then

A †© = A3
(

A4
)†

=

















1
a

0 0 0 0 0
0 1

a
0 0 0 0

0 0 1
a

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
















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which initiates

A {−, †©} = A{1}AA †© =















































x1,1 x1,2 x1,3 0 0 0
0 1

a
0 0 0 0

0 0 1
a

0 0 0
1
a
− x1,1 −x1,2 −x1,3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















| x1j ∈ C































.

Verification based on the symbolic calculus gives A{1}A3
(

A3
)†

= A {−, †©}, which is a confirmation of
Corollary 3.1.

Example 3.4. This example is aimed to further verification of Corollary 3.1. The input matrix

A =

























ζ
2 0 0 0 ζ

2 0 0 0

0 ζ
2 0 0 0 ζ

2 0 0

0 0 ζ
2 0 0 0 ζ

2 0

0 0 0 ζ
2 0 0 0 ζ

2
0 0 0 0 0 η

2 0 0
0 0 0 0 0 0 η

2 0
0 0 0 0 0 0 0 η

2
0 0 0 0 0 0 0 0

























,

where ζ, η are two left unassigned symbols with domains in the set of complex numbers C. Inner inverses of
A are defined by

A{1} =













































































x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

0 2
ζ

0 0 − 2
η

0 0 x2,8

0 0 2
ζ

0 0 − 2
η

0 x3,8

0 0 0 2
ζ

0 0 − 2
η

x4,8
2
ζ
− x1,1 −x1,2 −x1,3 −x1,4 −x1,5 −x1,6 −x1,7 x5,8

0 0 0 0 2
η

0 0 x6,8

0 0 0 0 0 2
η

0 x7,8

0 0 0 0 0 0 2
η

x8,8



























| xij ∈ C



















































.

Since ind(A) = 4, symbolic calculation gives

A †© = A4
(

A5
)†

=



























2
ζ

0 0 0 0 0 0 0

0 2
ζ

0 0 0 0 0 0

0 0 2
ζ

0 0 0 0 0

0 0 0 2
ζ

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



























.

Further calculation generates the set of ICEP inverses:

A {−, †©} = A{1}AA †© =













































































x1,1 x1,2 x1,3 x1,4 0 0 0 0
0 2

ζ
0 0 0 0 0 0

0 0 2
ζ

0 0 0 0 0

0 0 0 2
ζ

0 0 0 0
2
ζ
− x1,1 −x1,2 −x1,3 −x1,4 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



























| x1j ∈ C



















































.
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The identity A{1}A3
(

A3
)†

= A {−, †©} gives another confirmation of Corollary 3.1, part (i).
To confirm the statement (iii) of Corollary 3.1 we calculate

A5 · A{−, †©} =













































































ζ4

16 0 0 0 0 0 0 0

0 ζ4

16 0 0 0 0 0 0

0 0 ζ4

16 0 0 0 0 0

0 0 0 ζ4

16 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



























| x1j ∈ C



















































and verify A5 A {−, †©} = A8
(

A4
)†

.
The statement (iv) of Corollary 3.1 follows from

A {−, †©}A4 =



























1
16 ζ

4x1,1
1
16ζ

4x1,2
1
16ζ

4x1,3
1
16ζ

4x1,4

0 ζ3

8 0 0

0 0 ζ3

8 0

0 0 0 ζ3

8
− 1

16ζ
3 (ζx1,1 − 2) − 1

16ζ
4x1,2 − 1

16 ζ
4x1,3 − 1

16 ζ
4x1,4

0 0 0 0
0 0 0 0
0 0 0 0

1
16ζ

4x1,1
1
16 ζ

3 (ηx1,1 + ζx1,2)
1
16 ζ

2
(

x1,1η
2 + ζ (ηx1,2 + ζx1,3)

)

0 ζ3

8
ζ2η
8

0 0 ζ3

8
0 0 0

1
16ζ

3 (ζx1,1 − 2) − 1
16 ζ

2
(

x1,2ζ
2 + ηx1,1ζ − 2η

)

− 1
16ζ

(

x1,3ζ
3 + ηx1,2ζ

2 + η2x1,1ζ − 2η2
)

0 0 0
0 0 0
0 0 0

1
16ζ

(

x1,1η
3 + ζ

(

x1,2η
2 + ζ (ηx1,3 + ζx1,4)

))

ζη2

8
ζ2η
8
ζ3

8
1
16

(

−x1,4ζ
4 − ηx1,3ζ

3 − η2x1,2ζ
2 − η3x1,1ζ + 2η3

)

0
0
0



























= A{1}A4.

Corollary 3.2. The subsequent representations are valid under the assumption A ⊲n G:

(i) AA−, †©
G is an orthogonal projector onto R(Ak);

(ii) A−, †©
G A is a projector onto R(G(A †©)∗) along N (A †©A).

Proof. (i) This statement follows from

AA−, †©
G = AGAA †© = AA †© and R(Ak) = R(A †©) = R(AA †©) = R(AA−, †©

G ).
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(ii) Clearly A−, †©
G AA−, †©

G A = GAA †©A = A−, †©
G A. Further,

R(G(A †©)∗) ⊇ R(G(A †©)∗A∗A) = R(GAA †©A) = R(A−, †©
G A)

and
R(G(A †©)∗) = R(G(A †©AA †©)∗) = R(G(AA †©)∗(A †©)∗) = R(GAA †©(A †©)∗)

⊆ R(GAA †©) = R(GAA †©AA †©) ⊆ R(A−, †©
G A).

Thus, R(A−, †©
G A) = R(G(A †©)∗). From

N (A−, †©
G A) ⊆ N (A †©AGAA †©A) = N (A †©AA †©A)

= N (A †©A) ⊆ N (GAA †©A)

= N (A−, †©
G A),

we obtain N (A−, †©
G A) = N (A †©A) and hence complete the proof.

Algebraic characterizations of the ICEP inverses are discussed in Theorem 3.3.

Theorem 3.3. The following characterizations are mutually equivalent:

(i) A−, †©
G = Z.

(ii) Z = ZAZ, AZ = AA †©, AZA = AA †©A and ZA = GAA †©A.

(iii) AZ = AA †© and GAA †©AZ = Z.

(iv) ZA = GAA †©A and ZAA †© = Z.

(v) ZAA †©A = GAA †©A, AA †©AZ = AA †©, AA †©AZAA †©A = AA †©A and ZAA †©AZ = Z.

(vi) ZAA †©A = GAA †©A, ZAA †©AZ = Z and
AA †©AZ = AA †©.

Proof. (i)⇒(ii) The implication follows from AZA = AGAA †©A = AA †©A.
(ii)⇒(iii) From ZA = GAA †©A, we obtain GAA †©AZ = (ZA)Z = Z.
(iii)⇒(i) It follows from GAA †© = GAA †©AA †© = GAA †©(AZ) = Z.
(ii)⇒(iv) It is sufficient to show XAA †© = Z and it follows from AA †© = AZ and ZAZ = Z.
(iv)⇒(i) Based on ZA = GAA †©A, it follows GAA †© = GAA †©AA †© = (ZA)A †© = Z.
(i)⇒(iv) From GAA †© = Z, we obtain AA †© = AA †©AGAA †© = AA †©AZ. Now

Z = GAA †© = GAA †©AA †© = ZAA †©AZ, AA †©AZAA †©A = AA †©AA †©A = AA †©A

and ZAA †©A = GAA †©AA †©A = GAA †©A.
(v)⇒(vi) It is obvious.
(vi)⇒(i) It follows from the transformation

GAA †© = (GAA †©A)A †© = ZAA †©AA †© = Z(AA †©) = ZAA †©AZ = Z.

The proof is completed.

Next, we discuss an equivalent definition of ICEP inverses in the result given below.

Theorem 3.4. For A ⊲n G, the ICEP inverse Z = A−, †©
G is the unique solution to the constrained matrix

equation
AZ = P

R(AA †©)
and R(Z) ⊆ R(GA). (3.5)
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Proof. From the Corollary 3.2, it follows AA−, †©
G = P

R(AA †©)
. NowR(A−, †©

G ) = R(GAA †©) ⊆ R(GA). Thus

A−, †©
G satisfies equation (3.5). It remains to confirm uniqueness of the solution to the system (3.5). Suppose

two solutions exist, Z1 and Z2, which satisfy equation (3.5). Then A(Z1 −Z2) = P
R(AA †©)

−P
R(AA †©)

= 0.

Consequently R(Z1 − Z2) ⊆ N (A) = N (GA). Further, from

R(Z1) ⊆ R(GA) and R(Z2) ⊆ R(GA),

we obtain R(Z1 − Z2) ⊆ R(GA) ∩ N (GA) = {0}. Therefore, Z1 = Z2, which completes the proof.

Next, we derive the formula for ICEP inverses using the projections In −AA−, †©
G and In −A−, †©

G A.

Theorem 3.5. Suppose P ′ = In − A−, †©
G A and P ′′ = In − AA−, †©

G . Then, for A + P ′′ and A − P ′′ both
invertible,

A−, †©
G = (In − P ′)(A± P ′′)−1(In − P ′′).

Proof. Suppose A ∈ Cn×n as in (3.2). By using Theorem(3.2), we can verify that

P ′′ = In −AA−, †©
G

= In − U

[

T1 T2

0 N

]

U∗U

[

Z1 0
Z3 0

]

U∗

= In − U

[

Ir 0
0 0

]

U∗ = U

[

0 0
0 In−r

]

U∗.

Now

A± P ′′ = U

[

T1 T2

0 N

]

U∗ ± U

[

0 0
0 In−r

]

U∗ = U

[

T1 T2

0 N ± In−r

]

U∗.

Since both T1 and N ± In−r invertible, then

(A± P ′′)−1 = U

[

T−1
1 −T−1

1 T2(N ± In−r)
−1

0 (N ± In−r)
−1

]

U∗.

Again from

In − P ′ = A−, †©
G A = U

[

Z1 0
Z3 0

]

U∗U

[

T1 T2

0 N

]

U∗ = U

[

Z1T1 Z1T2

Z3T1 Z3T2

]

U∗,

and

(A± P ′′)−1(In − P ′′) = U

[

T−1
1 −T−1

1 T2(N ± In−r)
−1

0 (N ± In−r)
−1

]

U∗U

[

Ir 0
0 0

]

U∗

= U

[

T−1
1 0
0 0

]

U∗,

we obtain

(In − P ′)(A± P ′′)−1(In − P ′′) = U

[

Z1T1 Z1T2

Z3T1 Z3T2

]

U∗U

[

T−1
1 0
0 0

]

U∗ = U

[

Z1 0
Z3 0

]

U∗

= A−, †©
G ,

which finishes the proof.

The relationship of ICEP inverses with the inverse of a particular bordered nonsingular matrix is analysed
in Theorem 3.6.
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Theorem 3.6. For A ⊲n G, consider full column rank matrices E and F ∗ satisfying

R(GAk) = N (F ) and N ((Ak)∗) = R(E).

Then

Z =

[

A E
F 0

]

is the nonsingular bordered matrix with

Z−1 =

[

A−, †©
G (In −A−, †©

G A)F †

E†(In − AA−, †©
G ) −E†(A−AA−, †©

G A)F †

]

. (3.6)

Proof. Based on Corollary 3.1, we obtain R(A−, †©
G ) = R(GAk) = N (F ) and hence V A−, †©

G =0. From

R(In −AA−, †©
G ) = N (AA−, †©

G ) = N (A−, †©
G ) = N ((Ak)∗)

= R(E) = R(EE†)

= N (In − EE†),

we get (In − EE†)(In −AA−, †©
G ) = 0 which implies

EE†(In −AA−, †©
G ) = In −AA−, †©

G .

Suppose matrix X is the right side of the expression (3.6). Thus,

ZX =

[

AA−, †©
G + EE†(In −AA−, †©

G ) A(In −A−, †©
G A)F † − EE†(A−AA−, †©

G A)F †

FA−, †©
G F (In −A−, †©

G A)F †

]

=

[

AA−, †©
G + In −AA−, †©

G (In −AA−, †©
G )AF † − (In −AA−, †©

G )AF †

0 FF †

]

=

[

In 0
0 FF †

]

=

[

In 0
0 In

]

= I2n.

Similarly we can show XZ = I2n. Therefore, X = Z−1.

A few equivalent characterizations of ICEP inverses are discussed in the subsequent results.

Theorem 3.7. The next statements are equivalent to each other:

(i) Z = A−, †©
G .

(ii) ZAk+1 = GAk+1 and R((A †©)∗) = R(Z∗).

(iii) R((A †©)∗) = R(Z∗), N (Z∗) = N ((GAk+1)∗) and A †©AZ = A †©.

(iv) A †©AZ = A †©, R(Z∗) = R((A †©)∗) and ZAk+1 = GAk+1.

(v) ZAk+1 = GAk+1 and N (Z) = N (A †©).

Proof. (i)⇒(ii) Let Z = A−, †©
G . Then ZAk+1 = GAA †©Ak+1 = GAk+1. Further,

Z∗ = (A−, †©
G )∗ = (GAA †©)∗ = (A †©)∗(GA)∗, (3.7)

and
(A †©)∗ = (A †©AA †©)∗ = (A †©AGAA †©)∗ = (A †©AZ)∗ = (Z)∗(A †©A)∗. (3.8)
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From equations (3.7) and (3.8), we obtain R((A †©)∗) = R(Z∗).
(ii)⇒(i) Let R(Z∗) = R((A †©)∗). Then Z = WA †© for some W ∈ Cn×n. Now,

Z = WA †© = ZA †©AA †© = ZAA †© = ZAk+1(A †©)k+1 = GAk+1(A †©)k+1 = GAA †©

= A−, †©
G .

(i)⇒(iii) Let Z = A−, †©
G . Then by the proof of (i)⇒(ii), we conclude R(Z∗) = R((A †©)∗). From the

expressions

Z∗ = (GAA †©)∗ = (GAk+1(A †©)k+1)∗ = ((A †©)k+1)∗(GAk+1)∗,

and

(GAk+1)∗ = (GAA †©Ak+1)∗ = (Ak+1)∗Z∗,

it follows N (Z∗) = N ((GAk+1)∗). Finally, A †© = A †©AA †© = A †©AGAA †© = A †©AZ.

(iii)⇒(ii) It is enough to show only ZAk+1 = GAk+1. Let R(Z∗) = R((A †©)∗). Then Z = WA †© for some
W ∈ Cn×n, and

Z = WA †© = (WA †©)AA †© = ZAA †© = ZAA †©AZ.

Equivalently, Z∗(In − ZAA †©A)∗ = 0. Thus, we obtain R(In − ZAA †©A)∗ ⊆ N (Z∗) = N ((GAk+1)∗) and
consequently, (In − ZAA †©A)(GAk+1) = 0. Hence,

GAk+1 = ZAA †©AGAk+1 = ZAA †©AGAAk = ZAA †©Ak+1 = ZAk+1.

(i)⇒(iv) It is a consequence of A †©AZ = A †©AA−, †©
G = A †©AA †© = A †©.

(iv)⇒(ii) Verification of this implication is trivial.
(ii)⇒(v) It follows from R(Z)⊥ = N (Z∗).

Theorem 3.8. The subsequent characterizations of the ICEP inverse are equivalent:

(i) Z = A−, †©
G .

(ii) ZA = GAA †©A and N (A †©) = N (Z).

(iii) AZA = AA †©A, N (A †©) = N (Z) and R(GAk+1) = R(Z).

(iv) GAZ = Z, N (A †©) = N (Z). and ZAk+1 = GAk+1.

Proof. (i)⇒(ii) Let Z = A−, †©
G . Then ZA = A−, †©

G A = GAA †©A and by Theorem 3.7, we get N (A †©) =
N (Z).
(ii)⇒(i) Let N (A †©) = N (Z). Then Z = WA †© for some W ∈ Cn×n. From ZA = GAA †©A, we obtain

Z = WA †© = WA †©AA †© = (ZA)A †© = GAA †©AA †© = GAA †© = A−, †©
G .

(ii)⇒(iii) Let ZA = GAA †©A. Then AZA = AGAA †©A = AA †©A. Using the equivalent conditions of (ii)
and (i), we get Z = GAA †© = GAk+1(A †©)k+1. Thus R(Z) ⊆ R(GAk+1).
(iii)⇒(ii) Let R(Z) ⊆ R(GAk+1). Then Z = GAk+1W for some W ∈ Cn×n. Further, from GAk+1 =
GAAk = G(AGA)Ak = GAGAk+1, we get

ZA = GAk+1WA = GAGAk+1WA = GAZA = GAA †©A.

(i)⇒(iv) It follows from ZAk+1 = GAA †©Ak+1 = GAk+1 and

GAZ = GAA−, †©
G = G(AGA)A †© = GAA †© = Z.
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(iv)⇒(i) Let N (A †©) = N (Z). Then Z = WA †© for some matrix W ∈ Cn×n. From Z = GAZ and
ZAk+1 = GAk+1, we obtain

Z = WA †© = WA †©AA †© = ZAA †© = (GAZ)AA †© = GA(ZAk+1)(A †©)k+1

= GAGAk+1(A †©)k+1 = GAGAA †© = GAA †©

and finalize the proof.

In the following theorem, we discuss the equivalency of the ICEP inverses with the core-EP inverse.

Theorem 3.9. The subsequent representations hold:

(i) A−, †©
G = A †© ⇐⇒ A †©Ak = GAk ⇐⇒ A−, †©

G A = A †©A;

(ii) AA−, †©
G = A−, †©

G A =⇒ A−, †©
G = A †©.

(iii) A−, †©
G = A †© ⇐⇒ AA−, †©

G = A−, †©
G A2A †©.

Proof. (i) Let A−, †©
G = A †©. Then (G−A †©)AA †© = 0. Thus AA †©(G−A †©)∗ = 0 and consequently,

R(G −A †©)∗ ⊆ N (AA †©) ⊆ N (A †©) = N ((Ak)∗).

Hence GAk = A †©Ak and A−, †©
G A = A †©A is trivial. Conversely, if GAk = A †©Ak, then

A−, †©
G = GAA †© = GAk(A †©)k = A †©Ak(A †©)k = A †©AA †© = A †©.

Further, if A−, †©
G A = A †©A, then A−, †©

G = A−, †©
G AA †© = A †©AA †© = A †©.

(ii) Let AA−, †©
G = A−, †©

G A. Then AA †© = GAA †©A and

A †© = A(A †©)2 = GAA †©AA †© = A−, †©
G .

(iii) Let A−, †©
G = A †©. Then

AA−, †©
G = AA †© = Ak(A †©)k = A †©Ak+1(A †©)k = A †©A2A †© = A−, †©

G A2A †©.

Conversely, if AA−, †©
G = A−, †©

G A2A †©. Then AA †© = A−, †©
G A2A †©. Post-multiplication by A †© leads to

A †© = A−, †©
G A2(A †©)2 = A−, †©

G AA †© = A−, †©
G .

The maximal classes for ICEP inverses are established in the subsequent two theorems.

Theorem 3.10. Let A ⊲n G and W ∈ Cn×n. Then the next statements are equivalent:

(i) A−, †©
G = GAW .

(ii) AW = AA †©.
(iii) AWA = AA †©A and N (AW ) = N (A †©).
(iv) W = A †© + (In −GA)Y , for arbitrary Y ∈ Cn×n.

Proof. (i)⇒(ii) It follows from AW = AGAW = AA−, †©
G = AA †©.

(ii)⇒(iii) Clearly, AWA = AA †©A and the null condition N (AW ) = N (A †©) is follows from

AW = AA †©, and A †© = A †©AA †© = A †©AW .

(iii)⇒(i) From N (AW ) = N (A †©), we obtain AW = XA †© for some X ∈ Cn×n. Now pre-multiplying
AW = XA †©, by G we get

GAW = GXA †© = GXA †©AA †© = GAWAA †© = GAWAk+1(A †©)k+1

= G(AWA)Ak(A †©)k+1 = GAA †©AAk(A †©)k+1 = GAA †©Ak+1(A †©)k+1

= GAA †©AA †© = GAA †© = A−, †©
G .

(ii)⇒(iv) We can easily verify that the general solution to the homogeneous equation AW = 0 will be of the
form W = (In − GA)Y , where Y ∈ Cn×n. Since A †© is a particular solution to AW = AA †©, the general
solution of AW = AA †© is given by
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W = A †© + (In −GA)Y , for some Y ∈ Cn×n.

(iv)⇒(i) Let W = A †© + (In −GA)Y for some Y ∈ Cn×n. Pre-multiplying by GA on both sides, we obtain

GAW = GAA †© +GAY −GAGAY = GAA †© = A−, †©
G .

Theorem 3.11. Let A ⊲n G and S ∈ Cn×n. Then the following characterizations hold:

(i) A−, †©
G = SAA †© if and only if S = G+W (In − AA †©) for some W ∈ Cn×n;

(ii) A−, †©
G = SAT if and only if S = G+W (In−AA †©) and T = A †©+(In−GA)X for some T,X ∈ Cn×n.

Proof. (i) The assumption S = G+W (In−AA †©) for some W ∈ Cn×n implies SAA †© = A−, †©
G . Conversely,

let A−, †©
G = SAA †©. Clearly, G is a particular solution of SAA †© = A−, †©

G . If there exists any other
solution W of the homogeneous equation SAA †© = 0, then WAA †© = 0. Now we can write W = W −
WAA †© = W (In −AA †©). Therefore, the general solution to homogeneous equation SAA †© = 0 is given by

S = W (In −AA †©) and consequently, the general solution SAA †© = A−, †©
G is expressed by

S = G+W (In −AA †©) for some W ∈ Cn×n.

(ii) This follows directly from the part (i) and (iv) of Theorem 3.10.

3.1.1. Computing ICEP inverse by the HS-decomposition

Now we present the canonical representation of ICEP inverses by considering the Hartwig and Spindelböck
decomposition (in short HS-decomposition)(see [15, Corollary 6]). If A ∈ Cn×n is any matrix having rank
r, we can write the HS-decomposition of A as

A = V

[

ΣK ΣL
0 0

]

V ∗, (3.9)

where V ∈ Cn×n is any unitary matrix, the diagonal matrix Σ = diag(σIr1 , σIr2 , . . . , σIrs) is the singular
values of A such that σ1 > · · · > σs > 0, r1 + · · ·+ rs = r and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir .

If A is of the form (3.9), then we can calculate G i.e., an inner inverse of A as given below:

G = V

[

Z1 Z2

Z3 Z4

]

V ∗,

where ΣKZ1 +ΣLZ3 = Ir. From[11] the core-EP inverse of A is of the form

A †© = V

[

(ΣK) †© 0
0 0

]

V ∗. (3.10)

Now, the ICEP inverses of A is given by

A−, †©
G = GAA †© = V

[

Z1 Z2

Z3 Z4

] [

ΣK ΣL
0 0

] [

(ΣK) †© 0
0 0

]

V ∗

= V

[

Z1ΣK(ΣK) †© 0
Z3ΣK(ΣK) †© 0

]

V ∗.

In view of the above calculations, we propose Theorem 3.12 as a conclusion.

Theorem 3.12. Consider A ∈ Cn×n as defined in (3.9). In this case it follows

A−, †©
G = V

[

Z1ΣK(ΣK) †© 0
Z3ΣK(ΣK) †© 0

]

V ∗,

where ΣKZ1 +ΣLZ3 = Ir.
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3.2. A relation defined on the class of matrices using ICEP inverse

In this subsection we introduce a binary relation based on ICEP inverses.

Definition 3.2. Let A⊲nG and B ∈ Cn×n. We say A is below B under the binary relation ≤−, †© and write
A ≤−, †© B if A−, †©

G A = A−, †©
G B and AA−, †©

G = BA−, †©
G .

Proposition 3.1. Assume A ⊲n G and B ∈ Cn×n. Then

(i) A−, †©
G A = A−, †©

G B ⇐⇒ A †©A = A †©B;

(ii) AA †© = BA−, †©
G ⇐⇒ A †© = BGA †©.

Proof. (i) Let A−, †©
G A = A−, †©

G B. Then

AA †©A = AGAA †©A = AA−, †©
G A = AA−, †©

G B = AA †©B. (3.11)

Pre-multiplying equation (3.11) by A †©, we conclude A †©A = A †©B. The converse part is trivial.

(ii) Let AA−, †©
G = BA−, †©

G . Then AA †© = BGAA †©. Now

A †© = (AA †©)A †© = BG(AA †©A †©) = BGA †©.

Conversely, A †© = BGA †© leads to

AA †© = Ak(A †©)k = A †©Ak+1(A †©)k

= BGA †©Ak+1(A †©)k = BGAk(A †©)k

= BGAA †© = BA−, †©
G ,

which was our intention.

Corollary 3.3. Let A ⊲n G and B ∈ Cn×n. Then the subsequent statements are equivalent:

(i) A 6−, †© B.

(ii) AA †©A = BA−, †©
G A = AA †©B.

(iii) AA †© = BA−, †©
G and A †©A = A †©B.

Proof. (i)⇒(ii) Let A 6−, †© B. Then AA †©A = AGAA †©A = (AA−, †©
G )A = BA−, †©

G A and

AA †©A = AGAA †©A = A(A−, †©
G A) = AA−, †©

G B = AA †©B.

(ii)⇒(iii) Let AA †©A = BA−, †©
G A = AA †©B. Then

A †©A = A †©AA †©A = A †©AA †©B = A †©B, and

AA †© = AA †©AA †© = BA−, †©
G AA †© = BA−, †©

G .

(iii)⇒(i) This implication follows directly from AA−, †©
G = AA †© = BA−, †©

G and Proposition 3.1(i).

Notice that the binary relation 6−, †© is reflexive. However, it is neither symmetric nor anti-symmetric,
as shown below.

Example 3.5. Let A =





2 1 0
0 0 2
0 0 0



 , B =





2 1 0
0 0 1
0 0 0



. Selected inner inverses of A and B are given by

GA =





1
2 0 0
0 0 0
0 1

2 0



, and GB =





1
2 0 0
0 0 0
0 1 0



.
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In addition, A †© = B †© = A−, †©
GA

= B−, †©
GB

=





1
4 0 0
0 0 0
0 0 0



. Further, we evaluate,

AA−, †©
GA

= BA−, †©
GA

= AB−, †©
GB

= BB−, †©
GB

=





1
2 0 0
0 0 0
0 0 0



, and

A−, †©
GA

A = A−, †©
GA

B =





1
2

1
4 0

0 0 0
0 0 0



 = B−, †©
GB

A = B−, †©
GB

B.

Thus, A ≤−, †© B and B ≤−, †© A but A 6= B. Hence, the relation ≤−, †© is not anti-symmetric.

Now for a matrix C =





2 1 0
0 0 2
0 0 1



 we choose GC =





2
5

1
5 0

0 0 0
0 2

5
1
5



 and compute

C †© =





1
2 − 2

5 − 1
5

0 4
5

2
5

0 2
5

1
5



, C−, †©
GC

=





2
5

1
5 0

0 0 0
0 2

5
1
5



.

Obtained results lead to the conclusion A ≤−, †© C but C �−, †© A, since C−, †©
GC

A 6= C−, †©
GC

C. Hence, the

relation ≤−, †© is not symmetric.

The following example shows that the binary relation ≤−, †© is not transitive.

Example 3.6. Consider input matrices A =









1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0









, B =









1 1 1 1
0 0 0 0
0 0 0 0
0 1 −1 0









, C =









1 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1









.

Let us choose inner inverses of A and B, respectively, as

GA =









1
4 0 0 0
1
4 0 0 0
1
4 0 0 0
1
4 0 0 0









and GB =









1 1 1 0
0 0 0 1
0 0 0 0
0 0 0 −1









,

and evaluate A †© = B †© =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Further calculation gives AA−, †©
GA

= BA−, †©
GA

, B−, †©
GB

B = B−, †©
GB

C and BB−, †©
GB

= CB−, †©
GB

.
Thus

A−, †©
GA

A = A−, †©
GA

C but AA−, †©
GA

= A †© 6=









1 0 0 0
1
4 0 0 0
1
4 0 0 0
1
4 0 0 0









= CA−, †©
GA

.

Since A ≤−, †© B and B ≤−, †© C but A �−, †© C, the relation ≤−, †© is not transitive.

The next theorem will provide all elements B such as A ≤−, †© B for a given matrix A.

Theorem 3.13. Consider A ∈ Cn×n as defined in (3.2) and let G ∈ A{1} be as in (3.3). If B ∈ Cn×n then
the subsequent statements are equivalent:

(i) A ≤−, †© B;
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(ii) B = U

[

B1 B2

B3 B4

]

U∗, where B1Z1 + B2Z3 = Ir, B2Z1 + B4Z3 = 0, Z1T1 = Z1B1, Z3T1 = Z3B1,

Z1T2 = Z1B2, and Z3T2 = Z3B2.

Proof. (i)⇒(ii) Let A ≤−, †© B holds for any B ∈ Cn×n. From Theorem 3.2, we can write A−, †©
G =

U

[

Z1 0
Z3 0

]

U∗, for some Z1 ∈ Cr×r, and Z3 ∈ C(n−r)×r with T1Z1 + T2Z3 = Ir, NZ3 = 0. Let B =

U

[

B1 B2

B3 B4

]

U∗ be partitioned as the sizes of the blocks of A. From A−, †©
G A = A−, †©

G B, we can derive that

Z1T1 = Z1B1, Z3T1 = Z3B1, Z1T2 = Z1B2, and Z3T2 = Z3B2.

Similarly, AA−, †©
G = BA−, †©

G gives B1Z1 +B2Z3 = Ir, B2Z1 +B4Z3 = 0.
(ii)⇒(i) It is a straightforward verification.

Under a few suitable conditions, we discuss the transitive property of ICEP inverses, in Theorem 3.14.

Theorem 3.14. Let A ⊲n G and B ∈ Cn×n be two matrices of same index. Suppose ‖A †©‖ ≤ 1 and
lim
k→∞

‖AkA †© −GAk‖ = 0. Under these conditions A ≤−, †© B ⇐⇒ A ≤ †© B.

Proof. Let A ≤−, †© B. Then from A−, †©
G A = A−, †©

G B, we get

A †©A = A †©AA †©A = A †©AGAA †©A = A †©AA−, †©
G A = A †©AA−, †©

G B = A †©B.

Similarly, from AA †© = AA−, †©
G = BA−, †©

G = BGAA †©, we have

AA †© −BA †© = BGAA †© −BA †© = BGAk(A †©)k −BA(A †©)2

= BGAk(A †©)k −BAk(A †©)kA †© = (BGAk −BAkA †©)(A †©)k

= B(GAk −AkA †©)(A †©)k.

Therefore, ‖AA †© −BA †©‖ ≤ ‖B‖‖GAk −AkA †©‖‖(A †©)k‖ → 0 as k → ∞ and hence AA †© = BA †©.
Conversely, let A ≤ †© B. Then AA †© = BA †© and A †©A = A †©B. Further,

A−, †©
G A = GAA †©A = GAA †©B = A−, †©

G B

and

AA−, †©
G −BA−, †©

G = AA †© −BGAA †© = BA †© −BGAA †©

= BA(A †©)2 −BGAk(A †©)k = BAk(A †©)k+1 −BGAk(A †©)k

= B(AkA †© −GAk)(A †©)k.

Therefore, ‖AA−, †©
G − BA−, †©

G ‖ ≤ ‖B‖‖AkA †© −GAk‖‖(A †©)k‖ → 0 as k → ∞. Hence AA−, †©
G = BA−, †©

G

and completes the proof.

Remark 3.2. If A, B ∈ PO (where PO = {A ∈ Cn×n : ‖A †©‖ ≤ 1 and lim
k→∞

‖AkA †© − GAk‖ = 0}, the

relation ≤−, †© represents a pre-order on PO.
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4. CEPI inverse

This section contains a few representations of CEPI (or core-EP inner) inverse for square matrices. Since
the proofs are identical to the proofs of ICEP inverses, we will exclude the proofs.

Theorem 4.1. Let A ⊲n G. Then Z = A †©AG is the unique solver of the matrix equations

ZAZ = Z, ZA = A †©A, and AZ = AA †©AG.

Considering Theorem 3.1, we define CEPI inverses for square matrices in Definition 4.1.

Definition 4.1. A ⊲n G. The CEPI inverse of A is defined as

A
†©,−
G = A †©AG.

The set of CEPI inverses of A is defined by A { †©,−} =
{

A †©AG| G ∈ A{1}
}

.

Example 4.1. Choose the matrices A and G. from Example 3.1. Exact calculation gives

A †©,−
G = A †©AG =









1 0 9 0
0 0 0 0
0 0 0 0
0 0 0 0









.

It is observable that A
†©,−
G /∈ {A−,D, A†, †©, A†,D, AD,†, Ac,†, A †©,†, A−, †©

G }.
Further,

A { †©,−} = A †©AA{1} =























1 0 x1,3 + x4,3 x1,4 + x4,4

0 0 0 0
0 0 0 0
0 0 0 0









| xij ∈ C















.

Clearly, A
†©,−
G is derived in the particular case x13 + x43 = 9, x14 + x44 = 0 in A { †©,−}.

Similarly, the following results can be derived in the case of the dual (CEPI inverses).

Proposition 4.1. Let A ∈ Cn×n and l > k be any non-negative integer. Then

(i) A
†©,−
G = ADAl(Al)†AG = ADPR(Al)AG = Al

(

Al+1
)†

AG;

(ii) A †©,−
G Al+1 = Al;

(iii) Al+1A
†©,−
G = A2l(Al)†AG.

Lemma 4.1. Let A ∈ Cn×n. Then

(i) A †©,−
G A is an orthogonal projector onto R(A †©A);

(ii) AA
†©,−
G is a projector onto R(AA †©) along N ((Ak)†AG).

Theorem 4.2. Let A ∈ Cn×n. Suppose P ′ = In − A
†©,−
G A and P ′′ = In − AA

†©,−
G . Then, for A+ P ′′ and

A− P ′′ both invertible,
A

†©,−
G = (In − P ′)(A± P ′′)−1(In − P ′′).

Theorem 4.3. The upcoming characterizations are equivalent in the case A ⊲n G:

(i) Z = A †©,−
G .

(ii) ZAZ = Z, AZ = AA †©AG, ZA = A †©A and AZA = AA †©A.

(iii) ZA = A †©A and ZAA †©AG = Z.

(iv) AZ = AA †©AG and A †©AZ = Z.
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(v) ZAA †©AZ = Z, ZAA †©A = A †©A, AA †©AZ = AA †©AG and AA †©AZAA †©A = AA †©A.
(vi) ZAA †©AZ = Z, ZAA †©A = A †©A and AA †©AZ = AA †©AG.

Theorem 4.4. Let A ⊲n G. Then the next characterizations hold:

(i) AA
†©,−
G = AG ⇐⇒ AA †©A = A;

(ii) AA
†©,−
G = AA †© ⇐⇒ A

†©,−
G = A †©;

(iii) A
†©,−
G = (A †©)2A ⇐⇒ AA

†©,−
G = A

†©,−
G A.

Theorem 4.5. If A ⊲n G and W ∈ Cn×n, the following characterizations are equivalent:

(i) A
†©,−
G = WAG.

(ii) WA = A †©A.
(iii) AWA = AA †©A and R(WA) = R(A †©).
(iv) W = A †© + Y (In −AG), for any Y ∈ Cn×n.

Example 4.2. Consider the input matrix of index ind(A) = 4:

A =

























1
2 0 0 0 1

2 0 0 0
0 1

2 0 0 0 1
2 0 0

0 0 1
2 0 0 0 1

2 0
0 0 0 1

2 0 0 0 1
2

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0

























.

The set of inner inverses is defined by

A{1} =







































































x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

0 2 0 0 −2 0 0 x2,8

0 0 2 0 0 −2 0 x3,8

0 0 0 2 0 0 −2 x4,8

2− x1,1 −x1,2 −x1,3 −x1,4 −x1,5 −x1,6 −x1,7 x5,8

0 0 0 0 2 0 0 x6,8

0 0 0 0 0 2 0 x7,8

0 0 0 0 0 0 2 x8,8

























| xij ∈ C















































.

Then

A †© = A4
(

A5
)†

=

























2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

which gives

A { †©,−} = A †©AA{1} =







































































x1,1 x1,2 x1,3 x1,4 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0

2− x1,1 −x1,2 −x1,3 −x1,4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























| x1j ∈ C















































.
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Theorem 4.6. Let A⊲nG. Consider the decomposition’s of A, G, and A †© respectively as defined in (3.2),
(3.3), and (3.4). Then CEPI inverses of A are represented as

A
†©,−
G = U

[

T−1
1 Z2 + T−1

1 T2Z4

0 0

]

U∗,

where (T1Z2 + T2Z4)N = 0 and Z4 ∈ N{1}.

Theorem 4.7. Consider A ∈ Cn×n as defined in (3.9). Then

A †©,−
G = V

[

(ΣK) †© (ΣK) †©(ΣKZ2 +ΣLZ4)
0 0

]

V ∗,

where ΣKZ1 +ΣLZ3 = Ir.

Definition 4.2 proposes a binary relation for CEPI inverses.

Definition 4.2. Let A ⊲n G and B ∈ Cn×n. We say A is below B under the binary relation ≤ †©,− if
A

†©,−
G A = A

†©,−
G B and AA

†©,−
G = BA

†©,−
G . Such relation is denoted by A ≤ †©,− B.

Proposition 4.2. The following representations are equivalent for A ⊲n G:

(i) A 6 †©,− B.

(i) AA †©A = BA †©A = AA
†©,−
G B.

(iii) A †©A = A †©,−
G B and AA †© = BA †©.

Theorem 4.8. Let A ⊲n G. Observe the decompositions of A, G, and A †© as in (3.2), (3.3), and (3.4),
respectively. If B ∈ Cn×n then the next statements are equivalent:

(i) A ≤ †©,− B.

(ii) B = U

[

T1 B2

0 B4

]

U∗, where B2 = T2 − (T1Z2 + T2Z4)B4 and Z4 ∈ N{1}.

Theorem 4.9. Let A ⊲n G and B ∈ Cn×n be two matrices of identical index. Suppose ‖A †©‖ is bounded
and AG = AA †©. In this case A ≤ †©,− B ⇐⇒ A ≤ †© B.

5. P-core-EP inverse

In this section, we introduce the notion of P-core inverse on the set of square matrices of arbitrary index.
First, we define the P-core-EP inverse of a square matrices as given below.

Definition 5.1. Let A ∈ Cn×n. A matrix Z is called P-core-EP inverse of A if it satisfies

ZA = A †©A and Z(A− I) = (A− I)A †©. (5.1)

Theorem 5.1. Arbitrary matrix A ∈ Cn×n of the pattern (3.2) satisfies

Z = U

[

T−1
1 T−1

1 T2

0 0

]

U∗ (5.2)

is the unique solver of the system (5.1).

Proof. Let

Z = U

[

Z1 Z2

Z3 Z4

]

U∗
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be a matrix for suitable blocks, satisfying (5.1) and A †© is written as (3.4). From ZA = A †©A, we derive

U

[

Z1T1 Z1T2 + Z2N
Z3T1 Z3T2 + Z4N

]

U∗ = U

[

I T−1
1 T2

0 0

]

U∗.

Then, after some calculations, we obtain Z1 = T−1
1 , Z3 = 0. Further, Z(A− I) = (A− I)A †© implies

U

[

Z1T1 − Z1 Z1T2 − Z2

Z3T1 − Z3 Z3T2 − Z4

]

U∗ = U

[

I − T−1
1 0

0 0

]

U∗.

Now by putting Z1 = T−1
1 and Z3 = 0 above, we obtain Z2 = T−1

1 T2 and Z4 = 0. Therefore,

Z = U

[

T−1
1 T−1

1 T2

0 0

]

U∗.

To show uniqueness, we suppose Z1 and Z2 are two solutions of the system (5.1). From first part of
(5.1), we get

{

Z1A = A †©A,

Z2A = A †©A.
(5.3)

On solving these two equations, we get
(Z1 − Z2)A = 0. (5.4)

Similarly, from second part of (5.1), we have

{

Z1(A− I) = (A− I)A †©,

Z2(A− I) = (A− I)A †©.
(5.5)

Again, by solving these two equations, we get

(Z1 − Z2)A = Z1 − Z2. (5.6)

From (5.4) and (5.6), we obtain Z1 = Z2. Hence, Z is the unique solution.

Corollary 5.1 is derived from Definition 5.1.

Corollary 5.1. For A ∈ Cn×n satisfying k = ind(A), the unique solution to (5.1) is equal to

Z = A †© +A †©A−AA †©

and is denoted by A †©p .

Proof. The proof is follows from (5.1) by simple calculation.

Next, we present some properties of P-core-EP inverse.

Theorem 5.2. For A ∈ Cn×n satisfying ind(A) = k it follows

(i) A †©pAk = A †©Ak,

(ii) A †©pAk(Ak)† = A †©,

(iii) (A †©p) †© = (A †©) †©p .

Proof. (i) Let A be of the form (3.2). By substituting equation (5.2) and (3.10) into A †©p and A †©, we
obtain

A †©pAk = U

[

T k−1
1 T−1

1 T
0 0

]

U∗ = A †©Ak.
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with Ak = U

[

T k
1 T
0 0

]

U∗ where T =
∑k

i=0 T
i
1T2N

k−i.

(ii) Similarly, from direct calculation, we obtain

A †©pAk(Ak)† = U

[

T−1
1 T−1

1 T2

0 0

] [

Irank(Ak) 0
0 0

]

U∗ = U

[

T−1
1 0
0 0

]

U∗ = A †©.

(iii) It is easy to obtain

(A †©p) †© = U

[

T1 0
0 0

]

U∗.

According to Corollary5.1, we get

(A †©) †©p = (A †©) †© + (A †©) †©A †© −A †©(A †©) †©.

Now by using equation(3.2) and (3.4), we obtain

(A †©) †©p = U

([

T1 0
0 0

]

+

[

T1 0
0 0

] [

T−1
1 0
0 0

]

−

[

T−1
1 0
0 0

] [

T1 0
0 0

])

U∗ = U

[

T1 0
0 0

]

U∗.

Hence (A †©p) †© = (A †©) †©p .

Theorem 5.3. If A ∈ Cn×n is of index ind(A) = k then A †©p ∈ A{1k, 2, 6}.

Proof. From Theorem 5.2(ii), we have A †©pAk = A †©Ak. Now post-multiplying by A on both sides, we get

A †©pAk+1 = A †©Ak+1 = Ak.

Hence, A †©p ∈ A{1k}.
Suppose A is of the form (3.2). Then

A †©pAA †©p = U

[

T−1
1 T−1

1 T2

0 0

]

U∗ = A †©p .

Therefore, A †©p ∈ A{2}. Also the identity A(A †©p)2 = A †©p follows from direct computation. Therefore,
A †©p ∈ A{6}.

Next, we present some relationships of P-core-EP inverse with other generalized inverse.

Theorem 5.4. If A ∈ Cn×n satisfies rank(A) = r, the subsequent equalities are equivalent:

(i) (AA †©p)∗ = AA †©p ,

(ii) (A †©A)∗ = A †©A,

(iii) A †©p = A †©.

Proof. Let A be of the form(3.2). Then by using equation (3.4) and (5.2), it is not difficult to conclude that
all the three conditions are equivalent to T2 = 0.

5.1. Binary relation on the P-core-EP inverse

In view of the binary relation defined on P-core inverse, we now define the following relation for P-core-EP
inverse.

Definition 5.2. Let A,B ∈ Cn×n. It is said that A is below B under the relation ≤ †©p if A †©pA = A †©pB
and AA †©p = BA †©p . We denote the relation by A ≤ †©p B.

Theorem 5.5. Let A ∈ Cn×n as defined in (3.2) and B ∈ Cn×n, then the following are equivalent:
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(i) A ≤ †©p B;

(ii) B = U

[

T1 T2 + T2N − T2B4

0 B4

]

U∗, where T1 ∈ Cr×r, T2 ∈ Cr×n−r, and B4 ∈ Cn−r×n−r of index k.

Proof. (i)⇒(ii) Suppose A ≤ †©p B satisfies for any B ∈ Cn×n . The equation (5.2) leads to the conclusion

A †©p = U

[

T−1
1 T−1

1 T2

0 0

]

U∗. Let B = U

[

B1 B2

B3 B4

]

U∗ be partitioned as the suitable block sizes of A. From

A †©pA = A †©pB, we get

B2 = T2 + T2N − T2B4.

Again, AA †©p = BA †©p gives B1 = T1 and B3 = 0.
(ii)⇒(i) It is obvious.

From the definition, It is trivial that the binary relation6
†©p is reflexive. However, it is neither symmetric

nor anti-symmetric, as shown below.

Example 5.1. Let A =





1 0 0
0 0 1
0 0 0



 , B =





1 0 0
0 0 2
0 0 0



. Further evaluation gives

A †©p = B †©p =





1 0 0
0 0 0
0 0 0



.

Also, we evaluate,

AA †©p = BA †©p = A †©pA = A †©pB = AB †©p = BB †©p = B †©pA = B †©pB =





1 0 0
0 0 0
0 0 0



.

Therefore, A ≤ †©p B and B ≤ †©p A but A 6= B. Hence, the relation ≤ †©p is not anti-symmetric. Now

consider a matrix C =





1 0 0
0 0 2
0 0 2



 with C †©p =





1 0 0
0 − 1

4 − 3
4

0 − 1
4 − 3

4



. Numerical experience shows A ≤ †©p C but

C � †©p A, since C †©pA 6= C †©pC and AC †©p 6= CC †©p . Hence, the relation ≤ †©p is not symmetric.

Example 5.2 shows that the binary relation ≤ †©p is not transitive.

Example 5.2. For input matrices

A =





1 0 1
0 0 1
0 0 0



, B =





1 1 1
0 0 0
0 −1 0



, C =





1 1 0
0 −1 0
0 0 1





simple calculation gives

A †©p =





1 0 1
0 0 0
0 0 0



 and B †©p =





1 1 1
0 0 0
0 0 0



.

Further calculation gives

AA †©p = BA †©p , A †©pA = A †©pB, B †©pB = B †©pC and BB †©p = CB †©p .

Thus
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AA †©p = CA †©p but A †©pA =





1 0 1
0 0 0
0 0 0



 6=





1 1 1
0 0 0
0 0 0



 = CA †©p .

Since A ≤ †©p B and B ≤ †©p C but A � †©p C, the relation ≤ †©p is not transitive.

Remark 5.1. From the above two examples we decide that the relation ≤ †© does not define a partial order.
But if ind(A) = 1, then it becomes a partial order (see [43]).

Theorem 5.6. Let A,B ∈ Cn×n be of same index and suppose ‖A †©‖ ≤ 1. Under these conditions,
A ≤ †©p B if and only if A ≤ †© B.

Proof. Suppose A ≤ †©p B and ‖A †©‖ ≤ 1, then

‖A †©A−A †©B‖ ≤ ‖A †©‖‖(A−B)‖ = ‖Ak(A †©)k+1‖‖(A−B)‖ → 0 as k → ∞.

Therefore, A †©A = A †©B. Similarly, we can show AA †© = BA †©.
On the other hand, if A ≤ †© B then

AA †©p −BA †©p = AA †© +AA †©A−A2A †© −BA †© −BA †©A+BAA †©

= (B2 −A2)A †©.

Thus,

‖AA †©p −BA †©p‖ ≤ ‖(B2 −A2)A †©‖ = ‖(B2 −A2)Ak(A †©)k+1‖ → 0 as k → ∞

and hence AA †©p = BA †©p . Similarly, we can proof A †©pA = A †©pB.

Remark 5.2. The binary relation ≤ †©p is a pre-order on the set PO defined as

PO = {A ∈ Cn×n | ‖A †©‖ ≤ 1}.

6. Application in solving linear systems

In the following two results, we discuss the solution of linear certain equations using ICEP inverses, CEPI
inverses and P-core-EP inverse.

Proposition 6.1. Let A ∈ Cn×n and b ∈ Cn. The vector equation

Az = Ak(Ak)†b (6.1)

is consistent and the generic solution to (6.1) is

z = A−, †©
G b+ (In −GA)w, (6.2)

for any w ∈ Cn.

Proof. Let w ∈ Cn and z = A−, †©
G b+ (In −GA)w. Then

Az = A(A−, †©
G b+ (In −GA)w) = AGAA †©b = AA †©b = AADAk(Ak)†b = Ak(Ak)†b.

Thus z is a solution to the equation (6.1). Suppose y is another solution to (6.1). Applying Lemma 2.2, we

obtain A−, †©
G b = GAADAk(Ak)†b = GAk(Ak)†b = GAy. Now

y = A−, †©
G b+ y −A−, †©

G b = A−, †©
G b+ y −GAy = A−, †©

G b+ (In −GA)y,

which is of the pattern (6.2).

Additional constraint b ∈ R(Ak) leads to the particular result given in Corollary 6.1.
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Corollary 6.1. Let A⊲nG and b ∈ R(Ak). Then Az = b is unconditionally solvable and its general solution
is given by

z = A−, †©
G b+ (In −GA)w = Gb+ (In −GA)w

for any w ∈ Cn.

Proof. If b ∈ R(Ak), then b = Ak(Ak)−b. Such representation initiates A−, †©
G b = GAk(Ak)−b = Gb. The

remaining part of the proof follows from Proposition 6.1.

Corollary 6.2. For A ⊲n G, there is the unique solution A−, †©
G b in R(GAk) of the system (6.1).

Proof. According to Proposition6.1 and Corollary 3.1, A−, †©
G b is a solution to (6.1) in R(GAk).

For uniqueness, suppose z1, z2 ∈ R(GAk). Now

z1 − z2 ∈ R(GAk) ∩ N (A) ⊆ R(A−, †©
G A) ∩N (A−, †©

G A) = {0}.

Therefore, z1 = z2.

Theorem 6.1. Let A ∈ Cn×n and b ∈ R(A). Then A †©Az = A †©b is consistent and the general solution is
given by

z = A
†©,−
G b+ (In −A †©A)w = A †©b+ (In −A †©A)w,

for any w ∈ Cn.

Corollary 6.3. Under the environment A ⊲n G, the system A †©Az = A †©b has unique solution A
†©,−
G b in

R(Ak).

6.1. Numerical examples on linear systems

The numerical examples worked out in this paper on a personal laptop with MATLAB, R2022b and the

laptop with configuration: 11th Gen Intel(R) Core(TM) i7-1165G7@2.80GHz, 16GB of memory, and the
Microsoft Windows 11 operating system (64-bit).

The residual errors associated to different generalized inverses are summarised in below Table 2.

Table 2: Residual errors associate to generalized inverses

E† = ‖AA†b− b‖F ED = ‖AADb− b‖F E †© = ‖AA †©b− b‖F

E−, †© = ‖AA−, †©
G b − b‖F E †©,− = ‖AA †©,−

G b − b‖F E †©p
= ‖AA †©pb− b‖F

Example 6.1. Consider the singular matrix

A =





















5 −1 −1 −1 −1 0 −1
1 3 −1 −1 −1 0 −1
0 0 3 −1 −1 0 −1
0 0 1 1 −1 0 −1
0 0 0 0 1 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1





















,

as given in [9, p. 37]. Clearly ind(A) = 3. By choosing 30 randomly generated vectors b ∈ R(A3), we
calculate average residual errors and the mean CPU time in seconds. It is observed that all the generalized
inverses perform equally good in terms of residual error and the time complexity. The comparison details
are presented in Table 3.
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Table 3: Comparison analysis of residual errors and the mean CPU time

Residual error E† = 3.3277e−14 ED = 9.8343e−14 E †© = 5.2683e−14

Mean CPU Time 0.002623 0.003478 0.005232

Residual error E−, †© = 8.3744e−14 E †©,− = 7.7856e−14 E †©p
= 8.5431e−14

Mean CPU Time 0.005653 0.005297 0.007181

Example 6.2. Observe the elliptic partial differential Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f(x, y) (6.3)

with Neumann boundary conditions. In this equation, f(x, y) denotes the input to the problem on the region
R = {(x, y) | 0 < x < 1, 0 < y < 1}, with the boundary ∂R. Equations of type (6.3) came from the study
of various time-invariant physical problems, such as the steady-state problems involving incomprehensible
fluids. Here we use a two-dimensional adjustment of the Finite-Difference method (5-point stencil formula
with uniform grid). We choose integers n to define the step sizes h = 1/n. The strategy to use two node
points (x0, x1) in X-axis and (y0, y1) in Y -axis initiates generation of the coefficient matrix of the order
22 = 4 and given by

A =









2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2









.

Similarly, if we consider 3 node points in each direction we will get 32 × 32 coefficient matrix A equal to

A =





























2 −1 0 −1 0 0 0 0 0
−1 3 −1 0 −1 0 0 0 0
0 −1 2 0 0 −1 0 0 0
−1 0 0 3 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 3 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −1 0 −1 3 −1
0 0 0 0 0 −1 0 −1 2





























. (6.4)

In general, n node points in each directions initiate the linear system

Ax = b, b ∈ Rn2

, (6.5)

and the matrix A ∈ Rn2×n2

is given by

A = In ⊗ P +Q⊗ In +D, (6.6)

where In ∈ Rn×n the identity matrix. Here the matrices P ∈ Rn×n and Q ∈ Rn×n are equal to

P =













0 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 0













= tridiagonal (−1, 0,−1) = Q.

It is worth mentioning that D ∈ Rn2×n2

is the diagonal matrix, and the diagonal entries change according
to the number of grid points. Based on the representation (6.6) of the coefficient matrix A in (6.4), it follows
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ind(A) = 1. We choose the vector b ∈ R(A) randomly 100 times and calculate the respective residual error
and the mean CPU time. The detailed comparison analysis based on a few fixed numbers of nodes in each
direction are illustrated in Table 4.

Table 4: Comparison analysis of residual errors associated to generalized inverses

Order of A Residual error Mean CPU time (in seconds)

1600

E †© = 4.5058e−11 3.403053

E−, †© = 1.6010e−12 1.946514

E †©,− = 4.6792e−11 3.027191

E †©p
= 2.4573e−10 6.336402

7. Conclusion

We have introduced ICEP, the dual CEPI inverses and P-core-EP inverse on square matrices of arbitrary
index. A few properties and characterizations of the these inverses have been derived. Several represen-
tations of these inverses based on core-EP decomposition and HS-decomposition is established. A binary
relation is introduced for both introduced generalized inverses and main properties of this associated relation
are investigated. Numerical examples carried out and an application to linear system, arises from partial
differential equation illustrated. The following problems can be considered for possible future research.

• Derivation of iterative methods for computing ICEP, the dual CEPI inverses and P-core-EP inverse.

• Studying the continuity and perturbations of ICEP and CEPI inverses.

• Studying of ICEP and CEPI inverses for tensors, elements in a ring or bounded linear operators.

• Particularly, we investigate combinations of inner inverses with the core-EP inverse. Further research
can include combinations of inner inverses with various kinds of outer inverses.
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[31] D. Mosić. Weighted core-EP inverse and weighted core-EP pre-orders in a C∗-algebra. J. Aust. Math. Soc., 111(1):76–110,

2021.
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[38] J. K. Sahoo, R. Behera, P. S. Stanimirović, V. N. Katsikis, and H. Ma. Core and core-EP inverses of tensors. Comput.
Appl. Math., 39(1):Paper No. 9, 28, 2020.
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