## AUTHOR QUERIES <br> AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

If you have not completed your electronic copyright form (ECF) and payment option please return to the Scholar One "Transfer Center." In the Transfer Center you will click on "Manuscripts with Decisions" link. You will see your article details and under the "Actions" column click "Transfer Copyright". From the ECF it will direct you to the payment portal to select your payment options and then return to ECF for copyright submission.

Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT be accepted after the article is published online/print in its final form. Please check author names and affiliations, funding, as well as the overall article for any errors prior to sending in your author proof corrections.

AQ1: The acronym "ZND" corresponds to both zeroing neural dynamics and Zhang neural dynamics. Please advise.
AQ2: Please confirm or add details for any funding or financial support for the research of this article.
AQ3: Please confirm the volume number for Reference [59].
AQ4: Please confirm if the location and publisher information for References [63] and [66] are correct as set.
AQ5: Current affiliations in the biographies of Theodore E. Simos and Predrag S.
Stanimirović do not match the First Footnote. Please check and correct where needed.
AQ6: Please provide the years attained for all degrees of V. N. Katsikis.
AQ7: Please provide the year and specify the field of study for the Doctoral degree of the author P. S. Stanimirović.

# Solving Time-Varying Nonsymmetric Algebraic Riccati Equations With Zeroing Neural Dynamics 

Theodore E. Simos, Vasilios N. Katsikis ${ }^{\oplus}$, Spyridon D. Mourtas ${ }^{\oplus}$, and Predrag S. Stanimirović ${ }^{\oplus}$


#### Abstract

The problem of solving algebraic Riccati equations (AREs) and certain linear matrix equations which arise from the ARE frequently occur in applied and pure mathematics, science, and engineering applications. In this article, by considering the nonsymmetric ARE (NARE) as a general form of ARE, the time-varying NARE (TV-NARE) problem is proposed and investigated. As a particular case of TV-NARE, the time8 invariant NARE (TI-NARE) problem is investigated too. Then, by employing the zeroing neural dynamics (ZND) design, a ZND TV-NARE (ZNDTV-NARE) model and a ZND TI-NARE (ZNDTI-NARE) model are proposed and investigated. Also, by combining the ZNDTV-NARE model with the frozen-time Riccati equation (FTRE) approach to optimal control of linear timevarying (LTV) systems based on the state-dependent Riccati equation (SDRE) process, a hybrid ZND FTRE control (HZNDFTREC) model is developed and investigated. The effectiveness of the proposed dynamical systems is proven in ten numerical experiments, three of which include applications to LTV and nonlinear systems.


Index Terms-Continuous-time model, dynamical system, nonlinear system, nonsymmetric algebraic Riccati equations (AREs), zeroing neural dynamics.

## I. Introduction

ALGEBRAIC Riccati Equations (AREs) appear commonly in mathematics, science, and engineering. The ARE class includes both nonlinear and linear matrix equations (LMEs) which are specifically of great interest in optimal control, filtering, and estimation problems. The practice has revealed that solving a Riccati equation is a principal topic in optimal control theory (see [1], [2], [3], [4], [5]). The utilization of ARE equations of various types can commonly be found in solving linear multiagent systems [1], in $\mathrm{H}^{\infty}$ controller design for wind generation systems [3], in the analysis and synthesis of linear quadratic Gaussian (LQG) control problems [4], [5]. In one or another form, ARE play significant roles in optimal control of multivariable and large-scale systems, estimation, scattering theory, and detection procedures. Moreover, closed-form solutions of Riccati Equations are used to solve some problems, such as numerical precision in direct and iterative algorithms and losing controllability. It is worth noting that other related fields of research are the matrix Ricatti differential equations (MRDEs) (see [6]).
The Zhang neural dynamics (ZND) method is used to approach the time-varying nonsymmetric ARE (TVNARE) problem and the time-invariant nonsymmetric ARE (TI-NARE) problem, which is a particular case of TV-NARE, by considering the nonsymmetric ARE (NARE) as a general form of ARE. Because the ZND has already been suggested in the literature as a useful method for solving a wide range of time-variant problems, two models are created by employing the ZND method, namely, the ZND TV-NARE (ZNDTV-NARE) model and the ZND TI-NARE (ZNDTI-NARE) model, which can be solved with exponential convergence performance. Furthermore, the models proposed in [7], [8], [9], [10], and [11] have exponential convergence when the ZND design parameter is adjusted using the ZND method [12], [13], [14], [15] and their speed of convergence can be handled. Compared to traditional numerical algorithms, the ZND method, which is based on recurrent neural networks (RNNs), has several advantages in real-time applications, including high-speed parallel processing, distributed storage, and adaptive self-learning natures. As a result, such an approach is widely regarded as a powerful alternative to online computation and optimization [16], [17], [18], [19].


Fig. 1. Diagrammatic representation of the matrix equations explored in this study.

Several papers, including [20] and [21], discuss the ability of such models to handle noise.
A comprehensive overview of ARE-type matrix equations and solutions to some special TV-NARE equations were provided in [21], [22], and [23]. The time-varying ARE problem was approached in [21] through a noise-tolerant ZND model, by a fixed-time ZND model in [22], and by an eigendecomposition-based ZND model in [23]. The symmetric solutions they always offer to the time-varying ARE problem are what these papers have in common. It is crucial to note that AREs with symmetric solutions have square coefficient matrices with certain properties, whereas NAREs are a generic form of AREs whose coefficient matrices are not required to be square with particular properties and whose solutions are not required to be symmetric. Since this study focuses on solving the general TV-NARE problem rather than only the problem of time-varying ARE, it differs significantly from the aforementioned papers.

The tracking control has become one of the most important schemes in past studies [24], [25], [26], [27], [28]. These studies include a position-tracking control strategy using output feedback and an adaptive sliding-mode approach in [24], a hybrid coordinated control method using a backstepping scheme and Hamilton control in [25], a control method using an error-to-actuator-based event-triggered framework [26], and two controllers that combine a backstepping scheme, fuzzy logic system, and finite-time Lyapunov stability theory in [27] and [28]. It is well known that the state-dependent Riccati equation (SDRE) method [3] can be used as a basis for the frozen-time Riccati equation (FTRE) approach to optimal control of linear time-varying (LTV) systems. In this article, by combining the ZNDTV-NARE model and the FTRE, a Hybrid ZND FTRE Control (HZND-FTREC) model is developed and investigated. It is worth noting that the advantages of the HZND-FTREC and ZNDTV-NARE models are the same.
The following summarizes the key contributions of our research in this article.

1) The ZND systems dynamics for solving TV-NARE and TI-NARE problems are proposed. According to our best knowledge, ZND approach for solving NARE has not been used so far.
2) An additional explicit dynamical system is proposed for solving TV-NARE besides the standard ZND.
3) Applying the proposed explicit dynamical system in particular cases, it is possible to generate corresponding
neural dynamics for solving the Sylvester, Lyapunov, 110 and LMEs.

111
4) Simulation examples are run to validate the proposed ${ }_{112}$ model's applicability and effectiveness.

113
5) Besides the numerical simulations, we present two appli- 114 cations in optimal control of LTV systems and an 115 application in solving nonlinear systems.

116
The following structure guides the overall organization ${ }_{117}$ of sections in this article. Section II contains preliminary ${ }_{118}$ information about the ARE and certain LMEs which could 119 be arising from the NARE, including the Sylvester and ${ }_{120}$ Lyapunov equations. Section III describes the TV-NARE ${ }_{121}$ problem and then defines the corresponding ZNDTV-NARE ${ }_{122}$ model. Section IV comprises prominent particular cases of the ${ }^{123}$ ZNDTV-NARE design, including the ZNDTI-NARE model. ${ }^{124}$ Section V introduces a hybrid TV-NARE model, called ${ }^{125}$ HZND-FTREC, which incorporates the FTRE approach to ${ }_{126}$ optimal control of the LTV system. Section VI contains ten ${ }^{127}$ different examples with different-dimensional input matrices, ${ }_{128}$ three of these include LTV and nonlinear system applications. ${ }^{129}$ The simulation tests validate the efficacy of the suggested ${ }_{130}$ models. Finally, the concluding remarks are presented in ${ }_{131}$ Section VII.

## II. Matrix Equations of ARE Type

This section will provide a comprehensive overview of the ${ }_{134}$ matrix equations discussed in this article. These equations ${ }_{135}$ are in the form of the pure ARE and certain LMEs derived ${ }^{136}$ from the ARE class. A diagrammatic representation of these ${ }_{137}$ equations is presented in Fig. 1.

## A. Algebraic Riccati Equations

In this section, we introduce the definitions of all the AREs 140 treated in this research.

1) Nonsymmetric Algebraic Riccati Equation: An NARE ${ }_{142}$ is a quadratic matrix equation of the form

$$
\begin{equation*}
D X+X A-X B X+Q=\mathbf{0} \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times n}$ and $Q \in \mathbb{R}^{n \times m}$ are ${ }_{145}$ the block coefficients, $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be ${ }_{146}$ obtained and $\mathbf{0}$ represents a zero $n \times m$ matrix. Note that the ${ }_{147}$ term "nonsymmetric" is improperly used to denote that (1) is 148 in its general form without assumption on the symmetry of 149 the matrix coefficients.
or
2) Continuous-Time Algebraic Riccati Equation: The continuous-time ARE (CARE)

$$
\begin{equation*}
A^{\mathrm{T}} X+X A-X B X+Q=\mathbf{0} \tag{2}
\end{equation*}
$$

in which the superscript ()$^{\mathrm{T}}$ denotes the transpose operator and all the coefficient matrices belong to $\mathbb{R}^{n \times n}$, is a quadratic matrix equation and plays a central role in the LQR/LQG control, $H_{2}$ and $H^{\infty}$ control, Kalman filtering, and spectral or co-prime factorizations (see [29], [30], [31], [32], [33], [34]). The phrase "continuous-time" in the notation "CARE" is taken from control theory problems in continuous-time, wherefrom (2) emerges. Note that CARE is an NARE where the block coefficients are square (i.e., $m=n$ ) and $D=A^{\mathrm{T}}$, $B=B^{\mathrm{T}}, Q=Q^{\mathrm{T}}$ (see [35]). Moreover, $B, Q$ are symmetric and non-negative definite matrices (i.e., $B=B^{\mathrm{T}} \geq 0$ and $Q=Q^{\mathrm{T}} \geq 0$ ). Solutions $X \in \mathbb{R}^{n \times n}$ of the CARE (2) can be symmetric or nonsymmetric, with definite or indefinite sign and the solutions set can be either infinite or finite (see [36]).

## B. Linear Matrix Equations of ARE Type

In this section, we restate the definitions of all the LMEs arising from the ARE.

1) Continuous-Time Lyapunov Equation: The continuoustime Lyapunov equation (CLE) is a matrix equation given as

$$
\begin{equation*}
A^{\mathrm{T}} X+X A+Q=\mathbf{0} \tag{3}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times n}$ are the matrix coefficients and $X \in \mathbb{R}^{n \times n}$ is the unknown matrix. Lyapunov methods could be applied successfully in numerous scientific and engineering fields, such as in the analysis of various kinds of nonlinear and linear control systems, in control theory, optimization, signal processing, large space flexible structures, and communications (see [37], [38], [39]). Note that (3) is an appearance of NARE where the block coefficients are square and satisfy $D=A^{\mathrm{T}}, B=\mathbf{0}$.
2) Sylvester Equation: The Sylvester equation (SE) is an LME of the form

$$
\begin{equation*}
D X+X A+Q=\mathbf{0} \tag{4}
\end{equation*}
$$

where $D \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m \times m}, Q \in \mathbb{R}^{n \times m}$ are the block coefficients and $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be generated. Equation (4) is an NARE where the block coefficient $B$ satisfies $B=\mathbf{0}$. SE is closely associated with the analysis and synthesis of dynamic systems, such as the design of feedback control systems through pole assignment (see [40], [41]).

## C. Linear Matrix Equation

The LME is of the general form

$$
\begin{equation*}
D X+Q=\mathbf{0} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
X A+Q=\mathbf{0} \tag{6}
\end{equation*}
$$

where $D \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m \times m}, Q \in \mathbb{R}^{n \times m}$ are the block coefficients and $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be calculated. Note that (5) is an NARE where the block coefficients
satisfy $A=\mathbf{0}$ and $B=\mathbf{0}$. Also, (6) is an NARE where $D=\mathbf{0}{ }_{200}$ and $B=\mathbf{0}$. LMEs frequently appear in science and engineer- 201 ing fields, such as robotic motion tracking and angle-of-arrival 202 localization [42], [43], [44], [45], [46].

## D. Matrix Inversion Equation

The matrix inversion (MI) equation is the LME of the form ${ }_{205}$

$$
\begin{equation*}
D X-I_{n}=\mathbf{0} \tag{7}
\end{equation*}
$$

in which $D \in \mathbb{R}^{n \times n}$ is the block coefficient, $I_{n}$ denotes the ${ }^{207}$ $n \times n$ identity matrix and $X \in \mathbb{R}^{n \times n}$ is unknown approxi- ${ }^{208}$ mation of the inverse $D^{-1}$ of $D$ to be obtained. Notice also ${ }_{209}$ that (7) is an NARE where the block coefficients are square ${ }_{210}$ and $A=\mathbf{0}, B=\mathbf{0}$ and $Q=-I_{n}$. The MI problem is commonly ${ }_{211}$ involved in numerous problems of science and engineering, for ${ }_{212}$ example, as former steps in optimization, signal processing, ${ }_{213}$ electromagnetic systems, and robot inverse kinematics [47], 214 [48], [49].

## III. Solving TV-NARE via ZND Method

In this section, both the TI NARE case and the TV NARE 217 case are approached by the ZND method. Note that, based 218 on the analysis provided in Section II, we can observe that 219 it is possible to extract all the remaining equations presented ${ }_{220}$ therein from the NARE general form (1). Since 2001, when ${ }_{221}$ Zhang and Wang [50] proposed the ZND evolution, this ${ }^{222}$ method has been studied and established as a crucial class ${ }^{223}$ of RNNs. Furthermore, the ZND evolution has been ana- ${ }^{224}$ lyzed theoretically and substantiated comparatively for solving ${ }^{225}$ time-varying problems accurately and efficiently. Following 226 the ZND design formula (see [7], [8], [9], [10], [11], [12], ${ }^{227}$ [13], [14], [15]) under the linear activation, an appropriately 228 defined error matrix $E(t)$ can dynamically adjusted as a result ${ }^{229}$ of the evolution

$$
\begin{equation*}
\dot{E}(t)=-\lambda E(t) \tag{8}
\end{equation*}
$$

at which $\left(\dot{)}\right.$ represents the first derivative operator as a function ${ }^{232}$ of time $t$ and $\lambda>0$ represents the ZND design parameter. In ${ }^{233}$ addition, the gain parameter $\lambda$ determines the speed of con- ${ }^{234}$ vergence. It is known that the exponential convergence rate of ${ }_{235}$ the ZND dynamics is equal to $\lambda$ [15]. The larger the value ${ }^{236}$ of $\lambda$, the higher the convergence speed, and, thus, $\lambda$ should be ${ }^{237}$ set as large as the hardware permits. According to the ZND ${ }^{238}$ design formula, $E(t)$ is pushed to converge exponentially to ${ }^{239}$ the null matrix.

## A. TV-NARE Problem Formulation via ZND Method

Consider the subsequent general type of a TV-NARE

$$
\begin{equation*}
D(t) X(t)+X(t) A(t)-X(t) B(t) X(t)+Q(t)=\mathbf{0} \tag{9}
\end{equation*}
$$

where $A(t) \in \mathbb{R}^{m \times m}, B(t) \in \mathbb{R}^{m \times n}, D(t) \in \mathbb{R}^{n \times n}, Q(t) \in \mathbb{R}^{n \times m},{ }^{244}$ $X(t) \in \mathbb{R}^{n \times m}$, and $\mathbf{0} \in \mathbb{R}^{n \times m}$. Moreover, $X(t)$ is an unknown ${ }^{245}$ matrix of interest.

It is important to mention that the results in [21], [22], 247 and [23] refer to the particular case $D(t)=A^{\mathrm{T}}(t)$ in (9). Our ${ }^{248}$ goal is to solve the general TV-NARE problem.
${ }_{253} \dot{E}(t)=\dot{D}(t) X(t)+D(t) \dot{X}(t)+\dot{X}(t) A(t)+X(t) \dot{A}(t)$
$254-\dot{X}(t) B(t) X(t)-X(t) \dot{B}(t) X(t)-X(t) B(t) \dot{X}(t)+\dot{Q}(t)$.

260 Or

$$
\dot{\mathbf{x}}(t)=\operatorname{vec}(\dot{X}(t))
$$

280 the combination of (13) and (11) results in implicit dynamic 281 behavior shown below

282

$$
\begin{equation*}
\mathbf{v}(t)=M(t) \dot{\mathbf{x}}(t) \tag{15}
\end{equation*}
$$

${ }_{283}$ in which $\mathbf{v}(t)$ is defined by (12). The consistency of the linear 284

285

$$
M(t) M(t)^{\dagger} \mathbf{v}(t)=\mathbf{v}(t)
$$

286

287

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=M(t)^{\dagger} \mathbf{v}(t)+\left(I-M^{\dagger}(t) M(t)\right) \mathbf{y} \tag{16}
\end{equation*}
$$

288 such that $\mathbf{y}$ is a vector of proper size. The best approximate 289 solution to the dynamics (15) is given by

290

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=M(t)^{\dagger} \mathbf{v}(t) \tag{17}
\end{equation*}
$$

where ()$^{\dagger}$ denotes the pseudoinverse operator. If (15) is solv- 291 able, (17) is its solution, while in the opposite case, (17) gives 292 the best approximate solution to (15). Note that \{(12), (14), ${ }^{293}$ (17) \} consist of the suggested ZNDTV-NARE model which 294 could be efficiently solved with the use of an ode MATLAB ${ }^{295}$ solver.

According to the previous discussion, we may conclude ${ }^{297}$ that (11) cannot be implemented in MATLAB, whereas (17) 298 can. We certainly have the cost of calculating the pseudoin- ${ }^{299}$ verse of $M(t)$. Theorem 1 proves the exponential convergence 300 of the ZNDTV-NARE $\{(12),(14),(17)\}$ to the theoretical 301 solution (9).
Theorem 1: Let $A(t) \in \mathbb{R}^{m \times m}, B(t) \in \mathbb{R}^{m \times n}, D(t) \in{ }^{303}$ $\mathbb{R}^{n \times n}, Q(t) \in \mathbb{R}^{n \times m}$ be differentiable. The ZNDTV-NARE ${ }_{304}$ model $\{(12),(14),(17)\}$ has exponential convergence to the 305 theoretical solution of TV-NARE (9), for any initial value 306 $X(0)$.

Proof: The error matrix equation $E(t)$ is determined as 308 in (10), inline with the ZND architecture, to achieve the solu- 309 tion $X(t)$ of TV-NARE (9). From [50, Theorem], the solution 310 of (11) converges to the exact solution $X^{*}(t)$ of (9) as $t \rightarrow \infty$. ${ }_{311}$ In addition, from the derivation process, the conclusion is ${ }_{312}$ that (15) is a vectorized form of (11). As a conclusion, $\mathbf{x}(t){ }^{313}$ defined by the dynamics (15) converges to $\mathbf{x}^{*}(t)=\operatorname{vec}\left(X^{*}(t)\right) \quad 314$ as $t \rightarrow \infty$. Since the convergence $\mathbf{x}(t) \rightarrow \mathbf{x}^{*}(t)=\operatorname{vec}\left(X^{*}(t)\right) \quad 315$ is valid for arbitrary $\dot{\mathbf{x}}(t)$ in (16), it is also valid for $\dot{\mathbf{x}}(t)$ in (17). ${ }_{316}$ Thus, the proof is finished.

## IV. Particular Cases of ZNDTV-NARE Design

The applicability of the defined model is illustrated by 319 several covered cases.

## A. TI-NARE Problem Formulation via ZND Method

321
Consider the general type of a TI-NARE 322

$$
\begin{equation*}
D X(t)+X(t) A-X(t) B X(t)+Q=\mathbf{0} \tag{18}
\end{equation*}
$$

wherein $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times m}, X(t) \in{ }^{324}$ $\mathbb{R}^{n \times m}$, and $\mathbf{0} \in \mathbb{R}^{n \times m}$. In addition, $X(t) \in \mathbb{R}^{n \times m}$ is an unknown ${ }^{325}$ matrix.

By setting the error function

$$
E(t)=D X(t)+X(t) A-X(t) B X(t)+Q
$$

which fulfills

$$
\dot{E}(t)=D \dot{X}(t)+\dot{X}(t) A-\dot{X}(t) B X(t)-X(t) B \dot{X}(t)
$$

the general evolution (8) initiates

$$
\begin{equation*}
-\lambda E(t)=D \dot{X}(t)+\dot{X}(t) A-\dot{X}(t) B X(t)-X(t) B \dot{X}(t) \tag{19}
\end{equation*}
$$

An application of the vectorization rules to (19) gives ${ }^{333}$

$$
\begin{aligned}
& \operatorname{vec}(-\lambda E(t)) \\
& =\left(I_{m} \otimes D+A^{\mathrm{T}} \otimes I_{n}-(B X(t))^{\mathrm{T}} \otimes I_{n}-I_{m} \otimes X(t) B\right) \operatorname{vec}(\dot{X}(t)) .
\end{aligned}
$$

Furthermore, by setting
335

$$
\begin{equation*}
\mathbf{v}(t)=-\lambda \operatorname{vec}(E(t)), \quad \dot{\mathbf{x}}(t)=\operatorname{vec}(\dot{X}(t)) \tag{20}
\end{equation*}
$$

337 and
where
where
$M(t)=I_{m} \otimes D+A^{\mathrm{T}} \otimes I_{n}-(B X(t))^{\mathrm{T}} \otimes I_{n}-I_{m} \otimes X(t) B$
one obtains the system of linear equations of the form (15). One of the solutions of the implicit system (15) is given by the explicit dynamics (17). Note that $\{(17),(20),(21)\}$ represents the proposed ZNDTI-NARE model which can efficiently be implemented with the use of an ode MATLAB solver.

## B. ZNDTV-NARE Design for Solving Particular Equations

The choice of $B(t) \equiv \mathbf{0}$ in NARE makes the ZNDTV-NARE design suitable for solving the TV SE. That is, the TV SE is defined using the error matrix

$$
E(t)=D(t) X(t)+X(t) A(t)+Q(t)
$$

where $A(t) \in \mathbb{R}^{m \times m}, D(t) \in \mathbb{R}^{n \times n}, Q(t) \in \mathbb{R}^{n \times m}, X(t) \in \mathbb{R}^{n \times m}$. Then, the ZNDTV-NARE design becomes the ZND for solving the TV SE

$$
\begin{align*}
& -\lambda E(t)-\dot{D}(t) X(t)-X(t) \dot{A}(t)-\dot{Q}(t) \\
& \quad=D(t) \dot{X}(t)+\dot{X}(t) A(t) \tag{22}
\end{align*}
$$

In [51], [52], [53], and [54], various finite-time convergent ZND models of type (22) are used to solve the SE and are centered on appropriate nonlinear activation.

Finite-time convergent RNN models based on improving the standard ZND evolution are considered in [55] and [56].

The proposed explicit dynamical system $\{(12),(14),(17)\}$ can be applied in solving the TV SE in the particular case

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\operatorname{vec}(\dot{X}(t))=\left(I_{m} \otimes D(t)+A(t)^{\mathrm{T}} \otimes I_{n}\right)^{\dagger} \mathbf{v}(t) \tag{23}
\end{equation*}
$$

$$
\mathbf{v}(t)=\operatorname{vec}(-\lambda E(t)-\dot{D}(t) X(t)-X(t) \dot{A}(t)-\dot{Q}(t))
$$

The choice of $B(t) \equiv \mathbf{0}, D(t) \equiv A(t)^{\mathrm{T}}$ in NARE makes the ZNDTV-NARE design suitable for solving the Lyapunov equation.

ZND models for solving the Lyapunov equation based on appropriate nonlinear activation are considered in [57], [58], [59], and [60]. The finite-time convergent RNN model based on improving the standard ZND evolution was considered in [61].
The following particular case of the explicit dynamical system $\{(12),(14),(17)\}$ can be applied in solving the TV Lyapunov equation:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\left(I_{m} \otimes(A(t))^{\mathrm{T}}+(A(t))^{\mathrm{T}} \otimes I_{n}\right)^{\dagger} \mathbf{v}(t) \tag{24}
\end{equation*}
$$

$$
\mathbf{v}(t)=\operatorname{vec}\left(-\lambda E(t)-\dot{A}^{\mathrm{T}}(t) X(t)-X(t) \dot{A}(t)-\dot{Q}(t)\right)
$$

It is essential to mention that the evolution (23) [resp., (24)] has not been used so far in solving the Sylvester (resp., Lyapunov) equation. Finally, the LME (5) can be solved using the dynamics

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\left(I_{m} \otimes D(t)\right)^{\dagger} \mathbf{v}(t) \tag{25}
\end{equation*}
$$

The dual LME (6) can be solved using the dynamics

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\left((A(t))^{\mathrm{T}} \otimes I_{n}\right)^{\dagger} \mathbf{v}(t) \tag{26}
\end{equation*}
$$

## V. Hybrid TV-NARE Model in FTRE Control 386

The backward-in-time Riccati equation, which uses ${ }^{387}$ advanced dynamics knowledge to calculate feedback gains ${ }_{388}$ over the control horizon, is used to manage optimal control of ${ }^{389}$ LTV systems (see [62], [63]). The proposed hybrid model has 390 the ability to stabilize LTV systems. It uses the FTRE approach 391 presented in [2], which is motivated by the equivalent SDRE 392 process. The SDRE technique is a systematic and efficient ${ }_{393}$ way to design nonlinear feedback controllers for a wide range 394 of nonlinear systems. More precisely, SDRE is employed 395 for nonlinear dynamics $\dot{z}(t)=f(z, u)$ which can be formu- ${ }^{396}$ lated in the pseudo-linear shape $\dot{z}(t)=A(z, u) z+G(z, u) u$, ${ }^{397}$ for which the solution of ARE is generated at each time 398 instant $t$, as $A(z(t), U(t))$ and $G(z(t), U(t))$ being the chosen 399 dynamics and the input matrices, respectively. The FTRE con- 400 trol is associated with the SDRE approach and includes the 401 factorization

$$
\begin{equation*}
\dot{z}(t)=f(z(t), U(t)), \quad z(0)=z_{0} \tag{27}
\end{equation*}
$$

into the state-dependent style, where $z \in \mathbb{R}^{n}$ represents the 404 state vector, $u \in \mathbb{R}^{m}$ represents the input vector, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is 405 a function, and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m}$. The linear structure provided ${ }_{406}$ by the factorization is as follows:

$$
\begin{align*}
\dot{z}(t) & =A(z(t), U(t)) z(t)+G(z(t), U(t)) U(t) \\
z(0) & =z_{0} . \tag{28}
\end{align*}
$$

Furthermore, in controller design, state-dependent weight- 410 ing matrices provide versatility.

411
The task is to obtain a state-feedback control law in the pat- ${ }_{412}$ tern $U(t)=-K(z(t)) z(t)$, which minimizes the cost function ${ }^{413}$ of infinite-horizon performance [2] 414

$$
\begin{equation*}
J\left(z_{0}, u\right)=\frac{1}{2} \int_{0}^{\infty}\left[z^{\mathrm{T}}(t) R_{1}(z(t)) z(t)+u^{\mathrm{T}}(t) R_{2}(z(t)) U(t)\right] \mathrm{d} t \tag{415}
\end{equation*}
$$

where $R_{1}(z) \in \mathbb{R}^{n \times n}$ is positive semidefinite, $R_{2}(z) \in \mathbb{R}^{m \times m}$ is ${ }_{417}$ positive definite. The state-feedback control law is defined as 418

$$
\begin{align*}
U(t) & =-K(z(t)) z(t) \\
& =-R_{2}^{-1}(z(t)) G^{\mathrm{T}}(z(t), U(t)) X(z(t)) z(t) \tag{30}
\end{align*}
$$

such that $X(z)$ means the solution of the state-dependent ARE ${ }_{421}$
$A^{\mathrm{T}}(z) X(z)+X(z) A(z)-X(z) G(z) R_{2}^{-1}(z) G^{\mathrm{T}}(z) X(z)+R_{1}(z)=\mathbf{0} . \quad 422$
(31) 423

The SDRE approach is heuristic because the control law 424 may not always be optimal and may not have been stabilized. ${ }^{425}$ As proposed in [2], we adapt the SDRE approach to LTV ${ }_{426}$ systems. In the FTRE process, at each moment, we "freeze" ${ }^{427}$ the state and input matrices and deal with them as time- ${ }^{428}$ invariant matrices. The solution $X(t)$ to the frozen-time ARE ${ }_{429}$ can be launched as a solution to
$A^{\mathrm{T}}(t) X(t)+X(t) A(t)-X(t) G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t)+R_{1}(t)=\mathbf{0}$.

The control law is calculated in the same way as the linear quadratic regulator problem

$$
\begin{equation*}
U(t)=-R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t) z(t) \tag{33}
\end{equation*}
$$

In [64] and [65], it has been shown that the FTRE control inherits the stability properties of the SDRE controller.

By setting $D(t)=A(t), B(t)=G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t)$ and $Q(t)=R_{1}(t)$ in (9), it is observable that (32) can be solved via the ZNDTV-NARE model $\{(12),(14),(17)\}$. Considering that the solution $X(t)$ to (32) is identified, the state-feedback control law of (33) can also be found and then (28) is solvable. Thus, (28) is rewritten as

$$
\dot{z}(t)=A(t) z(t)+G(t)\left(-R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t) z(t)\right)
$$

or in the next equivalent form

$$
\begin{equation*}
\dot{z}(t)=\left(A(t)-G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t)\right) z(t) \tag{34}
\end{equation*}
$$

The stability of the SDRE method is demonstrated in Theorem 2, which considers the general infinite-horizon nonlinear regulator problem of minimizing (29) concerning the state x and the control $w$ subject to the nonlinear differential constraint (28). Furthermore, keep in mind that $\mathbb{C}^{k}$ indicates the space of continuous functions with continuous first $k$ derivatives.

Theorem 2: With respect to the state $z$ and the control $U$, consider the generic infinite-horizon nonlinear regulator problem of minimizing (29) under the nonlinear differential constraint (28). Let us assume, that $A(z), G(z), R_{1}(z)$, and $R_{2}(z)$ belong to $\mathbb{C}^{k}$ and that $A(z)$ is both a stabilizable and detectable parameterization of the nonlinear system. The SDRE method then generates a closed-loop solution that is locally asymptotically stable.

Proof: It is important to keep in mind that (34) provides the closed-loop solution, i.e.,

$$
\begin{aligned}
\dot{z} & =\left(A(z)-G(z) R_{2}^{-1}(z) G^{\mathrm{T}}(z) X(z)\right) z \\
& =A_{c}(z) z
\end{aligned}
$$

and the Riccati equation theory guarantees that the closed-loop matrix

$$
A_{c}(z)=A(z)-G(z) R_{2}^{-1}(z) G^{\mathrm{T}}(z) X(z)
$$

is stable at every point $z . X(z)$ and $A_{c}(z)$ are both smooth due to the smoothness assumptions. We expand the matrix $A_{c}(z)$ into the partial Taylor series expansion about zero

$$
\dot{z} \approx A_{c}(z) z+\psi(z) \cdot\|z\|
$$

with $\psi(z)$ of $k$ order and

$$
\lim _{\|z\| \rightarrow 0} \psi(z)=0
$$

The linear term, which involves a constant stable coefficient matrix, prevails the higher-order term in a narrow neighborhood around the origin, resulting in local asymptotic stability.

Setting $D(t)=A^{\mathrm{T}}(t), B(t)=G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t), Q(t)={ }_{478}$ $R_{1}(t)$, (32) yields (9). Based on this, (34) can be rewrittenas 479

$$
\begin{equation*}
\dot{z}(t)=(A(t)-B(t) X(t)) z(t) \tag{35}
\end{equation*}
$$

Thus, the HZND-FTREC model is obtained by combin- ${ }^{481}$ ing (15) and (35) as in the following:

$$
\left[\begin{array}{c}
\mathbf{v}(t)  \tag{36}\\
(A(t)-B(t) X(t)) z(t)
\end{array}\right]=\left[\begin{array}{cc}
M(t) & \mathbf{0} \\
\mathbf{0} & I_{m}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathbf{x}}(t) \\
\dot{z}(t)
\end{array}\right] .
$$

One explicit form of the dynamics (36) is equal to

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}(t)  \tag{37}\\
\dot{z}(t)
\end{array}\right]=\left[\begin{array}{cc}
M(t) & \mathbf{0} \\
\mathbf{0} & I_{m}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
\mathbf{v}(t) \\
(A(t)-B(t) X(t)) z(t)
\end{array}\right]
$$

The proposed HZND-FTREC model is (37), which can effi- 486 ciently be solved with the use of an ode MATLAB solver. ${ }_{487}$
The stability of the HZND-FTREC model (37) is demon- ${ }^{488}$ strated in Theorem 2, which considers the general infinite- 489 horizon nonlinear regulator problem of minimizing (29) with 490 respect to the state x and the control $w$ under the nonlinear 491 differential restriction (28).
Theorem 3: With respect to the state $z$ and the control $U$, 493 consider the generic infinite-horizon nonlinear regulator 494 problem of minimizing (29) under the nonlinear differen- 495 tial constraint (28). Let us assume, that $A(z), G(z), R_{1}(z),{ }_{496}$ and $R_{2}(z)$ belong to $\mathbb{C}^{k}$ and that $A(z)$ is both a stabilizable ${ }^{497}$ and detectable parameterization of the nonlinear system. The ${ }_{498}$ HZND-FTREC method then generates a closed-loop solution 499 that is locally asymptotically stable.

Proof: Because the HZND-FTREC model (37) is composed 501 of the ZNDTV-NARE model $\{(12),(14),(17)\}$ and the SDRE 502 method, it can be deduced from Theorems 1 and 2 that the ${ }_{503}$ HZND-FTREC model (37) generates a locally asymptotically 504 stable closed-loop solution.

## VI. Numerical Examples

This section includes ten examples, four of which are shown 507 to verify the efficacy and accuracy of the ZNDTV-NARE ${ }_{508}$ $\{(12),(14),(17)\}$, and three more are shown to verify the effi- ${ }_{509}$ cacy and accuracy of the ZNDTI-NARE \{(20), (21), (17)\}. 510 The examples applied to LTV and nonlinear systems are 511 intended to validate the efficacy and accuracy of the evolu- 512 tion (37). As a preliminary to the following examples, it is ${ }_{513}$ necessary to identify the parameters and symbols and provide 514 additional details.

1) The time interval for the computation is limited to 516 [ 0,10 ]. That is, $t_{0}=0$ is the initial time and $t_{f}=10$ is ${ }_{517}$ the final time.
2) $\|\cdot\|_{F}$ denotes the Frobenius norm of a matrix.
3) We have set $\lambda=10$ in all numerical examples in this 520 section, with the exception of the numerical example ${ }_{521}$ Section VI-A, where $\lambda=10,100,1000$. ${ }_{522}$
4) The solution of $\{(17),(20),(21)\}$, the solution of ${ }_{523}$ $\{(12),(14),(17)\}$, and the solution of (37) are obtained 524 by employing the ode15s MATLAB solver.


Fig. 2. Performance of ZNDTV-NARE for solving examples Sections VI-A-VI-C and VI-G. (a)-(d) Error $E(t)$ produced by ZNDTV-NARE in examples Sections VI-A-VI-C and VI-G, respectively. (e)-(h) Trajectories of the solution $X(t)$ produced by ZNDTV-NARE in examples Sections VI-A-VI-C and VI-G, respectively.
${ }^{532} \quad A(t)=\left[\begin{array}{cc}\cos (t)+3 & \sin (t)+4 \\ \sin (t)+2 & -\sin (t)-7\end{array}\right] Q(t)=\left[\begin{array}{cc}\sin (t)+7 & \sin (t)+4 \\ \sin (t)+4 & \sin (t)+6 \\ \sin (t)+1 & \sin (t)+6 \\ \sin (t)+6 & \sin (t)+3\end{array}\right]$.
${ }_{533}$ Setting the initial value of $X(t)$ as $X(0)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]^{\mathrm{T}}$, ${ }_{34}$ the results of ZNDTV-NARE are depicted in Fig. 2(a) and (e).

## B. Numerical Example 2

Let $A(t), B(t)$, and $Q(t)$ as
${ }^{537} \quad A(t)=\left[\begin{array}{ccc}\sin (t)+2 & \sin (t)+4 & \cos (t)-2 \\ -\sin (t)+4 & \sin (2 t)+4 & 3 \sin (t)-20 \\ -\cos (2 t)-3 & -\sin (t)-2 & -\sin (2 t)-5\end{array}\right]$
${ }^{538} \quad B(t)=\left[\begin{array}{ccc}3 \sin (t)+9 & -\sin (t)+5 & \cos (3 t)+2 \\ -\sin (t)+5 & \cos (t)+1 / 2 & \cos (t)+6 \\ \cos (3 t)+2 & \cos (t)+6 & \sin (2 t)+3 / 2\end{array}\right]$
${ }^{539} \quad Q(t)=\left[\begin{array}{ccc}2 \sin (t)+10 & \cos (t)+7 & \cos (2 t)+3 / 2 \\ \cos (t)+7 & 2 & -\cos (t)+5 \\ \cos (2 t)+3 / 2 & -\cos (t)+5 & \sin (2 t)+4\end{array}\right]$.
${ }_{540}$ Additionally, we set $D(t)=A^{\mathrm{T}}(t)$, transforming in that way ${ }_{541}$ the NARE into an ARE. By initializing $X(t)$ with the two
values listed as
$X_{1}(0)=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad$ and $\quad X_{2}(0)=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -2\end{array}\right]$
the results of ZNDTV-NARE are depicted in Fig. 2(b) and (f). 544 Note that Fig. 2(f) also includes the Schur method's suggested ${ }_{545}$ solution from [32].

## C. Numerical Example 3

The following input matrices $A(t)$ and $Q(t)$ are considered ${ }^{548}$ in this example:

$$
\begin{aligned}
& A(t)=\left[\begin{array}{cc}
-1-1 / 2 \cos (2 t) & 1 / 2 \sin (2 t) \\
1 / 2 \sin (2 t) & -1+1 / 2 \cos (2 t)
\end{array}\right] \\
& Q(t)=\left[\begin{array}{cc}
\sin (2 t) & \cos (2 t) \\
-\cos (2 t) & \sin (2 t)
\end{array}\right] .
\end{aligned}
$$

Additionally, we set $B(t)=\mathbf{0}$ and $D(t)=A^{\mathrm{T}}(t)$, converting ${ }_{551}$ the NARE to a CLE. By initializing $X(t)$ with $X(0)=\mathbf{0}$, the ${ }_{552}$ results of ZNDTV-NARE are depicted in Fig. 2(c) and (g). ${ }^{553}$ Note that the theoretical solution of this example is

$$
X^{\star}(t)=\left[\begin{array}{cc}
\frac{-\sin (2 t)(-2+\cos (2 t))}{3} & \frac{(1-2 \cos (2 t))(2+\cos (2 t))}{6} \\
\frac{(1+2 \cos (2 t))(2-\cos (2 t))}{6} & \frac{(2+\cos (2 t)) \sin (2 t)}{3}
\end{array}\right] .
$$

## D. Numerical Example 4

556
The following constant matrices $A, B$, and $Q$ of dimensions ${ }^{557}$ $2 \times 2$ are considered in this example:

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-2 & 8
\end{array}\right], B=\left[\begin{array}{ll}
7 & 4 \\
4 & 6
\end{array}\right], Q=\left[\begin{array}{cc}
3 & -4 \\
-4 & 5
\end{array}\right]
$$

559
Moreover, we convert the NARE to an ARE by using $D(t)=560$ $A^{\mathrm{T}}(t)$. Setting

561
$X_{1}(0)=\left[\begin{array}{cc}2 & -2 \\ -2 & 4\end{array}\right], X_{2}(0)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, and $X_{3}(0)=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]{ }^{562}$


Fig. 3. Performance of ZNDTI-NARE for solving examples Section VI-D-VI-F. (a)-(c) Error $E(t)$ generated by ZNDTI-NARE in examples Section VI-D-VI-F, respectively. (d)-(f) Trajectories of the solution $X(t)$ generated by ZNDTI-NARE in examples Section VI-D-VI-F, respectively.

563 564 565
as three initial values of $X(t)$, the results of ZNDTI-NARE are depicted in Fig. 3(a) and (d). Note that Fig. 3(d) also includes the Schur method's suggested solution from [32].

## 566

E. Numerical Example 5

567
In this example the following matrices $D, A$, and $Q$ of ${ }_{568}$ dimensions $4 \times 4,2 \times 2,2 \times 4$, and $4 \times 2$, respectively, are ${ }_{569}$ given as input
$570 \quad D=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], Q=\left[\begin{array}{cc}-1 & 0 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1\end{array}\right]$.
571 Additionally, we convert the NARE to a SE by setting ${ }_{572} B=\mathbf{0}$. Setting the initial value of $X(t)$ as $X(0)=\mathbf{0}$, the results ${ }_{573}$ of ZNDTI-NARE $\{(17),(20),(21)\}$ are depicted in Fig. 3(b) 574 and (e). Note that the theoretical solution in this example is ${ }_{575} X^{\star}(t)=\left[\begin{array}{cccc}0.7 & -1.3 & 0.5 & 0 \\ -0.1 & -0.1 & -0.5 & 1\end{array}\right]^{\mathrm{T}}$.

## ${ }_{576}$ F. Numerical Example 6

577 In this example, the input matrices $D$ and $Q$ are given as

578

$$
D=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], Q=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Additionally, we set $A=B=\mathbf{0}$, so converting the NARE 579 to an MIE. By setting $X(0)=\mathbf{0}$, as the initial value of $X(t)$, 580 the obtained results of ZNDTI-NARE are depicted in Fig. 3(c) 581 and (f). Note that the theoretical solution of this example is 582

$$
X^{\star}(t)=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

## G. Example on Larger Dimensions

The following $n$-dimensional input matrices are used in 585 this example: $D(t)=(4+\sin (t)) I_{n}, B(t)=(7+\sin (t)) I_{n}$, ${ }^{586}$ $Q(t)=(5+\sin (t)) I_{n}$. Furthermore, we use $D(t)=A^{\mathrm{T}}(t)$, thus ${ }_{587}$ converting the NARE to an ARE. Starting from the initial state ${ }_{588}$ of $X(0)=I_{n}$ and for $n=50$, the results of ZNDTV-NARE are ${ }_{589}$ depicted in Fig. 2(b) and (f). Note that Fig. 2(f) also includes 590 the Schur method's suggested solution from [32].

## H. Application to LTV

592
The Mathieu equation [66] is a linear differential equation ${ }^{593}$ with variable (periodic) coefficients and typically occurs in 594 two different ways in solving nonlinear vibration problems. 595 One way is in systems where periodic forcing occurs, and the 596 other is in stability studies of periodic motions in autonomous 597 nonlinear systems. By considering the Mathieu equation 59

$$
\begin{equation*}
\ddot{q}(t)+(\zeta+\theta \cos (\omega t)) q(t)=g U(t) \tag{38}
\end{equation*}
$$

and by defining the state vector $z(t)=\left[\begin{array}{l}q(t) \\ \dot{q}(t)\end{array}\right]$, the dynam- 600 ics (38) can be rewritten in state-dependent coefficient form 601 with 602

$$
A(t)=\left[\begin{array}{cc}
0 & 1  \tag{603}\\
(\zeta+\theta \cos (\omega t)) & 0
\end{array}\right], G(t)=\left[\begin{array}{l}
0 \\
g
\end{array}\right]
$$

The parameter values are $\zeta=1, \theta=1, \omega=1, g=1$, and 604 by letting $R_{1}=I_{2}, R_{2}=0.001$ and $R_{2}=1$, we set the initial 605 value of $X(t)$ as $X(0)=$ ones(2) and apply (37). Furthermore, ${ }_{606}$ $z(t)$ has two sets of initial conditions (ICs), denoted as IC1 607 and IC2. The IC1 corresponds to $z(0)=[3,0]^{\mathrm{T}}$, and IC2 ${ }_{608}$ corresponds to $z(0)=[-5,1]^{\mathrm{T}}$. Note that the goal should ${ }_{609}$ be to drive the states to the equilibrium $[0,0]^{\mathrm{T}}$ and, hence, 610 to stabilize (38). By applying (37) and the FTRE and FPRE 611 controls [2], the results of phase portraits of the closed-loop 612 responses, for two values of IC, are displayed in Fig. 4(b) for ${ }^{613}$ $R_{2}=0.001$, and in Fig. 4(d) for $R_{2}=1$.

## I. Applications to Nonlinear Systems

A nonconservative oscillator with nonlinear damping that 616 has been successfully applied in several fields, such as biomed- 617 ical engineering, power system, control, combustion process, 618 robotics, etc., is the Van der Pol oscillator [67]. As a con- 619 sequence, Van der Pol oscillator control has considerable 620 practical significance. In this application, we consider the ${ }^{621}$ FPRE stabilization of the Van der Pol oscillator

622

$$
\ddot{q}(t)-\mu\left(1-q^{2}(t)\right) \dot{q}(t)+q(t)=g U(t)
$$

(39) 623


Fig. 4. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation and stabilizing the Van der Pol oscillator and a spring-mass system. (a) and (b) Mathieu Equation's closed-loop outputs and associated phase portraits with $R_{2}=0.001$. (c) and (d) Mathieu Equation's closed-loop outputs and associated phase portraits with $R_{2}=1$. (e) and (f) Van der Pol oscillator's closed-loop outputs and associated phase portraits. (g) and (h) Closed-loop outputs and associated phase portraits for the mass joined to a wall through a spring.

639

## J. Application to Specific Scenario

This application considers a mass that is connected to a wall by a spring with variable stiffness $k(t)$. The open-loop system is described by

640

## 648 <br> K. Analysis of Experimental Results

In this section, the presented experimental results for ${ }_{650}$ the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC
are commented on and analyzed. In numerical examples 651 Section VI-A-VI-C, we notice that the error $\|E(t)\|_{F}={ }_{652}$ $\|D(t) X(t)+X(t) A(t)-X(t) B(t) X(t)+Q(t)\|_{F}$, rapidly con- ${ }^{653}$ verges to zero in Fig. 2(a)-(d). That is, ZNDTV-NARE (9) 654 is convergent. Particularly, Fig. 2(a) includes three errors 655 produced from three different design parameter values, i.e., ${ }^{656}$ $\lambda=10,100,1000$. The graphs in this figure demonstrate that 657 the model produces a lower overall error with a faster con- ${ }_{658}$ vergence as the value of the parameter $\lambda$ increases. Fig. 2(b) 659 includes two errors produced from two initial values of $X(t)$ in ${ }_{660}$ Example Section VI-B. The graphs in this figure show that the ${ }_{661}$ initial values of $X(t)$ have no impact on the model's overall 662 error or speed of the convergence. In Fig. 2(e) and (f) tra- ${ }^{663}$ jectories of the solution $X(t)$ produced by ZNDTV-NARE are ${ }_{664}$ presented, wherefrom it is observable that $X(t)$ rapidly con- ${ }^{665}$ verges to the exact solution. Particularly, Fig. 2(e) includes 666 three solutions produced from three different design parame- ${ }_{667}$ ter values, i.e., $\lambda=10,100,1000$. The graphs in this figure ${ }_{668}$ show that as the parameter $\lambda$ increases, the model generates the 669 same solution but with a faster convergence. Fig. 2(f) includes 670 trajectories of two solutions produced from two initial values 671 of $X(t)$ in Example Section VI-B as well as the solution pro- 672 vided by the Schur method originated in [32]. The graphs in ${ }^{673}$ Fig. 2(f) show the influence of the initial values for $X(t)$ on 674 the model's solution. It is clear that the ZND model generates ${ }^{675}$ various solutions $X_{1}(t)$ and $X_{2}(t)$ depending on the initial val- ${ }^{676}$ ues of $X(t)$. Fig. 2(g) and (h) include the theoretical and the 677 Schur's method solution, respectively.

In numerical examples Section VI-D-VI-F, we observe that 679 the error $\|E(t)\|_{F}=\|D X(t)+X(t) A-X(t) B X(t)+Q\|_{F}$, is 680 rapidly convergent to 0 in Fig. 3(a)-(c). That is, ZNDTI- ${ }_{681}$ NARE (18) is solved. Fig. 3(a) includes three errors produced 682 from three initial values in Example Section VI-D. The ${ }_{683}$ solution $X(t)$ produced by ZNDTI-NARE is presented in 684


Fig. 5. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation with $R_{2}=0.001$ and stabilizing a spring-mass system under various settings of ode15s MATLAB solver. (a) and (b) Mathieu Equation's ARE error under default settings of ode15s MATLAB solver. (c) and (d) Mathieu Equation's ARE trajectories under custom settings of ode15s MATLAB solver. (e) and (f) Spring-mass system's ARE error under default settings of ode15s MATLAB solver. (g) and (h) Spring-mass system's ARE trajectories under custom settings of ode15s MATLAB solver.

Fig. 3(d)-(f), where we see that $X(t)$ quickly converges to the solution. The graphs in Fig. 3(a) and (d) illustrate the behavior of solutions $X_{1}(t), X_{2}(t), X_{3}(t)$ generated by the initial values of $X(t)$ in example Section VI-D. Fig. 3(a) shows the influence of the initial values on the error matrix $\|E(t)\|_{F}$ generated by $X_{1}(t), X_{2}(t), X_{3}(t)$. Graphs in Fig. 3(d) show the trajectories of elements in $X_{1}(t), X_{2}(t), X_{3}(t)$. It is clear that the ZND model generates various solutions $X_{1}(t), X_{2}(t), X_{3}(t)$ depending on the initial values. Fig. 3(d) includes three solutions produced for three different initial values of $X(t)$ as well as the solution provided by the Schur method from [32]. Furthermore, Fig. 3(e) and (f) includes graphs of theoretical solutions.

In addition, the following is important to mention about numerical examples Section VI-A-VI-G.

1) The coefficient matrices in Sections VI-B, VI-D, and VI-G converted the NARE to an ARE.
2) The input coefficient matrices in Section VI-C converted the NARE to a CLE.
3) The input coefficient matrices in Section VI-E converted the NARE to an SE.
4) The input coefficient matrices in Section VI-F converted the NARE to an MIE.
In applications Section VI-H-VI-J, the asymptotic stability of the HZND-FTREC (37) is always slightly better than the stability of the FTRE control [2] and significantly better than that of the FPRE control [2]. More precisely, in application to LTV Section VI-H, the Mathieu equation is stabilized for two different ICs of $z(t)$ under two different values in $R_{2}$. The closed-loop responses of $z(t)$ and their phase portraits are displayed in Fig. 4(a) and (c) and (b) and (d), respectively, where we observe that HZND-FTREC of (37) provides faster stabilization than the FTRE and FPRE controls, even for large values of $R_{2}$. In application to nonlinear systems Section VI-I, the Van der Pol oscillator is stabilized for three different initial
values of $X(t)$. The closed-loop responses of $z(t)$ and their ${ }_{719}$ phase portraits are displayed in Fig. 4(e) and (f), where we 720 observe that HZND-FTREC of (37) provides, slightly, more 721 stable asymptotic behavior than the FTRE and FPRE controls. ${ }^{722}$ In application to specific scenario Section VI-J, a mass con- ${ }^{723}$ nected to a wall by a spring with variable stiffness $k(t)$ is ${ }_{724}$ stabilized. In Fig. 4(g) and (h), the closed-loop responses of 725 $z(t)$ and their phase portraits are displayed, where we observe ${ }_{726}$ that HZND-FTREC of (37) provides, slightly, more stable ${ }_{727}$ asymptotic behavior than the FTRE and FPRE controls. ${ }_{728}$

To further validate the performance of the HZND- ${ }_{729}$ FTREC model (37) and demonstrate the distinction between 730 the HZND-FTREC, FTRE, and FPRE controls, the ARE ${ }_{731}$ error $\|A X(t)+X(t) A-X(t) B X(t)+Q\|_{F}$ of the applications ${ }_{732}$ Section VI-H and VI-J is measured under various settings ${ }_{733}$ of ode15s MATLAB solver. It is important to note that all 734 numerical examples and applications in this section have used ${ }_{735}$ the default settings of ode15s MATLAB solver calculating ${ }^{736}$ with double precision (eps $=2.22 \cdot 10^{-16}$ ). Therefore, the ${ }_{737}$ minimum value for most error measurements in this section ${ }_{738}$ is of the order $10^{-5}$. For the custom settings used in the ${ }_{739}$ results of Fig. 5, we set the relative tolerance and the absolute 740 tolerance of ode15s to $10^{-15}$, while the design parameter ${ }_{741}$ was set to $\lambda=10^{4}$. Particularly, Fig. 5(a) and (e) shows ${ }_{742}$ the ARE errors of Mathieu Equation with $R_{2}=0.001$ and ${ }^{743}$ spring-mass system, respectively, under the default settings 744 of ode15s and the design parameter $\lambda=10$. In these fig- ${ }_{745}$ ures, we observe that the FTRE that uses the Schur method's 746 suggested solution has the best accuracy and the FPRE has ${ }_{747}$ the worst accuracy. When using the custom settings, the ARE ${ }_{748}$ errors of Mathieu Equation with $R_{2}=0.001$ and spring-mass 749 system are presented in Fig. 5(c) and (g). In these figures, 750 we note that the HZND-FTREC has the best accuracy, while 751 the performance of FTRE and FPRE is unaffected by the 752
changes in the settings of the ode15s. This conclusion is further supported by a comparison between the ARE trajectories shown in Fig. 5(b) and (f) and those shown in Fig. 5(d) and (h), respectively. While the ARE trajectories generated by FTRE and FPRE are unaffected by the changes in the ode15s settings, we observe in these figures that the ARE trajectories generated by HZND-FTREC converge faster to the ARE trajectories generated by FTRE. We also observe that FPRE generates a different and less accurate ARE solution than FTRE in both applications. The HZND-FTREC generates the same ARE solution as the FTRE, and under the ode15s custom settings, the HZND-FTREC solution is more accurate than FTRE's.

Consequently, we can say that the TV-NARE problem (9), the TI-NARE problem (18), and HZND-FTREC problem (37) can be successfully solved by the ZNDTV-NARE, ZNDTINARE, and HZND-FTREC, respectively, while the HZNDFTREC is a more advanced version of the FTRE and is more effective than both the FTRE and FPRE.

## VII. Conclusion

This article examines the TV-NARE problem in detail. The ZND approach, in conjunction with the definition of a convenient error matrix for addressing the TV-NARE problem, led to the development of the suggested ZNDTV-NARE model. Several particular cases of ZNDTV-NARE design are derived, including the ZNDTI-NARE model, and models for solving Sylvester and Lyapunov equation. Furthermore, a hybrid TV-NARE model, called HZND-FTREC, is introduced to incorporate the FTRE approach to optimal control of the LTV system. Computer simulation further showed that the proposed models successfully solved ten examples, three of which included applications to LTV and nonlinear systems. In that manner, the efficacy of the proposed flows for solving the TV-NARE, TI-NARE, and optimal control of LTV systems has thus been demonstrated. The finding reached is that the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC models are helpful and efficient in solving the TV-NARE, TINARE, and optimal control of LTV systems, respectively. It is worth mentioning that the ZNDTV-NARE model's ability to provide several solutions for various initial values without allowing the user to specify a particular solution as the target is a disadvantage.

Some areas of future research can be pointed out.

1) The ZNDTV-NARE and HZND-FTREC streams can be investigated using a nonlinear activation function. Nonlinear ZNDTV-NARE and HZND-FTREC flows with terminal convergence could be studied in this direction. This approach will be a generalization of finite-time convergent nonlinearly activated dynamical systems for calculating the time-varying matrix pseudoinverse [14], as well as for solving the time-varying SE [42], [43], [51], [58].
2) It is helpful to extend recently proposed finite-time convergent neural flows for solving time-varying linear complex matrix equations [7] or the time-varying

Sylvester matrix equation [55] into more general finite- 808 time convergent ZNDTV-NARE and HZND-FTREC 809 evolutions.
3) The open area of research in machine control that is 811 related to fuzzy logic (see [27], [28], [68]) could be 812 paired with the ZND design. This research will lead to ${ }_{813}$ the creation of novel ZND designs for tracking control 814 of nonlinear systems.

815
4) Because all types of noise have a significant impact ${ }_{816}$ on the accuracy of the proposed ZND approaches, the 817 proposed ZNDTV-NARE, ZNDTI-NARE, and HZND- 818 FTREC models suffer from noise insensitivity. Future 819 research can be directed at expanding derived mod- 820 els into integration-enhanced and noise-tolerant ZND 821 dynamical systems.

822
5) As analyzed in the introduction, heterogeneous ARE ${ }_{823}$ variants are involved in solutions to numerous contin- 824 uous time or discrete time problems. Each of these 825 applications provides the possibility of applying the ${ }_{826}$ proposed models or their discretization.
6) Note that convergence occurs faster for greater values of 828 $\lambda$. For further noteworthy characteristics and variations 829 of the ZND's design parameter $\lambda$ see [15], [69]. ${ }_{830}$

## REFERENCES

[1] X. Dong and G. Hu, "Time-varying formation tracking for linear 832 multiagent systems with multiple leaders," IEEE Trans. Autom. Control, 833 vol. 62, no. 7, pp. 3658-3664, Jul. 2017.

834
[2] A. Prach, O. Tekinalp, and D. S. Bernstein, "A numerical comparison of 835 frozen-time and forward-propagating Riccati equations for stabilization 836 of periodically time-varying systems," in Proc. Amer. Control Conf., 837 2014, pp. 5633-5638.

838
[3] B. Qin et al., "Robust $H_{\infty}$ control of doubly fed wind generator via 839 state-dependent Riccati equation technique," IEEE Trans. Power Syst., 840 vol. 34, no. 3, pp. 2390-2400, May 2019.

841
[4] T. E. Duncan, L. Guo, and B. Pasik-Duncan, "Adaptive continuous-time 842 linear quadratic Gaussian control," IEEE Trans. Autom. Control, vol. 44, 843 no. 9, pp. 1653-1662, Sep. 1999.
[5] A. Kawamoto and T. Katayama, "The dissipation inequality and gen- 845 eralized algebraic Riccati equation for linear quadratic control problem 846 of descriptor system," IFAC Proc. Vol., vol. 29, no. 1, pp. 1548-1553, 847 1996.

848
[6] R.-C. Li and W. Kahan, "A family of anadromic numerical meth- 849 ods for matrix Riccati differential equations," Math. Comput., vol. 81, 850 pp. 233-265, Jan. 2012.
[7] L. Xiao, "A finite-time convergent neural dynamics for online solu- 852 tion of time-varying linear complex matrix equation," Neurocomputing, 853 vol. 167, pp. 254-259, Nov. 2015.
[8] Y Zhang and C Yi, Zhang Neural Networks and Neural Dymanic Dynamic 855 Method. New York, NY, USA: Nova Sci. Publ., Inc., 2011.
[9] L. Xiao, "A nonlinearly-activated neurodynamic model and its finite-time 857 solution to equality-constrained quadratic optimization with nonstation- 858 ary coefficients," Appl. Soft Comput., vol. 40, pp. 252-259, Mar. 2016. 859
[10] B. Liao and Y. Zhang, "Different complex ZFs leading to different 860 complex ZNN models for time-varying complex generalized inverse 861 matrices," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 9, 862 pp. 1621-1631, Sep. 2014.

863
[11] P. S. Stanimirović, S. D. Mourtas, V. N. Katsikis, L. A. Kazakovtsev, and 864 V. N. Krutikov, "Recurrent neural network models based on optimization 865 methods," Mathematics, vol. 10, no. 22, p. 4292, 2022.

866
[12] L. Jin, S. Li, L. Xiao, R. Lu, and B. Liao, "Cooperative motion 867 generation in a distributed network of redundant robot manipulators 868 with noises," IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 10, 869 pp. 1715-1724, Oct. 2018.

870
[13] Y. Zhang, L. Jin, D. Guo, Y. Yin, and Y. Chou, "Taylor-type 1-step-ahead 871 numerical differentiation rule for first-order derivative approximation 872 and ZNN discretization," J. Comput. Appl. Math., vol. 273, pp. 29-40, 873 Jan. 2015.
[14] B. Liao and Y. Zhang, "From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence for time-varying matrix pseudoinversion," Neurocomputing, vol. 133, pp. 512-522, Jun. 2014.
[15] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Karabasević, and D. Stanujkić, "Zeroing neural network with fuzzy parameter for computing pseudoinverse of arbitrary matrix," IEEE Trans. Fuzzy Syst., vol. 30, no. 9, pp. 3426-3435, Sep. 2022.
[16] L. Jin, Y. Zhang, S. Li, and Y. Zhang, "Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators," IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6978-6988, Nov. 2016.
[17] L. Xiao and B. Liao, "A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation," Neurocomputing, vol. 193, pp. 213-218, Jun. 2016.
[18] D. Guo, Z. Nie, and L. Yan, "Novel discrete-time Zhang neural network for time-varying matrix inversion," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2301-2310, Aug. 2017.
19] V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, and Y. Zhang, "Solving complex-valued time-varying linear matrix equations via QR decomposition with applications to robotic motion tracking and on angle-of-arrival localization," IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 3415-3424, Aug. 2022.
[20] T. E. Simos, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, and D. Gerontitis, "A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization," Inf. Sci., vol. 600, pp. 226-238, Jul. 2022.
[21] H. Jerbi et al., "Towards higher-order zeroing neural network dynamics for solving time-varying algebraic Riccati equations," Mathematics, vol. 10, p. 4490, Nov. 2022.
[22] T. E. Simos, V. N. Katsikis, S. D. Mourtas, and P. S. Stanimirović, "Finite-time convergent zeroing neural network for solving timevarying algebraic Riccati equations," J. Franklin Inst., vol. 359, no. 18, pp. 10867-10883, 2022.
[23] T. E. Simos, V. N. Katsikis, S. D. Mourtas, and P. S. Stanimirović, "Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems," Math. Comput. Simul., vol. 202, pp. 164-180, Dec. 2022.
[24] A. Safa, R. Y. Abdolmalaki, and H. C. Nejad, "Precise position tracking control with an improved transient performance for a linear piezoelectric ceramic motor," IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 3008-3018, Apr. 2019.
[25] W. Sun, Y. Wu, and L. Wang, "Trajectory tracking of constrained robotic systems via a hybrid control strategy," Neurocomputing, vol. 330, pp. 188-195, Feb. 2019.
[26] H. Wang, S. Ling, P. X. Liu, and Y.-X. Li, "Control of high-order nonlinear systems under error-to-actuator based event-triggered framework," Int. J. Control, vol. 95, no. 10, pp. 2758-2770, 2022.
[27] M. Chen, H. Wang, and X. Liu, "Adaptive fuzzy practical fixed-time tracking control of nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 29, no. 3, pp. 664-673, Mar. 2021.
[28] H. Wang, W. Bai, X. Zhao, and P. X. Liu, "Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults," IEEE Trans. Cybern., vol. 52, no. 7, pp. 6959-6971, Jul. 2022.
[29] L. T. Aguilar, Y. Orlov, and L. Acho, "Nonlinear $\mathscr{H}_{\infty}$-control of nonsmooth time-varying systems with application to friction mechanical manipulators," Automatica, vol. 39, pp. 1531-1542, Sep. 2003.
[30] A. Ferrante and L. Ntogramatzidis, "The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control," Automatica, vol. 50, pp. 1176-1180, Apr. 2014.
[31] T. Ohtsuka, "A recursive elimination method for finite-horizon optimal control problems of discrete-time rational systems," IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 3081-3086, Nov. 2014.
[32] A. Laub, "A Schur method for solving algebraic Riccati equations," IEEE Trans. Autom. Control, vol. AC-24, no. 6, pp. 913-921, Dec. 1979.
[33] Y. Oshman and I. Bar-Itzhack, "Eigenfactor solution of the matrix Riccati equation-a continuous square root algorithm," IEEE Trans. Autom. Control, vol. AC-30, no. 10, pp. 971-978, Oct. 1985.
[34] P. V. Dooren, "A generalized eigenvalue approach for solving Riccati equations," SIAM J. Sci. Stat. Comput., vol. 2, no. 2, pp. 121-135, 1981.
[35] P. Lancaster and L. Rodman, Algebraic Riccati Equations. New York, NY, USA: Clarendon Press, 2002.
[36] V. Kučera, "A review of the matrix Riccati equation," Kybernetika, vol. 9, no. 1, pp. 42-61, 1973.
[37] R. Buche and H. J. Kushner, "Control of mobile communication systems 950 with time-varying channels via stability methods," IEEE Trans. Autom. 951 Control, vol. 49, no. 11, pp. 1954-1962, Nov. 2004. V. N. Phat and P. Niamsup, "Stability of linear time-varying delay 953 systems and applications to control problems," J. Comput. Appl. Math., 954 vol. 194, pp. 343-356, Oct. 2006.
[39] N. N. Subbotina, "The value functions of singularly perturbed time- 956 optimal control problems in the framework of Lyapunov functions ${ }_{957}$ method," Math. Comput. Model., vol. 45, pp. 1284-1293, Jun. 2007. 958
[40] A. Varga, "Robust pole assignment via Sylvester equation based state 959 feedback parametrization," in Proc. IEEE Int. Symp. Comput.-Aided 960 Control Syst. Des. (CACSD), 2000, pp. 13-18.
[41] X. Le and J. Wang, "Robust pole assignment for synthesizing feedback 962 control systems using recurrent neural networks," IEEE Trans. Neural 963 Netw. Learn. Syst., vol. 25, no. 2, pp. 383-393, Feb. 2014.
[42] S. Li, S. Chen, and B. Liu, "Accelerating a recurrent neural network to 965 finite-time convergence for solving time-varying Sylvester equation by 966 using a sign-bi-power activation function," Neural Process. Lett., vol. 37, 967 no. 2, pp. 189-205, 2013.
[43] Y. Shen, P. Miao, Y. Huang, and Y. Shen, "Finite-time stability and 969 its application for solving time-varying Sylvester equation by recur- 970 rent neural network," Neural Process. Lett., vol. 42, no. 3, pp. 763-784, 971 2015.
[44] H. Huang et al., "Modified Newton integration neural algorithm for 973 dynamic complex-valued matrix pseudoinversion applied to mobile 974 object localization," IEEE Trans. Ind. Informat., vol. 17, no. 4, 975 pp. 2432-2442, Apr. 2021.
[45] A. Noroozi, A. H. Oveis, S. M. Hosseini, and M. A. Sebt, "Improved ${ }_{977}^{976}$ algebraic solution for source localization from TDOA and FDOA mea- 978 surements," IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 352-355, 979 Jun. 2018.
[46] A. G. Dempster and E. Cetin, "Interference localization for satel- 981 lite navigation systems," Proc. IEEE, vol. 104, no. 6, pp. 1318-1326, 982 Jun. 2016.
[47] Y. Zhang, "Towards piecewise-linear primal neural networks for 984 optimization and redundant robotics," in Proc. IEEE Int. Conf. Netw. 985 Sens. Control, Apr. 2006, pp. 374-379.
[48] R. H. Sturges, "Analog matrix inversion (robot kinematics)," IEEE J. 987 Robot. Autom., vol. 4, no. 2, pp. 157-162, Apr. 1988.
[49] K. S. Yeung and F. Kumbi, "Symbolic matrix inversion with applica-98 tion to electronic circuits," IEEE Trans. Circuits Syst., vol. 35, no. 2, 990 pp. 235-238, Feb. 1988.
[50] Y. Zhang and J. Wang, "Recurrent neural networks for nonlinear output 992 regulation," Automatica, vol. 37, pp. 1161-1173, Aug. 2001.
[51] L. Xio, Q. Yi, Q Zio, Y. He, "161-1173, Aug. 2001. L. Xiao, Q. Yi, Q. Zuo, and Y. He, "Improved finite-time zeroing neural 994 networks for time-varying complex Sylvester equation solving," Math. 995 Comput. Simul., vol. 178, pp. 246-258, Dec. 2020.
[52] J. Jin, L. Xiao, M. Lu, and J. Li, "Design and analysis of two FTRNN 997 models with application to time-varying Sylvester equation," IEEE 998 Access, vol. 7, pp. 58945-58950, 2019.
[53] L. Ding, L. Xiao, K. Zhou, Y. Lan, Y. Zhang, and J. Li, "An 1000 improved complex-valued recurrent neural network model for time- 1001 varying complex-valued Sylvester equation," IEEE Access, vol. 7, 1002 pp. 19291-19302, 2019.
[54] S. Li and Y. Li, "Nonlinearly activated neural network for solving time- 1004 varying complex Sylvester equation," IEEE Trans. Cybern., vol. 44, 1005 no. 8, pp. 1397-1407, Aug. 2014.
[55] L. Xiao, "A finite-time recurrent neural network for solving online time- 1007 varying Sylvester matrix equation based on a new evolution formula," 1008 Nonlinear Dyn., vol. 90, pp. 1581-1591, Aug. 2017.
Z. Zhang and L. Zheng, "A complex varying-parameter convergent- 1010 differential neural-network for solving online time-varying com- 1011 plex Sylvester equation," IEEE Trans. Cybern., vol. 49, no. 10, 1012 pp. 3627-3639, Oct. 2019.

1013
[57] C. Yi, Y. Zhang, and D. Guo, "A new type of recurrent neural networks 1014 for real-time solution of Lyapunov equation with time-varying coeffi- 1015 cient matrices," Math. Comput. Simul., vol. 92, pp. 40-52, Jun. 2013. 1016
[58] X. Lv, L. Xiao, Z. Tan, and Z. Yang, "Wsbp function activated Zhang 1017 dynamic with finite-time convergence applied to Lyapunov equation," 1018 Neurocomputing, vol. 314, pp. 310-315, Nov. 2018.
[59] M. Sun and J. Liu, "A novel noise-tolerant Zhang neural network for 1020 time-varying Lyapunov equation," Adv. Differ. Equ., vol. 2020, p. 116, 1021 Mar. 2020.
[60] J. Yan, X. Xiao, H. Li, J. Zhang, J. Yan, and M. Liu, "Noise-tolerant ${ }_{1023}$ zeroing neural network for solving non-stationary Lyapunov equation," 1024 IEEE Access, vol. 7, pp. 41517-41524, 2019.

1026 [61] L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, and L. Jin, "Design

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055 and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator," IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 98-105, Jan. 2018.
[62] G. Tadmor, "Receding horizon revisited: An easy way to robustly stabilize an LTV system," Syst. Control Lett., vol. 18, no. 4, pp. 285-294, 1992.

63] W. H. Kwon and S. Han, Receding Horizon Control (Advanced Textbooks in Control and Signal Processing). London, U.K.: Springer, 2005.
[64] C. P. Mracek and J. R. Cloutier, "Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method," Int. J. Robust Nonlinear Control, vol. 8, nos. 4-5, pp. 401-433, 1998.
[65] E. B. Erdem and A. G. Alleyne, "Design of a class of nonlinear controllers via state dependent Riccati equations," IEEE Trans. Control Syst. Technol., vol. 12, no. 1, pp. 133-137, Jan. 2004.
[66] J. A. Richards, Analysis of Periodically Time-Varying Systems (Communications and Control Engineering), 1st ed. Berlin, Germany: Springer-Verlag, 1983.
[67] B. von de Pol, "Forced oscillations in a circuit with non-linear resistance (receptance with reactive triode)," London Edingburg Dublin Phil. Mag., vol. 3, pp. 65-80, Jan. 1927.
[68] H. Wang, K. Xu, P. X. Liu, and J. Qiao, "Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 10, pp. 4337-4348, Oct. 2021.
[69] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Stanujkić, and D. Karabašević, "Zeroing neural network based on neutrosophic logic for calculating minimal-norm least-squares solutions to timevarying linear systems," Neural Process. Lett., to be published.


Vasilios N. Katsikis received the B.S. degree in 1084 AQ6 mathematics from the National and Kapodistrian 1085 University of Athens, Athens, Greece, and the 1086 M.Sc. degree in applied mathematics and the Ph.D. 1087 degree in mathematics from the National Technical 1088 University of Athens, Athens.
He is currently an Associate Professor of 1090 Mathematics and Informatics and the Director of the 1091 Division of Mathematics-Informatics and Statistics- 1092 Econometrics, Department of Economics, National 1093 and Kapodistrian University of Athens. Throughout 1094 his research career, he has over 130 publications in various peer-reviewed sci- 1095 entific journals. His main research interests include neural networks, matrix 1096 analysis, linear algebra, and intelligent optimization.

1097


Spyridon D. Mourtas received the B.S. degree in 1098 mathematics from the University of Patras, Patras, 1099 Greece, in 2016, and the M.Sc. degree in applied 1100 economics and finance and the Ph.D. degree in 1101 economics from the National and Kapodistrian 1102 University of Athens, Athens, Greece, in 2019 and 1103 2023, respectively.

1104
His main research interests include neural 1105 networks, matrix analysis, and intelligent financial 1106 optimization.

1107


Predrag S. Stanimirović received the Doctoral 1108 degree from the Faculty of Philosophy, University 1109 AQ7 of Niš, Niš, Serbia.

1110
He is currently working as a Full Professor 1111 with the Faculty of Sciences and Mathematics, 1112 Department of Computer Science, University of Niš. 1113 His interest in research encompasses diverse fields 1114 of mathematics, applied mathematics, and computer 1115 science, which span multiple branches of numerical 1116 linear algebra, recurrent neural networks, symbolic 1117 computation, and operations research. Throughout 1118 his research career, he has published over 350 publications in various sci- 1119 entific journals, including six research monographs.

1120
Prof. Stanimirović is an Editor in scientific journals, such as Filomat, 1121 Electronic Research Archive, Journal of Mathematics, and Facta Universitatis, 1122 Series: Mathematics and Informatics and several other journals. 1123

## AUTHOR QUERIES <br> AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

If you have not completed your electronic copyright form (ECF) and payment option please return to the Scholar One "Transfer Center." In the Transfer Center you will click on "Manuscripts with Decisions" link. You will see your article details and under the "Actions" column click "Transfer Copyright". From the ECF it will direct you to the payment portal to select your payment options and then return to ECF for copyright submission.

Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT be accepted after the article is published online/print in its final form. Please check author names and affiliations, funding, as well as the overall article for any errors prior to sending in your author proof corrections.

AQ1: The acronym "ZND" corresponds to both zeroing neural dynamics and Zhang neural dynamics. Please advise.
AQ2: Please confirm or add details for any funding or financial support for the research of this article.
AQ3: Please confirm the volume number for Reference [59].
AQ4: Please confirm if the location and publisher information for References [63] and [66] are correct as set.
AQ5: Current affiliations in the biographies of Theodore E. Simos and Predrag S.
Stanimirović do not match the First Footnote. Please check and correct where needed.
AQ6: Please provide the years attained for all degrees of V. N. Katsikis.
AQ7: Please provide the year and specify the field of study for the Doctoral degree of the author P. S. Stanimirović.

# Solving Time-Varying Nonsymmetric Algebraic Riccati Equations With Zeroing Neural Dynamics 

Theodore E. Simos, Vasilios N. Katsikis ${ }^{\circledR}$, Spyridon D. Mourtas ${ }^{\circledR}$, and Predrag S. Stanimirović© ${ }^{\circledR}$


#### Abstract

The problem of solving algebraic Riccati equations (AREs) and certain linear matrix equations which arise from the ARE frequently occur in applied and pure mathematics, science, and engineering applications. In this article, by considering the nonsymmetric ARE (NARE) as a general form of ARE, the time-varying NARE (TV-NARE) problem is proposed and investigated. As a particular case of TV-NARE, the time8 invariant NARE (TI-NARE) problem is investigated too. Then, by employing the zeroing neural dynamics (ZND) design, a ZND TV-NARE (ZNDTV-NARE) model and a ZND TI-NARE (ZNDTI-NARE) model are proposed and investigated. Also, by combining the ZNDTV-NARE model with the frozen-time Riccati equation (FTRE) approach to optimal control of linear timevarying (LTV) systems based on the state-dependent Riccati equation (SDRE) process, a hybrid ZND FTRE control (HZNDFTREC) model is developed and investigated. The effectiveness of the proposed dynamical systems is proven in ten numerical experiments, three of which include applications to LTV and nonlinear systems.


Index Terms-Continuous-time model, dynamical system, nonlinear system, nonsymmetric algebraic Riccati equations (AREs), zeroing neural dynamics.

## I. Introduction

ALGEBRAIC Riccati Equations (AREs) appear commonly in mathematics, science, and engineering. The ARE class includes both nonlinear and linear matrix equations (LMEs) which are specifically of great interest in optimal control, filtering, and estimation problems. The practice has revealed that solving a Riccati equation is a principal topic in optimal control theory (see [1], [2], [3], [4], [5]). The utilization of ARE equations of various types can commonly be found in solving linear multiagent systems [1], in $\mathrm{H}^{\infty}$ controller design for wind generation systems [3], in the analysis and synthesis of linear quadratic Gaussian (LQG) control problems [4], [5]. In one or another form, ARE play significant roles in optimal control of multivariable and large-scale systems, estimation, scattering theory, and detection procedures. Moreover, closed-form solutions of Riccati Equations are used to solve some problems, such as numerical precision in direct and iterative algorithms and losing controllability. It is worth noting that other related fields of research are the matrix Ricatti differential equations (MRDEs) (see [6]).
The Zhang neural dynamics (ZND) method is used to approach the time-varying nonsymmetric ARE (TVNARE) problem and the time-invariant nonsymmetric ARE (TI-NARE) problem, which is a particular case of TV-NARE, by considering the nonsymmetric ARE (NARE) as a general form of ARE. Because the ZND has already been suggested in the literature as a useful method for solving a wide range of time-variant problems, two models are created by employing the ZND method, namely, the ZND TV-NARE (ZNDTV-NARE) model and the ZND TI-NARE (ZNDTI-NARE) model, which can be solved with exponential convergence performance. Furthermore, the models proposed in [7], [8], [9], [10], and [11] have exponential convergence when the ZND design parameter is adjusted using the ZND method [12], [13], [14], [15] and their speed of convergence can be handled. Compared to traditional numerical algorithms, the ZND method, which is based on recurrent neural networks (RNNs), has several advantages in real-time applications, including high-speed parallel processing, distributed storage, and adaptive self-learning natures. As a result, such an approach is widely regarded as a powerful alternative to online computation and optimization [16], [17], [18], [19].


Fig. 1. Diagrammatic representation of the matrix equations explored in this study.

Several papers, including [20] and [21], discuss the ability of such models to handle noise.
A comprehensive overview of ARE-type matrix equations and solutions to some special TV-NARE equations were provided in [21], [22], and [23]. The time-varying ARE problem was approached in [21] through a noise-tolerant ZND model, by a fixed-time ZND model in [22], and by an eigendecomposition-based ZND model in [23]. The symmetric solutions they always offer to the time-varying ARE problem are what these papers have in common. It is crucial to note that AREs with symmetric solutions have square coefficient matrices with certain properties, whereas NAREs are a generic form of AREs whose coefficient matrices are not required to be square with particular properties and whose solutions are not required to be symmetric. Since this study focuses on solving the general TV-NARE problem rather than only the problem of time-varying ARE, it differs significantly from the aforementioned papers.
The tracking control has become one of the most important schemes in past studies [24], [25], [26], [27], [28]. These studies include a position-tracking control strategy using output feedback and an adaptive sliding-mode approach in [24], a hybrid coordinated control method using a backstepping scheme and Hamilton control in [25], a control method using an error-to-actuator-based event-triggered framework [26], and two controllers that combine a backstepping scheme, fuzzy logic system, and finite-time Lyapunov stability theory in [27] and [28]. It is well known that the state-dependent Riccati equation (SDRE) method [3] can be used as a basis for the frozen-time Riccati equation (FTRE) approach to optimal control of linear time-varying (LTV) systems. In this article, by combining the ZNDTV-NARE model and the FTRE, a Hybrid ZND FTRE Control (HZND-FTREC) model is developed and investigated. It is worth noting that the advantages of the HZND-FTREC and ZNDTV-NARE models are the same.
The following summarizes the key contributions of our research in this article.

1) The ZND systems dynamics for solving TV-NARE and TI-NARE problems are proposed. According to our best knowledge, ZND approach for solving NARE has not been used so far.
2) An additional explicit dynamical system is proposed for solving TV-NARE besides the standard ZND.
3) Applying the proposed explicit dynamical system in particular cases, it is possible to generate corresponding
neural dynamics for solving the Sylvester, Lyapunov, 110 and LMEs.

111
4) Simulation examples are run to validate the proposed ${ }_{112}$ model's applicability and effectiveness.

113
5) Besides the numerical simulations, we present two appli- 114 cations in optimal control of LTV systems and an 115 application in solving nonlinear systems.

116
The following structure guides the overall organization ${ }_{117}$ of sections in this article. Section II contains preliminary ${ }_{118}$ information about the ARE and certain LMEs which could 119 be arising from the NARE, including the Sylvester and ${ }_{120}$ Lyapunov equations. Section III describes the TV-NARE ${ }_{121}$ problem and then defines the corresponding ZNDTV-NARE ${ }_{122}$ model. Section IV comprises prominent particular cases of the ${ }^{123}$ ZNDTV-NARE design, including the ZNDTI-NARE model. ${ }^{124}$ Section V introduces a hybrid TV-NARE model, called ${ }^{125}$ HZND-FTREC, which incorporates the FTRE approach to ${ }_{126}$ optimal control of the LTV system. Section VI contains ten ${ }^{127}$ different examples with different-dimensional input matrices, ${ }_{128}$ three of these include LTV and nonlinear system applications. ${ }^{129}$ The simulation tests validate the efficacy of the suggested ${ }_{130}$ models. Finally, the concluding remarks are presented in ${ }_{131}$ Section VII.

## II. Matrix Equations of ARE Type

This section will provide a comprehensive overview of the ${ }_{134}$ matrix equations discussed in this article. These equations ${ }_{135}$ are in the form of the pure ARE and certain LMEs derived ${ }^{136}$ from the ARE class. A diagrammatic representation of these ${ }_{137}$ equations is presented in Fig. 1.

## A. Algebraic Riccati Equations

In this section, we introduce the definitions of all the AREs 140 treated in this research.

1) Nonsymmetric Algebraic Riccati Equation: An NARE ${ }_{142}$ is a quadratic matrix equation of the form

$$
\begin{equation*}
D X+X A-X B X+Q=\mathbf{0} \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times n}$ and $Q \in \mathbb{R}^{n \times m}$ are ${ }_{145}$ the block coefficients, $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be ${ }_{146}$ obtained and $\mathbf{0}$ represents a zero $n \times m$ matrix. Note that the ${ }_{147}$ term "nonsymmetric" is improperly used to denote that (1) is 148 in its general form without assumption on the symmetry of 149 the matrix coefficients.

Or
2) Continuous-Time Algebraic Riccati Equation: The continuous-time ARE (CARE)

$$
\begin{equation*}
A^{\mathrm{T}} X+X A-X B X+Q=\mathbf{0} \tag{2}
\end{equation*}
$$

in which the superscript ()$^{\mathrm{T}}$ denotes the transpose operator and all the coefficient matrices belong to $\mathbb{R}^{n \times n}$, is a quadratic matrix equation and plays a central role in the LQR/LQG control, $H_{2}$ and $H^{\infty}$ control, Kalman filtering, and spectral or co-prime factorizations (see [29], [30], [31], [32], [33], [34]). The phrase "continuous-time" in the notation "CARE" is taken from control theory problems in continuous-time, wherefrom (2) emerges. Note that CARE is an NARE where the block coefficients are square (i.e., $m=n$ ) and $D=A^{\mathrm{T}}$, $B=B^{\mathrm{T}}, Q=Q^{\mathrm{T}}$ (see [35]). Moreover, $B, Q$ are symmetric and non-negative definite matrices (i.e., $B=B^{\mathrm{T}} \geq 0$ and $Q=Q^{\mathrm{T}} \geq 0$ ). Solutions $X \in \mathbb{R}^{n \times n}$ of the CARE (2) can be symmetric or nonsymmetric, with definite or indefinite sign and the solutions set can be either infinite or finite (see [36]).

## B. Linear Matrix Equations of ARE Type

In this section, we restate the definitions of all the LMEs arising from the ARE.

1) Continuous-Time Lyapunov Equation: The continuoustime Lyapunov equation (CLE) is a matrix equation given as

$$
\begin{equation*}
A^{\mathrm{T}} X+X A+Q=\mathbf{0} \tag{3}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times n}$ are the matrix coefficients and $X \in \mathbb{R}^{n \times n}$ is the unknown matrix. Lyapunov methods could be applied successfully in numerous scientific and engineering fields, such as in the analysis of various kinds of nonlinear and linear control systems, in control theory, optimization, signal processing, large space flexible structures, and communications (see [37], [38], [39]). Note that (3) is an appearance of NARE where the block coefficients are square and satisfy $D=A^{\mathrm{T}}, B=\mathbf{0}$.
2) Sylvester Equation: The Sylvester equation (SE) is an LME of the form

$$
\begin{equation*}
D X+X A+Q=\mathbf{0} \tag{4}
\end{equation*}
$$

where $D \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m \times m}, Q \in \mathbb{R}^{n \times m}$ are the block coefficients and $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be generated. Equation (4) is an NARE where the block coefficient $B$ satisfies $B=\mathbf{0}$. SE is closely associated with the analysis and synthesis of dynamic systems, such as the design of feedback control systems through pole assignment (see [40], [41]).

## C. Linear Matrix Equation

The LME is of the general form

$$
\begin{equation*}
D X+Q=\mathbf{0} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
X A+Q=\mathbf{0} \tag{6}
\end{equation*}
$$

where $D \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m \times m}, Q \in \mathbb{R}^{n \times m}$ are the block coefficients and $X \in \mathbb{R}^{n \times m}$ is the unknown matrix to be calculated. Note that (5) is an NARE where the block coefficients
satisfy $A=\mathbf{0}$ and $B=\mathbf{0}$. Also, (6) is an NARE where $D=\mathbf{0}{ }_{200}$ and $B=\mathbf{0}$. LMEs frequently appear in science and engineer- 201 ing fields, such as robotic motion tracking and angle-of-arrival 202 localization [42], [43], [44], [45], [46].

## D. Matrix Inversion Equation

The matrix inversion (MI) equation is the LME of the form ${ }_{205}$

$$
\begin{equation*}
D X-I_{n}=\mathbf{0} \tag{7}
\end{equation*}
$$

in which $D \in \mathbb{R}^{n \times n}$ is the block coefficient, $I_{n}$ denotes the ${ }^{207}$ $n \times n$ identity matrix and $X \in \mathbb{R}^{n \times n}$ is unknown approxi- ${ }^{208}$ mation of the inverse $D^{-1}$ of $D$ to be obtained. Notice also ${ }_{209}$ that (7) is an NARE where the block coefficients are square ${ }_{210}$ and $A=\mathbf{0}, B=\mathbf{0}$ and $Q=-I_{n}$. The MI problem is commonly ${ }_{211}$ involved in numerous problems of science and engineering, for ${ }_{212}$ example, as former steps in optimization, signal processing, ${ }^{213}$ electromagnetic systems, and robot inverse kinematics [47], 214 [48], [49].

## III. Solving TV-NARE via ZND Method

In this section, both the TI NARE case and the TV NARE 217 case are approached by the ZND method. Note that, based 218 on the analysis provided in Section II, we can observe that 219 it is possible to extract all the remaining equations presented ${ }_{220}$ therein from the NARE general form (1). Since 2001, when ${ }_{221}$ Zhang and Wang [50] proposed the ZND evolution, this ${ }^{222}$ method has been studied and established as a crucial class ${ }^{223}$ of RNNs. Furthermore, the ZND evolution has been ana- ${ }^{224}$ lyzed theoretically and substantiated comparatively for solving ${ }^{225}$ time-varying problems accurately and efficiently. Following 226 the ZND design formula (see [7], [8], [9], [10], [11], [12], ${ }^{227}$ [13], [14], [15]) under the linear activation, an appropriately 228 defined error matrix $E(t)$ can dynamically adjusted as a result ${ }^{229}$ of the evolution

$$
\begin{equation*}
\dot{E}(t)=-\lambda E(t) \tag{8}
\end{equation*}
$$

at which $\left(\dot{)}\right.$ represents the first derivative operator as a function ${ }^{232}$ of time $t$ and $\lambda>0$ represents the ZND design parameter. In ${ }^{233}$ addition, the gain parameter $\lambda$ determines the speed of con- ${ }^{234}$ vergence. It is known that the exponential convergence rate of ${ }_{235}$ the ZND dynamics is equal to $\lambda$ [15]. The larger the value ${ }^{236}$ of $\lambda$, the higher the convergence speed, and, thus, $\lambda$ should be ${ }^{237}$ set as large as the hardware permits. According to the ZND ${ }^{238}$ design formula, $E(t)$ is pushed to converge exponentially to ${ }^{239}$ the null matrix.

## A. TV-NARE Problem Formulation via ZND Method

Consider the subsequent general type of a TV-NARE

$$
\begin{equation*}
D(t) X(t)+X(t) A(t)-X(t) B(t) X(t)+Q(t)=\mathbf{0} \tag{9}
\end{equation*}
$$

where $A(t) \in \mathbb{R}^{m \times m}, B(t) \in \mathbb{R}^{m \times n}, D(t) \in \mathbb{R}^{n \times n}, Q(t) \in \mathbb{R}^{n \times m},{ }^{244}$ $X(t) \in \mathbb{R}^{n \times m}$, and $\mathbf{0} \in \mathbb{R}^{n \times m}$. Moreover, $X(t)$ is an unknown ${ }^{245}$ matrix of interest.

It is important to mention that the results in [21], [22], 247 and [23] refer to the particular case $D(t)=A^{\mathrm{T}}(t)$ in (9). Our ${ }^{248}$ goal is to solve the general TV-NARE problem.
${ }_{253} \dot{E}(t)=\dot{D}(t) X(t)+D(t) \dot{X}(t)+\dot{X}(t) A(t)+X(t) \dot{A}(t)$
$254-\dot{X}(t) B(t) X(t)-X(t) \dot{B}(t) X(t)-X(t) B(t) \dot{X}(t)+\dot{Q}(t)$.

260 Or

$$
\dot{\mathbf{x}}(t)=\operatorname{vec}(\dot{X}(t))
$$

280 the combination of (13) and (11) results in implicit dynamic 281 behavior shown below

282

$$
\begin{equation*}
\mathbf{v}(t)=M(t) \dot{\mathbf{x}}(t) \tag{15}
\end{equation*}
$$

${ }_{283}$ in which $\mathbf{v}(t)$ is defined by (12). The consistency of the linear 284

285

$$
M(t) M(t)^{\dagger} \mathbf{v}(t)=\mathbf{v}(t)
$$

286

287

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=M(t)^{\dagger} \mathbf{v}(t)+\left(I-M^{\dagger}(t) M(t)\right) \mathbf{y} \tag{16}
\end{equation*}
$$

288 such that $\mathbf{y}$ is a vector of proper size. The best approximate 289 solution to the dynamics (15) is given by

290

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=M(t)^{\dagger} \mathbf{v}(t) \tag{17}
\end{equation*}
$$

where ()$^{\dagger}$ denotes the pseudoinverse operator. If (15) is solv- 291 able, (17) is its solution, while in the opposite case, (17) gives 292 the best approximate solution to (15). Note that \{(12), (14), ${ }^{293}$ (17) \} consist of the suggested ZNDTV-NARE model which 294 could be efficiently solved with the use of an ode MATLAB ${ }^{295}$ solver.

According to the previous discussion, we may conclude ${ }^{297}$ that (11) cannot be implemented in MATLAB, whereas (17) 298 can. We certainly have the cost of calculating the pseudoin- ${ }^{299}$ verse of $M(t)$. Theorem 1 proves the exponential convergence 300 of the ZNDTV-NARE $\{(12),(14),(17)\}$ to the theoretical 301 solution (9).
Theorem 1: Let $A(t) \in \mathbb{R}^{m \times m}, B(t) \in \mathbb{R}^{m \times n}, D(t) \in{ }^{303}$ $\mathbb{R}^{n \times n}, Q(t) \in \mathbb{R}^{n \times m}$ be differentiable. The ZNDTV-NARE ${ }_{304}$ model $\{(12),(14),(17)\}$ has exponential convergence to the 305 theoretical solution of TV-NARE (9), for any initial value 306 $X(0)$.

Proof: The error matrix equation $E(t)$ is determined as 308 in (10), inline with the ZND architecture, to achieve the solu- 309 tion $X(t)$ of TV-NARE (9). From [50, Theorem], the solution 310 of (11) converges to the exact solution $X^{*}(t)$ of (9) as $t \rightarrow \infty$. ${ }_{311}$ In addition, from the derivation process, the conclusion is ${ }_{312}$ that (15) is a vectorized form of (11). As a conclusion, $\mathbf{x}(t){ }^{313}$ defined by the dynamics (15) converges to $\mathbf{x}^{*}(t)=\operatorname{vec}\left(X^{*}(t)\right) \quad 314$ as $t \rightarrow \infty$. Since the convergence $\mathbf{x}(t) \rightarrow \mathbf{x}^{*}(t)=\operatorname{vec}\left(X^{*}(t)\right){ }_{315}$ is valid for arbitrary $\dot{\mathbf{x}}(t)$ in (16), it is also valid for $\dot{\mathbf{x}}(t)$ in (17). ${ }_{316}$ Thus, the proof is finished.

## IV. Particular Cases of ZNDTV-NARE Design

The applicability of the defined model is illustrated by 319 several covered cases.

## A. TI-NARE Problem Formulation via ZND Method

321
Consider the general type of a TI-NARE 322

$$
\begin{equation*}
D X(t)+X(t) A-X(t) B X(t)+Q=\mathbf{0} \tag{18}
\end{equation*}
$$

wherein $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times m}, X(t) \in{ }^{324}$ $\mathbb{R}^{n \times m}$, and $\mathbf{0} \in \mathbb{R}^{n \times m}$. In addition, $X(t) \in \mathbb{R}^{n \times m}$ is an unknown ${ }^{325}$ matrix.

By setting the error function

$$
E(t)=D X(t)+X(t) A-X(t) B X(t)+Q
$$

which fulfills

$$
\dot{E}(t)=D \dot{X}(t)+\dot{X}(t) A-\dot{X}(t) B X(t)-X(t) B \dot{X}(t)
$$

the general evolution (8) initiates

$$
-\lambda E(t)=D \dot{X}(t)+\dot{X}(t) A-\dot{X}(t) B X(t)-X(t) B \dot{X}(t)
$$

An application of the vectorization rules to (19) gives ${ }^{333}$

$$
\begin{aligned}
& \operatorname{vec}(-\lambda E(t)) \\
& =\left(I_{m} \otimes D+A^{\mathrm{T}} \otimes I_{n}-(B X(t))^{\mathrm{T}} \otimes I_{n}-I_{m} \otimes X(t) B\right) \operatorname{vec}(\dot{X}(t)) .
\end{aligned}
$$

Furthermore, by setting
335

$$
\begin{equation*}
\mathbf{v}(t)=-\lambda \operatorname{vec}(E(t)), \quad \dot{\mathbf{x}}(t)=\operatorname{vec}(\dot{X}(t)) \tag{20}
\end{equation*}
$$

337 and
where
where
$M(t)=I_{m} \otimes D+A^{\mathrm{T}} \otimes I_{n}-(B X(t))^{\mathrm{T}} \otimes I_{n}-I_{m} \otimes X(t) B$
one obtains the system of linear equations of the form (15). One of the solutions of the implicit system (15) is given by the explicit dynamics (17). Note that $\{(17),(20),(21)\}$ represents the proposed ZNDTI-NARE model which can efficiently be implemented with the use of an ode MATLAB solver.

## B. ZNDTV-NARE Design for Solving Particular Equations

The choice of $B(t) \equiv \mathbf{0}$ in NARE makes the ZNDTV-NARE design suitable for solving the TV SE. That is, the TV SE is defined using the error matrix

$$
E(t)=D(t) X(t)+X(t) A(t)+Q(t)
$$

where $A(t) \in \mathbb{R}^{m \times m}, D(t) \in \mathbb{R}^{n \times n}, Q(t) \in \mathbb{R}^{n \times m}, X(t) \in \mathbb{R}^{n \times m}$. Then, the ZNDTV-NARE design becomes the ZND for solving the TV SE

$$
\begin{align*}
& -\lambda E(t)-\dot{D}(t) X(t)-X(t) \dot{A}(t)-\dot{Q}(t) \\
& \quad=D(t) \dot{X}(t)+\dot{X}(t) A(t) \tag{22}
\end{align*}
$$

In [51], [52], [53], and [54], various finite-time convergent ZND models of type (22) are used to solve the SE and are centered on appropriate nonlinear activation.

Finite-time convergent RNN models based on improving the standard ZND evolution are considered in [55] and [56].

The proposed explicit dynamical system $\{(12),(14),(17)\}$ can be applied in solving the TV SE in the particular case

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\operatorname{vec}(\dot{X}(t))=\left(I_{m} \otimes D(t)+A(t)^{\mathrm{T}} \otimes I_{n}\right)^{\dagger} \mathbf{v}(t) \tag{23}
\end{equation*}
$$

$$
\mathbf{v}(t)=\operatorname{vec}(-\lambda E(t)-\dot{D}(t) X(t)-X(t) \dot{A}(t)-\dot{Q}(t))
$$

The choice of $B(t) \equiv \mathbf{0}, D(t) \equiv A(t)^{\mathrm{T}}$ in NARE makes the ZNDTV-NARE design suitable for solving the Lyapunov equation.

ZND models for solving the Lyapunov equation based on appropriate nonlinear activation are considered in [57], [58], [59], and [60]. The finite-time convergent RNN model based on improving the standard ZND evolution was considered in [61].
The following particular case of the explicit dynamical system $\{(12),(14),(17)\}$ can be applied in solving the TV Lyapunov equation:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\left(I_{m} \otimes(A(t))^{\mathrm{T}}+(A(t))^{\mathrm{T}} \otimes I_{n}\right)^{\dagger} \mathbf{v}(t) \tag{24}
\end{equation*}
$$

$$
\mathbf{v}(t)=\operatorname{vec}\left(-\lambda E(t)-\dot{A}^{\mathrm{T}}(t) X(t)-X(t) \dot{A}(t)-\dot{Q}(t)\right)
$$

It is essential to mention that the evolution (23) [resp., (24)] has not been used so far in solving the Sylvester (resp., Lyapunov) equation. Finally, the LME (5) can be solved using the dynamics

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\left(I_{m} \otimes D(t)\right)^{\dagger} \mathbf{v}(t) \tag{25}
\end{equation*}
$$

The dual LME (6) can be solved using the dynamics

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\left((A(t))^{\mathrm{T}} \otimes I_{n}\right)^{\dagger} \mathbf{v}(t) \tag{26}
\end{equation*}
$$

## V. Hybrid TV-NARE Model in FTRE Control 386

The backward-in-time Riccati equation, which uses ${ }^{387}$ advanced dynamics knowledge to calculate feedback gains ${ }_{388}$ over the control horizon, is used to manage optimal control of ${ }^{389}$ LTV systems (see [62], [63]). The proposed hybrid model has 390 the ability to stabilize LTV systems. It uses the FTRE approach 391 presented in [2], which is motivated by the equivalent SDRE 392 process. The SDRE technique is a systematic and efficient ${ }_{393}$ way to design nonlinear feedback controllers for a wide range 394 of nonlinear systems. More precisely, SDRE is employed 395 for nonlinear dynamics $\dot{z}(t)=f(z, u)$ which can be formu- ${ }^{396}$ lated in the pseudo-linear shape $\dot{z}(t)=A(z, u) z+G(z, u) u$, ${ }^{397}$ for which the solution of ARE is generated at each time 398 instant $t$, as $A(z(t), U(t))$ and $G(z(t), U(t))$ being the chosen 399 dynamics and the input matrices, respectively. The FTRE con- 400 trol is associated with the SDRE approach and includes the 401 factorization

$$
\begin{equation*}
\dot{z}(t)=f(z(t), U(t)), \quad z(0)=z_{0} \tag{27}
\end{equation*}
$$

into the state-dependent style, where $z \in \mathbb{R}^{n}$ represents the 404 state vector, $u \in \mathbb{R}^{m}$ represents the input vector, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is 405 a function, and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m}$. The linear structure provided ${ }_{406}$ by the factorization is as follows:

$$
\begin{align*}
\dot{z}(t) & =A(z(t), U(t)) z(t)+G(z(t), U(t)) U(t) \\
z(0) & =z_{0} . \tag{28}
\end{align*}
$$

Furthermore, in controller design, state-dependent weight- 410 ing matrices provide versatility.

411
The task is to obtain a state-feedback control law in the pat- ${ }_{412}$ tern $U(t)=-K(z(t)) z(t)$, which minimizes the cost function ${ }^{413}$ of infinite-horizon performance [2] 414

$$
\begin{equation*}
J\left(z_{0}, u\right)=\frac{1}{2} \int_{0}^{\infty}\left[z^{\mathrm{T}}(t) R_{1}(z(t)) z(t)+u^{\mathrm{T}}(t) R_{2}(z(t)) U(t)\right] \mathrm{d} t \tag{415}
\end{equation*}
$$

where $R_{1}(z) \in \mathbb{R}^{n \times n}$ is positive semidefinite, $R_{2}(z) \in \mathbb{R}^{m \times m}$ is ${ }_{417}$ positive definite. The state-feedback control law is defined as 418

$$
\begin{align*}
U(t) & =-K(z(t)) z(t) \\
& =-R_{2}^{-1}(z(t)) G^{\mathrm{T}}(z(t), U(t)) X(z(t)) z(t) \tag{30}
\end{align*}
$$

such that $X(z)$ means the solution of the state-dependent ARE ${ }_{421}$
$A^{\mathrm{T}}(z) X(z)+X(z) A(z)-X(z) G(z) R_{2}^{-1}(z) G^{\mathrm{T}}(z) X(z)+R_{1}(z)=\mathbf{0} . \quad 422$
(31) 423

The SDRE approach is heuristic because the control law 424 may not always be optimal and may not have been stabilized. ${ }^{425}$ As proposed in [2], we adapt the SDRE approach to LTV ${ }_{426}$ systems. In the FTRE process, at each moment, we "freeze" ${ }^{427}$ the state and input matrices and deal with them as time- ${ }^{428}$ invariant matrices. The solution $X(t)$ to the frozen-time ARE ${ }_{429}$ can be launched as a solution to
$A^{\mathrm{T}}(t) X(t)+X(t) A(t)-X(t) G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t)+R_{1}(t)=\mathbf{0}$.

The control law is calculated in the same way as the linear quadratic regulator problem

$$
\begin{equation*}
U(t)=-R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t) z(t) \tag{33}
\end{equation*}
$$

In [64] and [65], it has been shown that the FTRE control inherits the stability properties of the SDRE controller.
By setting $D(t)=A(t), B(t)=G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t)$ and $Q(t)=R_{1}(t)$ in (9), it is observable that (32) can be solved via the ZNDTV-NARE model $\{(12),(14),(17)\}$. Considering that the solution $X(t)$ to (32) is identified, the state-feedback control law of (33) can also be found and then (28) is solvable. Thus, (28) is rewritten as

$$
\dot{z}(t)=A(t) z(t)+G(t)\left(-R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t) z(t)\right)
$$

or in the next equivalent form

$$
\begin{equation*}
\dot{z}(t)=\left(A(t)-G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t) X(t)\right) z(t) \tag{34}
\end{equation*}
$$

The stability of the SDRE method is demonstrated in Theorem 2, which considers the general infinite-horizon nonlinear regulator problem of minimizing (29) concerning the state x and the control $w$ subject to the nonlinear differential constraint (28). Furthermore, keep in mind that $\mathbb{C}^{k}$ indicates the space of continuous functions with continuous first $k$ derivatives.

Theorem 2: With respect to the state $z$ and the control $U$, consider the generic infinite-horizon nonlinear regulator problem of minimizing (29) under the nonlinear differential constraint (28). Let us assume, that $A(z), G(z), R_{1}(z)$, and $R_{2}(z)$ belong to $\mathbb{C}^{k}$ and that $A(z)$ is both a stabilizable and detectable parameterization of the nonlinear system. The SDRE method then generates a closed-loop solution that is locally asymptotically stable.

Proof: It is important to keep in mind that (34) provides the closed-loop solution, i.e.,

$$
\begin{aligned}
\dot{z} & =\left(A(z)-G(z) R_{2}^{-1}(z) G^{\mathrm{T}}(z) X(z)\right) z \\
& =A_{c}(z) z
\end{aligned}
$$

and the Riccati equation theory guarantees that the closed-loop matrix

$$
A_{c}(z)=A(z)-G(z) R_{2}^{-1}(z) G^{\mathrm{T}}(z) X(z)
$$

is stable at every point $z . X(z)$ and $A_{c}(z)$ are both smooth due to the smoothness assumptions. We expand the matrix $A_{c}(z)$ into the partial Taylor series expansion about zero

$$
\dot{z} \approx A_{c}(z) z+\psi(z) \cdot\|z\|
$$

with $\psi(z)$ of $k$ order and

$$
\lim _{\|z\| \rightarrow 0} \psi(z)=0
$$

The linear term, which involves a constant stable coefficient matrix, prevails the higher-order term in a narrow neighborhood around the origin, resulting in local asymptotic stability.

Setting $D(t)=A^{\mathrm{T}}(t), B(t)=G(t) R_{2}^{-1}(t) G^{\mathrm{T}}(t), Q(t)={ }_{478}$ $R_{1}(t)$, (32) yields (9). Based on this, (34) can be rewrittenas 479

$$
\begin{equation*}
\dot{z}(t)=(A(t)-B(t) X(t)) z(t) \tag{35}
\end{equation*}
$$

Thus, the HZND-FTREC model is obtained by combin- ${ }^{481}$ ing (15) and (35) as in the following:

$$
\left[\begin{array}{c}
\mathbf{v}(t)  \tag{36}\\
(A(t)-B(t) X(t)) z(t)
\end{array}\right]=\left[\begin{array}{cc}
M(t) & \mathbf{0} \\
\mathbf{0} & I_{m}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathbf{x}}(t) \\
\dot{z}(t)
\end{array}\right] .
$$

One explicit form of the dynamics (36) is equal to

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}(t)  \tag{37}\\
\dot{z}(t)
\end{array}\right]=\left[\begin{array}{cc}
M(t) & \mathbf{0} \\
\mathbf{0} & I_{m}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
\mathbf{v}(t) \\
(A(t)-B(t) X(t)) z(t)
\end{array}\right]
$$

The proposed HZND-FTREC model is (37), which can effi- 486 ciently be solved with the use of an ode MATLAB solver. ${ }_{487}$
The stability of the HZND-FTREC model (37) is demon- ${ }^{488}$ strated in Theorem 2, which considers the general infinite- 489 horizon nonlinear regulator problem of minimizing (29) with 490 respect to the state x and the control $w$ under the nonlinear ${ }_{49}$ differential restriction (28).
Theorem 3: With respect to the state $z$ and the control $U$, 493 consider the generic infinite-horizon nonlinear regulator 494 problem of minimizing (29) under the nonlinear differen- 495 tial constraint (28). Let us assume, that $A(z), G(z), R_{1}(z),{ }_{496}$ and $R_{2}(z)$ belong to $\mathbb{C}^{k}$ and that $A(z)$ is both a stabilizable ${ }^{497}$ and detectable parameterization of the nonlinear system. The ${ }_{498}$ HZND-FTREC method then generates a closed-loop solution 499 that is locally asymptotically stable.

Proof: Because the HZND-FTREC model (37) is composed 501 of the ZNDTV-NARE model $\{(12),(14),(17)\}$ and the SDRE 502 method, it can be deduced from Theorems 1 and 2 that the ${ }_{503}$ HZND-FTREC model (37) generates a locally asymptotically 504 stable closed-loop solution.

## VI. Numerical Examples

This section includes ten examples, four of which are shown 507 to verify the efficacy and accuracy of the ZNDTV-NARE ${ }_{508}$ $\{(12),(14),(17)\}$, and three more are shown to verify the effi- ${ }_{509}$ cacy and accuracy of the ZNDTI-NARE \{(20), (21), (17)\}. 510 The examples applied to LTV and nonlinear systems are 511 intended to validate the efficacy and accuracy of the evolu- 512 tion (37). As a preliminary to the following examples, it is ${ }_{513}$ necessary to identify the parameters and symbols and provide 514 additional details.

1) The time interval for the computation is limited to 516 [ 0,10 ]. That is, $t_{0}=0$ is the initial time and $t_{f}=10$ is ${ }_{517}$ the final time.
2) $\|\cdot\|_{F}$ denotes the Frobenius norm of a matrix.
3) We have set $\lambda=10$ in all numerical examples in this 520 section, with the exception of the numerical example ${ }_{521}$ Section VI-A, where $\lambda=10,100,1000$. ${ }_{522}$
4) The solution of $\{(17),(20),(21)\}$, the solution of ${ }_{523}$ $\{(12),(14),(17)\}$, and the solution of (37) are obtained 524 by employing the ode15s MATLAB solver.


Fig. 2. Performance of ZNDTV-NARE for solving examples Sections VI-A-VI-C and VI-G. (a)-(d) Error $E(t)$ produced by ZNDTV-NARE in examples Sections VI-A-VI-C and VI-G, respectively. (e)-(h) Trajectories of the solution $X(t)$ produced by ZNDTV-NARE in examples Sections VI-A-VI-C and VI-G, respectively.
${ }^{532} \quad A(t)=\left[\begin{array}{cc}\cos (t)+3 & \sin (t)+4 \\ \sin (t)+2 & -\sin (t)-7\end{array}\right] Q(t)=\left[\begin{array}{cc}\sin (t)+7 & \sin (t)+4 \\ \sin (t)+4 & \sin (t)+6 \\ \sin (t)+1 & \sin (t)+6 \\ \sin (t)+6 & \sin (t)+3\end{array}\right]$.
${ }_{533}$ Setting the initial value of $X(t)$ as $X(0)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]^{\mathrm{T}}$, ${ }_{34}$ the results of ZNDTV-NARE are depicted in Fig. 2(a) and (e).

## B. Numerical Example 2

Let $A(t), B(t)$, and $Q(t)$ as
${ }^{537} \quad A(t)=\left[\begin{array}{ccc}\sin (t)+2 & \sin (t)+4 & \cos (t)-2 \\ -\sin (t)+4 & \sin (2 t)+4 & 3 \sin (t)-20 \\ -\cos (2 t)-3 & -\sin (t)-2 & -\sin (2 t)-5\end{array}\right]$
${ }^{538} \quad B(t)=\left[\begin{array}{ccc}3 \sin (t)+9 & -\sin (t)+5 & \cos (3 t)+2 \\ -\sin (t)+5 & \cos (t)+1 / 2 & \cos (t)+6 \\ \cos (3 t)+2 & \cos (t)+6 & \sin (2 t)+3 / 2\end{array}\right]$
${ }^{539} \quad Q(t)=\left[\begin{array}{ccc}2 \sin (t)+10 & \cos (t)+7 & \cos (2 t)+3 / 2 \\ \cos (t)+7 & 2 & -\cos (t)+5 \\ \cos (2 t)+3 / 2 & -\cos (t)+5 & \sin (2 t)+4\end{array}\right]$.
${ }_{540}$ Additionally, we set $D(t)=A^{\mathrm{T}}(t)$, transforming in that way ${ }_{541}$ the NARE into an ARE. By initializing $X(t)$ with the two
values listed as
$X_{1}(0)=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad$ and $\quad X_{2}(0)=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -2\end{array}\right]$
the results of ZNDTV-NARE are depicted in Fig. 2(b) and (f). 544 Note that Fig. 2(f) also includes the Schur method's suggested ${ }_{545}$ solution from [32].

## C. Numerical Example 3

The following input matrices $A(t)$ and $Q(t)$ are considered ${ }^{548}$ in this example:

$$
\begin{aligned}
& A(t)=\left[\begin{array}{cc}
-1-1 / 2 \cos (2 t) & 1 / 2 \sin (2 t) \\
1 / 2 \sin (2 t) & -1+1 / 2 \cos (2 t)
\end{array}\right] \\
& Q(t)=\left[\begin{array}{cc}
\sin (2 t) & \cos (2 t) \\
-\cos (2 t) & \sin (2 t)
\end{array}\right] .
\end{aligned}
$$

Additionally, we set $B(t)=\mathbf{0}$ and $D(t)=A^{\mathrm{T}}(t)$, converting ${ }_{551}$ the NARE to a CLE. By initializing $X(t)$ with $X(0)=\mathbf{0}$, the ${ }_{552}$ results of ZNDTV-NARE are depicted in Fig. 2(c) and (g). ${ }^{553}$ Note that the theoretical solution of this example is

$$
X^{\star}(t)=\left[\begin{array}{cc}
\frac{-\sin (2 t)(-2+\cos (2 t))}{3} & \frac{(1-2 \cos (2 t))(2+\cos (2 t))}{6} \\
\frac{(1+2 \cos (2 t)(2-\cos (2 t))}{6} & \frac{(2+\cos (2 t)) \sin (2 t)}{3}
\end{array}\right] .
$$

## D. Numerical Example 4

556
The following constant matrices $A, B$, and $Q$ of dimensions ${ }^{557}$ $2 \times 2$ are considered in this example:

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-2 & 8
\end{array}\right], B=\left[\begin{array}{ll}
7 & 4 \\
4 & 6
\end{array}\right], Q=\left[\begin{array}{cc}
3 & -4 \\
-4 & 5
\end{array}\right]
$$

559
Moreover, we convert the NARE to an ARE by using $D(t)={ }_{560}$ $A^{\mathrm{T}}(t)$. Setting

561
$X_{1}(0)=\left[\begin{array}{cc}2 & -2 \\ -2 & 4\end{array}\right], X_{2}(0)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, and $X_{3}(0)=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]{ }^{562}$


Fig. 3. Performance of ZNDTI-NARE for solving examples Section VI-D-VI-F. (a)-(c) Error $E(t)$ generated by ZNDTI-NARE in examples Section VI-D-VI-F, respectively. (d)-(f) Trajectories of the solution $X(t)$ generated by ZNDTI-NARE in examples Section VI-D-VI-F, respectively.

563 564 565

## 566 <br> E. Numerical Example 5

567
In this example the following matrices $D, A$, and $Q$ of 568 ${ }_{569}$ given as input
${ }_{570} D=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], Q=\left[\begin{array}{cc}-1 & 0 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1\end{array}\right]$.
571 Additionally, we convert the NARE to a SE by setting ${ }_{572} B=\mathbf{0}$. Setting the initial value of $X(t)$ as $X(0)=\mathbf{0}$, the results 573 of ZNDTI-NARE $\{(17),(20),(21)\}$ are depicted in Fig. 3(b) 574 and (e). Note that the theoretical solution in this example is ${ }_{575} X^{\star}(t)=\left[\begin{array}{cccc}0.7 & -1.3 & 0.5 & 0 \\ -0.1 & -0.1 & -0.5 & 1\end{array}\right]^{\mathrm{T}}$.

## 576 F. Numerical Example 6

577 In this example, the input matrices $D$ and $Q$ are given as

$$
D=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], Q=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Additionally, we set $A=B=\mathbf{0}$, so converting the NARE 579 to an MIE. By setting $X(0)=\mathbf{0}$, as the initial value of $X(t)$, 580 the obtained results of ZNDTI-NARE are depicted in Fig. 3(c) 581 and (f). Note that the theoretical solution of this example is ${ }_{582}$

$$
X^{\star}(t)=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

## G. Example on Larger Dimensions

The following $n$-dimensional input matrices are used in ${ }_{585}$ this example: $D(t)=(4+\sin (t)) I_{n}, B(t)=(7+\sin (t)) I_{n}$, ${ }^{586}$ $Q(t)=(5+\sin (t)) I_{n}$. Furthermore, we use $D(t)=A^{\mathrm{T}}(t)$, thus ${ }_{587}$ converting the NARE to an ARE. Starting from the initial state ${ }_{588}$ of $X(0)=I_{n}$ and for $n=50$, the results of ZNDTV-NARE are ${ }_{589}$ depicted in Fig. 2(b) and (f). Note that Fig. 2(f) also includes 590 the Schur method's suggested solution from [32].

## H. Application to LTV

592
The Mathieu equation [66] is a linear differential equation ${ }^{593}$ with variable (periodic) coefficients and typically occurs in 594 two different ways in solving nonlinear vibration problems. 595 One way is in systems where periodic forcing occurs, and the 596 other is in stability studies of periodic motions in autonomous 597 nonlinear systems. By considering the Mathieu equation 59

$$
\begin{equation*}
\ddot{q}(t)+(\zeta+\theta \cos (\omega t)) q(t)=g U(t) \tag{38}
\end{equation*}
$$

and by defining the state vector $z(t)=\left[\begin{array}{l}q(t) \\ \dot{q}(t)\end{array}\right]$, the dynam- 600 ics (38) can be rewritten in state-dependent coefficient form 601 with 602

$$
A(t)=\left[\begin{array}{cc}
0 & 1  \tag{603}\\
(\zeta+\theta \cos (\omega t)) & 0
\end{array}\right], G(t)=\left[\begin{array}{l}
0 \\
g
\end{array}\right]
$$

The parameter values are $\zeta=1, \theta=1, \omega=1, g=1$, and 604 by letting $R_{1}=I_{2}, R_{2}=0.001$ and $R_{2}=1$, we set the initial 605 value of $X(t)$ as $X(0)=$ ones(2) and apply (37). Furthermore, 606 $z(t)$ has two sets of initial conditions (ICs), denoted as IC1 607 and IC2. The IC1 corresponds to $z(0)=[3,0]^{\mathrm{T}}$, and IC2 ${ }_{608}$ corresponds to $z(0)=[-5,1]^{\mathrm{T}}$. Note that the goal should ${ }_{609}$ be to drive the states to the equilibrium $[0,0]^{\mathrm{T}}$ and, hence, 610 to stabilize (38). By applying (37) and the FTRE and FPRE 611 controls [2], the results of phase portraits of the closed-loop 612 responses, for two values of IC, are displayed in Fig. 4(b) for ${ }^{613}$ $R_{2}=0.001$, and in Fig. 4(d) for $R_{2}=1$.

## I. Applications to Nonlinear Systems

A nonconservative oscillator with nonlinear damping that 616 has been successfully applied in several fields, such as biomed- 617 ical engineering, power system, control, combustion process, 618 robotics, etc., is the Van der Pol oscillator [67]. As a con- 619 sequence, Van der Pol oscillator control has considerable 620 practical significance. In this application, we consider the 621 FPRE stabilization of the Van der Pol oscillator

622

$$
\ddot{q}(t)-\mu\left(1-q^{2}(t)\right) \dot{q}(t)+q(t)=g U(t)
$$

(39) 623


Fig. 4. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation and stabilizing the Van der Pol oscillator and a spring-mass system. (a) and (b) Mathieu Equation's closed-loop outputs and associated phase portraits with $R_{2}=0.001$. (c) and (d) Mathieu Equation's closed-loop outputs and associated phase portraits with $R_{2}=1$. (e) and (f) Van der Pol oscillator's closed-loop outputs and associated phase portraits. (g) and (h) Closed-loop outputs and associated phase portraits for the mass joined to a wall through a spring.

639

## J. Application to Specific Scenario

This application considers a mass that is connected to a wall by a spring with variable stiffness $k(t)$. The open-loop system is described by

$$
z(t)=\left[\begin{array}{c}
q(t) \\
\dot{q}(t)
\end{array}\right], A(t)=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k(t)}{m} & 0
\end{array}\right], \quad G(t)=\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right]
$$

40 which varies over time and can be positive or negative, and $\dot{q}(t)$ signifies the mass's velocity. Let $k(t)=\sin (t), m=4$, $R_{1}(t)=I_{2}$, and $R_{2}(t)=1$, we initialize $X(t)$ and $z(t)$ with $X(0)=\operatorname{ones}(2)$ and $z(0)=[4,-1]^{\mathrm{T}}$. By applying (37) and 646 ${ }_{64}$ Fig. 4(h)

## . Analysis of Experimental Results

In this section, the presented experimental results for ${ }_{650}$ the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC
are commented on and analyzed. In numerical examples 651 Section VI-A-VI-C, we notice that the error $\|E(t)\|_{F}={ }_{652}$ $\|D(t) X(t)+X(t) A(t)-X(t) B(t) X(t)+Q(t)\|_{F}$, rapidly con- ${ }^{653}$ verges to zero in Fig. 2(a)-(d). That is, ZNDTV-NARE (9) 654 is convergent. Particularly, Fig. 2(a) includes three errors 655 produced from three different design parameter values, i.e., ${ }^{656}$ $\lambda=10,100,1000$. The graphs in this figure demonstrate that 657 the model produces a lower overall error with a faster con- ${ }_{658}$ vergence as the value of the parameter $\lambda$ increases. Fig. 2(b) 659 includes two errors produced from two initial values of $X(t)$ in 660 Example Section VI-B. The graphs in this figure show that the ${ }_{661}$ initial values of $X(t)$ have no impact on the model's overall 662 error or speed of the convergence. In Fig. 2(e) and (f) tra- ${ }^{663}$ jectories of the solution $X(t)$ produced by ZNDTV-NARE are ${ }_{664}$ presented, wherefrom it is observable that $X(t)$ rapidly con- ${ }^{665}$ verges to the exact solution. Particularly, Fig. 2(e) includes 666 three solutions produced from three different design parame- ${ }^{667}$ ter values, i.e., $\lambda=10,100,1000$. The graphs in this figure ${ }_{668}$ show that as the parameter $\lambda$ increases, the model generates the 669 same solution but with a faster convergence. Fig. 2(f) includes 670 trajectories of two solutions produced from two initial values 671 of $X(t)$ in Example Section VI-B as well as the solution pro- 672 vided by the Schur method originated in [32]. The graphs in ${ }^{673}$ Fig. 2(f) show the influence of the initial values for $X(t)$ on 674 the model's solution. It is clear that the ZND model generates 675 various solutions $X_{1}(t)$ and $X_{2}(t)$ depending on the initial val- ${ }^{676}$ ues of $X(t)$. Fig. 2(g) and (h) include the theoretical and the 677 Schur's method solution, respectively.

In numerical examples Section VI-D-VI-F, we observe that 679 the error $\|E(t)\|_{F}=\|D X(t)+X(t) A-X(t) B X(t)+Q\|_{F}$, is 680 rapidly convergent to 0 in Fig. 3(a)-(c). That is, ZNDTI- ${ }_{681}$ NARE (18) is solved. Fig. 3(a) includes three errors produced 682 from three initial values in Example Section VI-D. The ${ }_{683}$ solution $X(t)$ produced by ZNDTI-NARE is presented in 684


Fig. 5. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation with $R_{2}=0.001$ and stabilizing a spring-mass system under various settings of ode15s MATLAB solver. (a) and (b) Mathieu Equation's ARE error under default settings of ode15s MATLAB solver. (c) and (d) Mathieu Equation's ARE trajectories under custom settings of ode15s MATLAB solver. (e) and (f) Spring-mass system's ARE error under default settings of ode15s MATLAB solver. (g) and (h) Spring-mass system's ARE trajectories under custom settings of ode15s MATLAB solver.

Fig. 3(d)-(f), where we see that $X(t)$ quickly converges to the solution. The graphs in Fig. 3(a) and (d) illustrate the behavior of solutions $X_{1}(t), X_{2}(t), X_{3}(t)$ generated by the initial values of $X(t)$ in example Section VI-D. Fig. 3(a) shows the influence of the initial values on the error matrix $\|E(t)\|_{F}$ generated by $X_{1}(t), X_{2}(t), X_{3}(t)$. Graphs in Fig. 3(d) show the trajectories of elements in $X_{1}(t), X_{2}(t), X_{3}(t)$. It is clear that the ZND model generates various solutions $X_{1}(t), X_{2}(t), X_{3}(t)$ depending on the initial values. Fig. 3(d) includes three solutions produced for three different initial values of $X(t)$ as well as the solution provided by the Schur method from [32]. Furthermore, Fig. 3(e) and (f) includes graphs of theoretical solutions.

In addition, the following is important to mention about numerical examples Section VI-A-VI-G.

1) The coefficient matrices in Sections VI-B, VI-D, and VI-G converted the NARE to an ARE.
2) The input coefficient matrices in Section VI-C converted the NARE to a CLE.
3) The input coefficient matrices in Section VI-E converted the NARE to an SE.
4) The input coefficient matrices in Section VI-F converted the NARE to an MIE.
In applications Section VI-H-VI-J, the asymptotic stability of the HZND-FTREC (37) is always slightly better than the stability of the FTRE control [2] and significantly better than that of the FPRE control [2]. More precisely, in application to LTV Section VI-H, the Mathieu equation is stabilized for two different ICs of $z(t)$ under two different values in $R_{2}$. The closed-loop responses of $z(t)$ and their phase portraits are displayed in Fig. 4(a) and (c) and (b) and (d), respectively, where we observe that HZND-FTREC of (37) provides faster stabilization than the FTRE and FPRE controls, even for large values of $R_{2}$. In application to nonlinear systems Section VI-I, the Van der Pol oscillator is stabilized for three different initial
values of $X(t)$. The closed-loop responses of $z(t)$ and their ${ }_{719}$ phase portraits are displayed in Fig. 4(e) and (f), where we 720 observe that HZND-FTREC of (37) provides, slightly, more 721 stable asymptotic behavior than the FTRE and FPRE controls. ${ }^{722}$ In application to specific scenario Section VI-J, a mass con- ${ }^{723}$ nected to a wall by a spring with variable stiffness $k(t)$ is ${ }_{724}$ stabilized. In Fig. 4(g) and (h), the closed-loop responses of 725 $z(t)$ and their phase portraits are displayed, where we observe ${ }_{726}$ that HZND-FTREC of (37) provides, slightly, more stable ${ }_{727}$ asymptotic behavior than the FTRE and FPRE controls. ${ }_{728}$

To further validate the performance of the HZND- ${ }_{729}$ FTREC model (37) and demonstrate the distinction between 730 the HZND-FTREC, FTRE, and FPRE controls, the ARE ${ }_{731}$ error $\|A X(t)+X(t) A-X(t) B X(t)+Q\|_{F}$ of the applications ${ }_{732}$ Section VI-H and VI-J is measured under various settings ${ }_{733}$ of ode15s MATLAB solver. It is important to note that all 734 numerical examples and applications in this section have used ${ }_{735}$ the default settings of ode15s MATLAB solver calculating ${ }^{736}$ with double precision (eps $=2.22 \cdot 10^{-16}$ ). Therefore, the ${ }_{737}$ minimum value for most error measurements in this section ${ }_{738}$ is of the order $10^{-5}$. For the custom settings used in the ${ }_{739}$ results of Fig. 5, we set the relative tolerance and the absolute ${ }_{740}$ tolerance of ode15s to $10^{-15}$, while the design parameter ${ }_{741}$ was set to $\lambda=10^{4}$. Particularly, Fig. 5(a) and (e) shows ${ }_{742}$ the ARE errors of Mathieu Equation with $R_{2}=0.001$ and ${ }^{743}$ spring-mass system, respectively, under the default settings 744 of ode15s and the design parameter $\lambda=10$. In these fig- ${ }_{745}$ ures, we observe that the FTRE that uses the Schur method's 746 suggested solution has the best accuracy and the FPRE has 747 the worst accuracy. When using the custom settings, the ARE ${ }_{748}$ errors of Mathieu Equation with $R_{2}=0.001$ and spring-mass 749 system are presented in Fig. 5(c) and (g). In these figures, 750 we note that the HZND-FTREC has the best accuracy, while 751 the performance of FTRE and FPRE is unaffected by the 752
changes in the settings of the ode15s. This conclusion is further supported by a comparison between the ARE trajectories shown in Fig. 5(b) and (f) and those shown in Fig. 5(d) and (h), respectively. While the ARE trajectories generated by FTRE and FPRE are unaffected by the changes in the ode15s settings, we observe in these figures that the ARE trajectories generated by HZND-FTREC converge faster to the ARE trajectories generated by FTRE. We also observe that FPRE generates a different and less accurate ARE solution than FTRE in both applications. The HZND-FTREC generates the same ARE solution as the FTRE, and under the ode15s custom settings, the HZND-FTREC solution is more accurate than FTRE's.

Consequently, we can say that the TV-NARE problem (9), the TI-NARE problem (18), and HZND-FTREC problem (37) can be successfully solved by the ZNDTV-NARE, ZNDTINARE, and HZND-FTREC, respectively, while the HZNDFTREC is a more advanced version of the FTRE and is more effective than both the FTRE and FPRE.

## VII. Conclusion

This article examines the TV-NARE problem in detail. The ZND approach, in conjunction with the definition of a convenient error matrix for addressing the TV-NARE problem, led to the development of the suggested ZNDTV-NARE model. Several particular cases of ZNDTV-NARE design are derived, including the ZNDTI-NARE model, and models for solving Sylvester and Lyapunov equation. Furthermore, a hybrid TV-NARE model, called HZND-FTREC, is introduced to incorporate the FTRE approach to optimal control of the LTV system. Computer simulation further showed that the proposed models successfully solved ten examples, three of which included applications to LTV and nonlinear systems. In that manner, the efficacy of the proposed flows for solving the TV-NARE, TI-NARE, and optimal control of LTV systems has thus been demonstrated. The finding reached is that the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC models are helpful and efficient in solving the TV-NARE, TINARE, and optimal control of LTV systems, respectively. It is worth mentioning that the ZNDTV-NARE model's ability to provide several solutions for various initial values without allowing the user to specify a particular solution as the target is a disadvantage.

Some areas of future research can be pointed out.

1) The ZNDTV-NARE and HZND-FTREC streams can be investigated using a nonlinear activation function. Nonlinear ZNDTV-NARE and HZND-FTREC flows with terminal convergence could be studied in this direction. This approach will be a generalization of finite-time convergent nonlinearly activated dynamical systems for calculating the time-varying matrix pseudoinverse [14], as well as for solving the time-varying SE [42], [43], [51], [58].
2) It is helpful to extend recently proposed finite-time convergent neural flows for solving time-varying linear complex matrix equations [7] or the time-varying

Sylvester matrix equation [55] into more general finite- 808 time convergent ZNDTV-NARE and HZND-FTREC 809 evolutions.
3) The open area of research in machine control that is 811 related to fuzzy logic (see [27], [28], [68]) could be 812 paired with the ZND design. This research will lead to ${ }_{813}$ the creation of novel ZND designs for tracking control 814 of nonlinear systems.

815
4) Because all types of noise have a significant impact ${ }_{816}$ on the accuracy of the proposed ZND approaches, the 817 proposed ZNDTV-NARE, ZNDTI-NARE, and HZND- 818 FTREC models suffer from noise insensitivity. Future 819 research can be directed at expanding derived mod- 820 els into integration-enhanced and noise-tolerant ZND 821 dynamical systems.

822
5) As analyzed in the introduction, heterogeneous ARE ${ }_{823}$ variants are involved in solutions to numerous contin- 824 uous time or discrete time problems. Each of these 825 applications provides the possibility of applying the ${ }_{826}$ proposed models or their discretization.
6) Note that convergence occurs faster for greater values of 828 $\lambda$. For further noteworthy characteristics and variations 829 of the ZND's design parameter $\lambda$ see [15], [69]. ${ }_{830}$

## REFERENCES

[1] X. Dong and G. Hu, "Time-varying formation tracking for linear 832 multiagent systems with multiple leaders," IEEE Trans. Autom. Control, 833 vol. 62, no. 7, pp. 3658-3664, Jul. 2017.

834
[2] A. Prach, O. Tekinalp, and D. S. Bernstein, "A numerical comparison of 835 frozen-time and forward-propagating Riccati equations for stabilization 836 of periodically time-varying systems," in Proc. Amer. Control Conf., 837 2014, pp. 5633-5638.

838
[3] B. Qin et al., "Robust $H_{\infty}$ control of doubly fed wind generator via 839 state-dependent Riccati equation technique," IEEE Trans. Power Syst., 840 vol. 34, no. 3, pp. 2390-2400, May 2019.

841
[4] T. E. Duncan, L. Guo, and B. Pasik-Duncan, "Adaptive continuous-time 842 linear quadratic Gaussian control," IEEE Trans. Autom. Control, vol. 44, 843 no. 9, pp. 1653-1662, Sep. 1999.
[5] A. Kawamoto and T. Katayama, "The dissipation inequality and gen- 845 eralized algebraic Riccati equation for linear quadratic control problem 846 of descriptor system," IFAC Proc. Vol., vol. 29, no. 1, pp. 1548-1553, 847 1996.

848
[6] R.-C. Li and W. Kahan, "A family of anadromic numerical meth- 849 ods for matrix Riccati differential equations," Math. Comput., vol. 81, 850 pp. 233-265, Jan. 2012.
[7] L. Xiao, "A finite-time convergent neural dynamics for online solu- 852 tion of time-varying linear complex matrix equation," Neurocomputing, 853 vol. 167, pp. 254-259, Nov. 2015.
[8] Y Zhang and C Yi, Zhang Neural Networks and Neural Dymanic Dynamic 855 Method. New York, NY, USA: Nova Sci. Publ., Inc., 2011.
[9] L. Xiao, "A nonlinearly-activated neurodynamic model and its finite-time 857 solution to equality-constrained quadratic optimization with nonstation- 858 ary coefficients," Appl. Soft Comput., vol. 40, pp. 252-259, Mar. 2016. 859
[10] B. Liao and Y. Zhang, "Different complex ZFs leading to different 860 complex ZNN models for time-varying complex generalized inverse 861 matrices," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 9, 862 pp. 1621-1631, Sep. 2014.

863
[11] P. S. Stanimirović, S. D. Mourtas, V. N. Katsikis, L. A. Kazakovtsev, and 864 V. N. Krutikov, "Recurrent neural network models based on optimization 865 methods," Mathematics, vol. 10, no. 22, p. 4292, 2022.

866
[12] L. Jin, S. Li, L. Xiao, R. Lu, and B. Liao, "Cooperative motion 867 generation in a distributed network of redundant robot manipulators 868 with noises," IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 10, 869 pp. 1715-1724, Oct. 2018.

870
[13] Y. Zhang, L. Jin, D. Guo, Y. Yin, and Y. Chou, "Taylor-type 1-step-ahead 871 numerical differentiation rule for first-order derivative approximation 872 and ZNN discretization," J. Comput. Appl. Math., vol. 273, pp. 29-40, 873 Jan. 2015.
[14] B. Liao and Y. Zhang, "From different ZFs to different ZNN models accelerated via Li activation functions to finite-time convergence for time-varying matrix pseudoinversion," Neurocomputing, vol. 133, pp. 512-522, Jun. 2014.
[15] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Karabasević, and D. Stanujkić, "Zeroing neural network with fuzzy parameter for computing pseudoinverse of arbitrary matrix," IEEE Trans. Fuzzy Syst., vol. 30, no. 9, pp. 3426-3435, Sep. 2022.
[16] L. Jin, Y. Zhang, S. Li, and Y. Zhang, "Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators," IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6978-6988, Nov. 2016.
[17] L. Xiao and B. Liao, "A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation," Neurocomputing, vol. 193, pp. 213-218, Jun. 2016.
[18] D. Guo, Z. Nie, and L. Yan, "Novel discrete-time Zhang neural network for time-varying matrix inversion," IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2301-2310, Aug. 2017.
19] V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, and Y. Zhang, "Solving complex-valued time-varying linear matrix equations via QR decomposition with applications to robotic motion tracking and on angle-of-arrival localization," IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8, pp. 3415-3424, Aug. 2022.
[20] T. E. Simos, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, and D. Gerontitis, "A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization," Inf. Sci., vol. 600, pp. 226-238, Jul. 2022.
[21] H. Jerbi et al., "Towards higher-order zeroing neural network dynamics for solving time-varying algebraic Riccati equations," Mathematics, vol. 10, p. 4490, Nov. 2022.
[22] T. E. Simos, V. N. Katsikis, S. D. Mourtas, and P. S. Stanimirović, "Finite-time convergent zeroing neural network for solving timevarying algebraic Riccati equations," J. Franklin Inst., vol. 359, no. 18, pp. 10867-10883, 2022.
[23] T. E. Simos, V. N. Katsikis, S. D. Mourtas, and P. S. Stanimirović, "Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems," Math. Comput. Simul., vol. 202, pp. 164-180, Dec. 2022.
[24] A. Safa, R. Y. Abdolmalaki, and H. C. Nejad, "Precise position tracking control with an improved transient performance for a linear piezoelectric ceramic motor," IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 3008-3018, Apr. 2019.
[25] W. Sun, Y. Wu, and L. Wang, "Trajectory tracking of constrained robotic systems via a hybrid control strategy," Neurocomputing, vol. 330, pp. 188-195, Feb. 2019.
[26] H. Wang, S. Ling, P. X. Liu, and Y.-X. Li, "Control of high-order nonlinear systems under error-to-actuator based event-triggered framework," Int. J. Control, vol. 95, no. 10, pp. 2758-2770, 2022.
[27] M. Chen, H. Wang, and X. Liu, "Adaptive fuzzy practical fixed-time tracking control of nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 29, no. 3, pp. 664-673, Mar. 2021.
[28] H. Wang, W. Bai, X. Zhao, and P. X. Liu, "Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults," IEEE Trans. Cybern., vol. 52, no. 7, pp. 6959-6971, Jul. 2022.
[29] L. T. Aguilar, Y. Orlov, and L. Acho, "Nonlinear $\mathscr{H}_{\infty}$-control of nonsmooth time-varying systems with application to friction mechanical manipulators," Automatica, vol. 39, pp. 1531-1542, Sep. 2003.
[30] A. Ferrante and L. Ntogramatzidis, "The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control," Automatica, vol. 50, pp. 1176-1180, Apr. 2014.
[31] T. Ohtsuka, "A recursive elimination method for finite-horizon optimal control problems of discrete-time rational systems," IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 3081-3086, Nov. 2014.
[32] A. Laub, "A Schur method for solving algebraic Riccati equations," IEEE Trans. Autom. Control, vol. AC-24, no. 6, pp. 913-921, Dec. 1979.
[33] Y. Oshman and I. Bar-Itzhack, "Eigenfactor solution of the matrix Riccati equation-a continuous square root algorithm," IEEE Trans. Autom. Control, vol. AC-30, no. 10, pp. 971-978, Oct. 1985.
[34] P. V. Dooren, "A generalized eigenvalue approach for solving Riccati equations," SIAM J. Sci. Stat. Comput., vol. 2, no. 2, pp. 121-135, 1981.
[35] P. Lancaster and L. Rodman, Algebraic Riccati Equations. New York, NY, USA: Clarendon Press, 2002.
[36] V. Kučera, "A review of the matrix Riccati equation," Kybernetika, vol. 9, no. 1, pp. 42-61, 1973.
[37] R. Buche and H. J. Kushner, "Control of mobile communication systems 950 with time-varying channels via stability methods," IEEE Trans. Autom. 951 Control, vol. 49, no. 11, pp. 1954-1962, Nov. 2004. V. N. Phat and P. Niamsup, "Stability of linear time-varying delay 953 systems and applications to control problems," J. Comput. Appl. Math., 954 vol. 194, pp. 343-356, Oct. 2006.
[39] N. N. Subbotina, "The value functions of singularly perturbed time- 956 optimal control problems in the framework of Lyapunov functions ${ }_{957}$ method," Math. Comput. Model., vol. 45, pp. 1284-1293, Jun. 2007. 958
[40] A. Varga, "Robust pole assignment via Sylvester equation based state 959 feedback parametrization," in Proc. IEEE Int. Symp. Comput.-Aided 960 Control Syst. Des. (CACSD), 2000, pp. 13-18.
[41] X. Le and J. Wang, "Robust pole assignment for synthesizing feedback 962 control systems using recurrent neural networks," IEEE Trans. Neural 963 Netw. Learn. Syst., vol. 25, no. 2, pp. 383-393, Feb. 2014.
[42] S. Li, S. Chen, and B. Liu, "Accelerating a recurrent neural network to 965 finite-time convergence for solving time-varying Sylvester equation by 966 using a sign-bi-power activation function," Neural Process. Lett., vol. 37, 967 no. 2, pp. 189-205, 2013.
[43] Y. Shen, P. Miao, Y. Huang, and Y. Shen, "Finite-time stability and 969 its application for solving time-varying Sylvester equation by recur- 970 rent neural network," Neural Process. Lett., vol. 42, no. 3, pp. 763-784, 971 2015.
[44] H. Huang et al., "Modified Newton integration neural algorithm for 973 dynamic complex-valued matrix pseudoinversion applied to mobile 974 object localization," IEEE Trans. Ind. Informat., vol. 17, no. 4, 975 pp. 2432-2442, Apr. 2021.
[45] A. Noroozi, A. H. Oveis, S. M. Hosseini, and M. A. Sebt, "Improved ${ }_{977}^{976}$ algebraic solution for source localization from TDOA and FDOA mea- 978 surements," IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 352-355, 979 Jun. 2018.
[46] A. G. Dempster and E. Cetin, "Interference localization for satel- 981 lite navigation systems," Proc. IEEE, vol. 104, no. 6, pp. 1318-1326, 982 Jun. 2016.
[47] Y. Zhang, "Towards piecewise-linear primal neural networks for 984 optimization and redundant robotics," in Proc. IEEE Int. Conf. Netw. 985 Sens. Control, Apr. 2006, pp. 374-379.
[48] R. H. Sturges, "Analog matrix inversion (robot kinematics)," IEEE J. 987 Robot. Autom., vol. 4, no. 2, pp. 157-162, Apr. 1988.
[49] K. S. Yeung and F. Kumbi, "Symbolic matrix inversion with applica- 989 tion to electronic circuits," IEEE Trans. Circuits Syst., vol. 35, no. 2, 990 pp. 235-238, Feb. 1988.
[50] Y. Zhang and J. Wang, "Recurrent neural networks for nonlinear output 992 regulation," Automatica, vol. 37, pp. 1161-1173, Aug. 2001. [51] L. Xiao, Q. Yi, Q. Zuo, and Y. He, "Improved finite-time zeroing neural 994 networks for time-varying complex Sylvester equation solving," Math. 995 Comput. Simul., vol. 178, pp. 246-258, Dec. 2020.
[52] J. Jin, L. Xiao, M. Lu, and J. Li, "Design and analysis of two FTRNN 997 models with application to time-varying Sylvester equation," IEEE 998 Access, vol. 7, pp. 58945-58950, 2019.
[53] L. Ding, L. Xiao, K. Zhou, Y. Lan, Y. Zhang, and J. Li, "An 1000 improved complex-valued recurrent neural network model for time- 1001 varying complex-valued Sylvester equation," IEEE Access, vol. 7, 1002 pp. 19291-19302, 2019.
[54] S. Li and Y. Li, "Nonlinearly activated neural network for solving time- 1004 varying complex Sylvester equation," IEEE Trans. Cybern., vol. 44, 1005 no. 8, pp. 1397-1407, Aug. 2014.
[55] L. Xiao, "A finite-time recurrent neural network for solving online time- 1007 varying Sylvester matrix equation based on a new evolution formula," 1008 Nonlinear Dyn., vol. 90, pp. 1581-1591, Aug. 2017.
Z. Zhang and L. Zheng, "A complex varying-parameter convergent- 1010 differential neural-network for solving online time-varying com- 1011 plex Sylvester equation," IEEE Trans. Cybern., vol. 49, no. 10, 1012 pp. 3627-3639, Oct. 2019.

1013
[57] C. Yi, Y. Zhang, and D. Guo, "A new type of recurrent neural networks 1014 for real-time solution of Lyapunov equation with time-varying coeffi- 1015 cient matrices," Math. Comput. Simul., vol. 92, pp. 40-52, Jun. 2013. 1016
[58] X. Lv, L. Xiao, Z. Tan, and Z. Yang, "Wsbp function activated Zhang 1017 dynamic with finite-time convergence applied to Lyapunov equation," 1018 Neurocomputing, vol. 314, pp. 310-315, Nov. 2018.
[59] M. Sun and J. Liu, "A novel noise-tolerant Zhang neural network for 1020 time-varying Lyapunov equation," Adv. Differ. Equ., vol. 2020, p. 116, 1021 Mar. 2020.
[60] J. Yan, X. Xiao, H. Li, J. Zhang, J. Yan, and M. Liu, "Noise-tolerant ${ }_{1023}$ zeroing neural network for solving non-stationary Lyapunov equation," 1024 IEEE Access, vol. 7, pp. 41517-41524, 2019.

1026 [61] L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, and L. Jin, "Design

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055 and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator," IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 98-105, Jan. 2018.
[62] G. Tadmor, "Receding horizon revisited: An easy way to robustly stabilize an LTV system," Syst. Control Lett., vol. 18, no. 4, pp. 285-294, 1992.

63] W. H. Kwon and S. Han, Receding Horizon Control (Advanced Textbooks in Control and Signal Processing). London, U.K.: Springer, 2005.
[64] C. P. Mracek and J. R. Cloutier, "Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method," Int. J. Robust Nonlinear Control, vol. 8, nos. 4-5, pp. 401-433, 1998.
[65] E. B. Erdem and A. G. Alleyne, "Design of a class of nonlinear controllers via state dependent Riccati equations," IEEE Trans. Control Syst. Technol., vol. 12, no. 1, pp. 133-137, Jan. 2004.
[66] J. A. Richards, Analysis of Periodically Time-Varying Systems (Communications and Control Engineering), 1st ed. Berlin, Germany: Springer-Verlag, 1983.
[67] B. von de Pol, "Forced oscillations in a circuit with non-linear resistance (receptance with reactive triode)," London Edingburg Dublin Phil. Mag., vol. 3, pp. 65-80, Jan. 1927.
[68] H. Wang, K. Xu, P. X. Liu, and J. Qiao, "Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 10, pp. 4337-4348, Oct. 2021.
[69] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Stanujkić, and D. Karabašević, "Zeroing neural network based on neutrosophic logic for calculating minimal-norm least-squares solutions to timevarying linear systems," Neural Process. Lett., to be published.


Vasilios N. Katsikis received the B.S. degree in 1084 AQ6 mathematics from the National and Kapodistrian 1085 University of Athens, Athens, Greece, and the 1086 M.Sc. degree in applied mathematics and the Ph.D. 1087 degree in mathematics from the National Technical 1088 University of Athens, Athens.
He is currently an Associate Professor of 1090 Mathematics and Informatics and the Director of the 1091 Division of Mathematics-Informatics and Statistics- 1092 Econometrics, Department of Economics, National 1093 and Kapodistrian University of Athens. Throughout 1094 his research career, he has over 130 publications in various peer-reviewed sci- 1095 entific journals. His main research interests include neural networks, matrix 1096 analysis, linear algebra, and intelligent optimization.

1097


Spyridon D. Mourtas received the B.S. degree in 1098 mathematics from the University of Patras, Patras, 1099 Greece, in 2016, and the M.Sc. degree in applied 1100 economics and finance and the Ph.D. degree in 1101 economics from the National and Kapodistrian 1102 University of Athens, Athens, Greece, in 2019 and 1103 2023, respectively.

1104
His main research interests include neural 1105 networks, matrix analysis, and intelligent financial 1106 optimization.

1107


Predrag S. Stanimirović received the Doctoral 1108 degree from the Faculty of Philosophy, University 1109 AQ7 of Niš, Niš, Serbia.

1110
He is currently working as a Full Professor 1111 with the Faculty of Sciences and Mathematics, 1112 Department of Computer Science, University of Niš. 1113 His interest in research encompasses diverse fields 1114 of mathematics, applied mathematics, and computer 1115 science, which span multiple branches of numerical 1116 linear algebra, recurrent neural networks, symbolic 1117 computation, and operations research. Throughout 1118 his research career, he has published over 350 publications in various sci- 1119 entific journals, including six research monographs.

1120
Prof. Stanimirović is an Editor in scientific journals, such as Filomat, 1121 Electronic Research Archive, Journal of Mathematics, and Facta Universitatis, 1122 Series: Mathematics and Informatics and several other journals. 1123

