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Solving Time-Varying Nonsymmetric Algebraic
Riccati Equations With Zeroing Neural Dynamics

Theodore E. Simos, Vasilios N. Katsikis , Spyridon D. Mourtas , and Predrag S. Stanimirović

Abstract—The problem of solving algebraic Riccati equations1

(AREs) and certain linear matrix equations which arise from2

the ARE frequently occur in applied and pure mathematics,3

science, and engineering applications. In this article, by con-4

sidering the nonsymmetric ARE (NARE) as a general form of5

ARE, the time-varying NARE (TV-NARE) problem is proposed6

and investigated. As a particular case of TV-NARE, the time-7

invariant NARE (TI-NARE) problem is investigated too. Then,8

by employing the zeroing neural dynamics (ZND) design, a
AQ1

9

ZND TV-NARE (ZNDTV-NARE) model and a ZND TI-NARE10

(ZNDTI-NARE) model are proposed and investigated. Also, by11

combining the ZNDTV-NARE model with the frozen-time Riccati12

equation (FTRE) approach to optimal control of linear time-13

varying (LTV) systems based on the state-dependent Riccati14

equation (SDRE) process, a hybrid ZND FTRE control (HZND-15

FTREC) model is developed and investigated. The effectiveness16

of the proposed dynamical systems is proven in ten numerical17

experiments, three of which include applications to LTV and18

nonlinear systems.19
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Index Terms—Continuous-time model, dynamical system, non- 20

linear system, nonsymmetric algebraic Riccati equations (AREs), 21

zeroing neural dynamics. 22

I. INTRODUCTION 23

ALGEBRAIC Riccati Equations (AREs) appear commonly 24

in mathematics, science, and engineering. The ARE 25

class includes both nonlinear and linear matrix equations 26

(LMEs) which are specifically of great interest in optimal 27

control, filtering, and estimation problems. The practice has 28

revealed that solving a Riccati equation is a principal topic in 29

optimal control theory (see [1], [2], [3], [4], [5]). The uti- 30

lization of ARE equations of various types can commonly 31

be found in solving linear multiagent systems [1], in H∞ 32

controller design for wind generation systems [3], in the anal- 33

ysis and synthesis of linear quadratic Gaussian (LQG) control 34

problems [4], [5]. In one or another form, ARE play signifi- 35

cant roles in optimal control of multivariable and large-scale 36

systems, estimation, scattering theory, and detection proce- 37

dures. Moreover, closed-form solutions of Riccati Equations 38

are used to solve some problems, such as numerical precision 39

in direct and iterative algorithms and losing controllability. It 40

is worth noting that other related fields of research are the 41

matrix Ricatti differential equations (MRDEs) (see [6]). 42

The Zhang neural dynamics (ZND) method is used 43

to approach the time-varying nonsymmetric ARE (TV- 44

NARE) problem and the time-invariant nonsymmetric ARE 45

(TI-NARE) problem, which is a particular case of TV-NARE, 46

by considering the nonsymmetric ARE (NARE) as a gen- 47

eral form of ARE. Because the ZND has already been 48

suggested in the literature as a useful method for solv- 49

ing a wide range of time-variant problems, two models are 50

created by employing the ZND method, namely, the ZND 51

TV-NARE (ZNDTV-NARE) model and the ZND TI-NARE 52

(ZNDTI-NARE) model, which can be solved with exponential 53

convergence performance. Furthermore, the models proposed 54

in [7], [8], [9], [10], and [11] have exponential convergence 55

when the ZND design parameter is adjusted using the ZND 56

method [12], [13], [14], [15] and their speed of convergence 57

can be handled. Compared to traditional numerical algo- 58

rithms, the ZND method, which is based on recurrent neural 59

networks (RNNs), has several advantages in real-time appli- 60

cations, including high-speed parallel processing, distributed 61

storage, and adaptive self-learning natures. As a result, such 62

an approach is widely regarded as a powerful alternative to 63

online computation and optimization [16], [17], [18], [19]. 64
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Fig. 1. Diagrammatic representation of the matrix equations explored in this study.

Several papers, including [20] and [21], discuss the ability65

of such models to handle noise.66

A comprehensive overview of ARE-type matrix equations67

and solutions to some special TV-NARE equations were68

provided in [21], [22], and [23]. The time-varying ARE69

problem was approached in [21] through a noise-tolerant70

ZND model, by a fixed-time ZND model in [22], and by71

an eigendecomposition-based ZND model in [23]. The sym-72

metric solutions they always offer to the time-varying ARE73

problem are what these papers have in common. It is cru-74

cial to note that AREs with symmetric solutions have square75

coefficient matrices with certain properties, whereas NAREs76

are a generic form of AREs whose coefficient matrices are77

not required to be square with particular properties and whose78

solutions are not required to be symmetric. Since this study79

focuses on solving the general TV-NARE problem rather than80

only the problem of time-varying ARE, it differs significantly81

from the aforementioned papers.82

The tracking control has become one of the most impor-83

tant schemes in past studies [24], [25], [26], [27], [28]. These84

studies include a position-tracking control strategy using out-85

put feedback and an adaptive sliding-mode approach in [24],86

a hybrid coordinated control method using a backstepping87

scheme and Hamilton control in [25], a control method using88

an error-to-actuator-based event-triggered framework [26], and89

two controllers that combine a backstepping scheme, fuzzy90

logic system, and finite-time Lyapunov stability theory in [27]91

and [28]. It is well known that the state-dependent Riccati92

equation (SDRE) method [3] can be used as a basis for the93

frozen-time Riccati equation (FTRE) approach to optimal con-94

trol of linear time-varying (LTV) systems. In this article, by95

combining the ZNDTV-NARE model and the FTRE, a Hybrid96

ZND FTRE Control (HZND-FTREC) model is developed and97

investigated. It is worth noting that the advantages of the98

HZND-FTREC and ZNDTV-NARE models are the same.99

The following summarizes the key contributions of our100

research in this article.101

1) The ZND systems dynamics for solving TV-NARE and102

TI-NARE problems are proposed. According to our best103

knowledge, ZND approach for solving NARE has not104

been used so far.105

2) An additional explicit dynamical system is proposed for106

solving TV-NARE besides the standard ZND.107

3) Applying the proposed explicit dynamical system in par-108

ticular cases, it is possible to generate corresponding109

neural dynamics for solving the Sylvester, Lyapunov, 110

and LMEs. 111

4) Simulation examples are run to validate the proposed 112

model’s applicability and effectiveness. 113

5) Besides the numerical simulations, we present two appli- 114

cations in optimal control of LTV systems and an 115

application in solving nonlinear systems. 116

The following structure guides the overall organization 117

of sections in this article. Section II contains preliminary 118

information about the ARE and certain LMEs which could 119

be arising from the NARE, including the Sylvester and 120

Lyapunov equations. Section III describes the TV-NARE 121

problem and then defines the corresponding ZNDTV-NARE 122

model. Section IV comprises prominent particular cases of the 123

ZNDTV-NARE design, including the ZNDTI-NARE model. 124

Section V introduces a hybrid TV-NARE model, called 125

HZND-FTREC, which incorporates the FTRE approach to 126

optimal control of the LTV system. Section VI contains ten 127

different examples with different-dimensional input matrices, 128

three of these include LTV and nonlinear system applications. 129

The simulation tests validate the efficacy of the suggested 130

models. Finally, the concluding remarks are presented in 131

Section VII. 132

II. MATRIX EQUATIONS OF ARE TYPE 133

This section will provide a comprehensive overview of the 134

matrix equations discussed in this article. These equations 135

are in the form of the pure ARE and certain LMEs derived 136

from the ARE class. A diagrammatic representation of these 137

equations is presented in Fig. 1. 138

A. Algebraic Riccati Equations 139

In this section, we introduce the definitions of all the AREs 140

treated in this research. 141

1) Nonsymmetric Algebraic Riccati Equation: An NARE 142

is a quadratic matrix equation of the form 143

DX + XA − XBX + Q = 0 (1) 144

where A ∈ R
m×m, B ∈ R

m×n, D ∈ R
n×n and Q ∈ R

n×m are 145

the block coefficients, X ∈ R
n×m is the unknown matrix to be 146

obtained and 0 represents a zero n × m matrix. Note that the 147

term “nonsymmetric” is improperly used to denote that (1) is 148

in its general form without assumption on the symmetry of 149

the matrix coefficients. 150
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2) Continuous-Time Algebraic Riccati Equation: The151

continuous-time ARE (CARE)152

ATX + XA − XBX + Q = 0 (2)153

in which the superscript ()T denotes the transpose operator154

and all the coefficient matrices belong to R
n×n, is a quadratic155

matrix equation and plays a central role in the LQR/LQG con-156

trol, H2 and H∞ control, Kalman filtering, and spectral or157

co-prime factorizations (see [29], [30], [31], [32], [33], [34]).158

The phrase “continuous-time” in the notation “CARE” is159

taken from control theory problems in continuous-time, where-160

from (2) emerges. Note that CARE is an NARE where the161

block coefficients are square (i.e., m = n) and D = AT,162

B = BT, Q = QT (see [35]). Moreover, B, Q are symmet-163

ric and non-negative definite matrices (i.e., B = BT ≥ 0 and164

Q = QT ≥ 0). Solutions X ∈ R
n×n of the CARE (2) can be165

symmetric or nonsymmetric, with definite or indefinite sign166

and the solutions set can be either infinite or finite (see [36]).167

B. Linear Matrix Equations of ARE Type168

In this section, we restate the definitions of all the LMEs169

arising from the ARE.170

1) Continuous-Time Lyapunov Equation: The continuous-171

time Lyapunov equation (CLE) is a matrix equation given as172

ATX + XA + Q = 0 (3)173

where A ∈ R
n×n, Q ∈ R

n×n are the matrix coefficients and174

X ∈ R
n×n is the unknown matrix. Lyapunov methods could175

be applied successfully in numerous scientific and engineering176

fields, such as in the analysis of various kinds of nonlinear and177

linear control systems, in control theory, optimization, signal178

processing, large space flexible structures, and communica-179

tions (see [37], [38], [39]). Note that (3) is an appearance180

of NARE where the block coefficients are square and satisfy181

D = AT, B = 0.182

2) Sylvester Equation: The Sylvester equation (SE) is an183

LME of the form184

DX + XA + Q = 0 (4)185

where D ∈ R
n×n, A ∈ R

m×m, Q ∈ R
n×m are the block186

coefficients and X ∈ R
n×m is the unknown matrix to be gener-187

ated. Equation (4) is an NARE where the block coefficient B188

satisfies B = 0. SE is closely associated with the analysis and189

synthesis of dynamic systems, such as the design of feedback190

control systems through pole assignment (see [40], [41]).191

C. Linear Matrix Equation192

The LME is of the general form193

DX + Q = 0 (5)194

or195

XA + Q = 0 (6)196

where D ∈ R
n×n, A ∈ R

m×m, Q ∈ R
n×m are the block197

coefficients and X ∈ R
n×m is the unknown matrix to be calcu-198

lated. Note that (5) is an NARE where the block coefficients199

satisfy A = 0 and B = 0. Also, (6) is an NARE where D = 0 200

and B = 0. LMEs frequently appear in science and engineer- 201

ing fields, such as robotic motion tracking and angle-of-arrival 202

localization [42], [43], [44], [45], [46]. 203

D. Matrix Inversion Equation 204

The matrix inversion (MI) equation is the LME of the form 205

DX − In = 0 (7) 206

in which D ∈ R
n×n is the block coefficient, In denotes the 207

n × n identity matrix and X ∈ R
n×n is unknown approxi- 208

mation of the inverse D−1 of D to be obtained. Notice also 209

that (7) is an NARE where the block coefficients are square 210

and A = 0, B = 0 and Q = −In. The MI problem is commonly 211

involved in numerous problems of science and engineering, for 212

example, as former steps in optimization, signal processing, 213

electromagnetic systems, and robot inverse kinematics [47], 214

[48], [49]. 215

III. SOLVING TV-NARE VIA ZND METHOD 216

In this section, both the TI NARE case and the TV NARE 217

case are approached by the ZND method. Note that, based 218

on the analysis provided in Section II, we can observe that 219

it is possible to extract all the remaining equations presented 220

therein from the NARE general form (1). Since 2001, when 221

Zhang and Wang [50] proposed the ZND evolution, this 222

method has been studied and established as a crucial class 223

of RNNs. Furthermore, the ZND evolution has been ana- 224

lyzed theoretically and substantiated comparatively for solving 225

time-varying problems accurately and efficiently. Following 226

the ZND design formula (see [7], [8], [9], [10], [11], [12], 227

[13], [14], [15]) under the linear activation, an appropriately 228

defined error matrix E(t) can dynamically adjusted as a result 229

of the evolution 230

Ė(t) = −λE(t) (8) 231

at which (̇) represents the first derivative operator as a function 232

of time t and λ > 0 represents the ZND design parameter. In 233

addition, the gain parameter λ determines the speed of con- 234

vergence. It is known that the exponential convergence rate of 235

the ZND dynamics is equal to λ [15]. The larger the value 236

of λ, the higher the convergence speed, and, thus, λ should be 237

set as large as the hardware permits. According to the ZND 238

design formula, E(t) is pushed to converge exponentially to 239

the null matrix. 240

A. TV-NARE Problem Formulation via ZND Method 241

Consider the subsequent general type of a TV-NARE 242

D(t)X(t)+ X(t)A(t)− X(t)B(t)X(t)+ Q(t) = 0 (9) 243

where A(t) ∈ R
m×m, B(t) ∈ R

m×n, D(t) ∈ R
n×n, Q(t) ∈ R

n×m, 244

X(t) ∈ R
n×m, and 0 ∈ R

n×m. Moreover, X(t) is an unknown 245

matrix of interest. 246

It is important to mention that the results in [21], [22], 247

and [23] refer to the particular case D(t) = AT(t) in (9). Our 248

goal is to solve the general TV-NARE problem. 249
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According to (9), the error matrix is equal to250

E(t) = D(t)X(t)+ X(t)A(t)− X(t)B(t)X(t)+ Q(t) (10)251

while its derivative is252

Ė(t) = Ḋ(t)X(t)+ D(t)Ẋ(t)+ Ẋ(t)A(t)+ X(t)Ȧ(t)253

− Ẋ(t)B(t)X(t)− X(t)Ḃ(t)X(t)− X(t)B(t)Ẋ(t)+ Q̇(t).254

Consequently, because of (8), the expanded ZND255

evolution is256

−λE(t) = Ḋ(t)X(t)+ D(t)Ẋ(t)+ Ẋ(t)A(t)+ X(t)Ȧ(t)257

− Ẋ(t)B(t)X(t)− X(t)Ḃ(t)X(t)258

− X(t)B(t)Ẋ(t)+ Q̇(t)259

or260

− λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)+ X(t)Ḃ(t)X(t)− Q̇(t)261

= D(t)Ẋ(t)+ Ẋ(t)A(t)− Ẋ(t)B(t)X(t)− X(t)B(t)Ẋ(t). (11)262

Note that, to ensure solvability of (11) we cannot include263

X(t) inside the mass matrix of (11), and to overcome this dif-264

ficulty, the vectorization procedure and the Kronecker product265

⊗ are applied on (11). We set as v(t) the result of vectorization266

in the left part of (11), so we have267

v(t) = vec
(

− λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)268

+X(t)Ḃ(t)X(t)− Q̇(t)
)
. (12)269

We repeat the process (i.e., vectorization) in the right part270

of (11), and we have271

vec
(

D(t)Ẋ(t)+ Ẋ(t)A(t)− Ẋ(t)B(t)X(t)− X(t)B(t)Ẋ(t)
)

272

=
(

Im ⊗ D(t)+ A(t)T ⊗ In − Im ⊗ X(t)B(t)273

− (B(t)X(t))T ⊗ In

)
vec

(
Ẋ(t)

)
. (13)274

In addition, by setting275

M(t) = Im ⊗ D(t)+ A(t)T ⊗ In − Im ⊗ X(t)B(t)276

− (B(t)X(t))T ⊗ In (14)277

and278

ẋ(t) = vec
(
Ẋ(t)

)
279

the combination of (13) and (11) results in implicit dynamic280

behavior shown below281

v(t) = M(t)ẋ(t) (15)282

in which v(t) is defined by (12). The consistency of the linear283

system (15) is constrained by284

M(t)M(t)†v(t) = v(t)285

and its general solution in this case is286

ẋ(t) = M(t)†v(t)+
(

I − M†(t)M(t)
)

y (16)287

such that y is a vector of proper size. The best approximate288

solution to the dynamics (15) is given by289

ẋ(t) = M(t)†v(t) (17)290

where ()† denotes the pseudoinverse operator. If (15) is solv- 291

able, (17) is its solution, while in the opposite case, (17) gives 292

the best approximate solution to (15). Note that {(12), (14), 293

(17)} consist of the suggested ZNDTV-NARE model which 294

could be efficiently solved with the use of an ode MATLAB 295

solver. 296

According to the previous discussion, we may conclude 297

that (11) cannot be implemented in MATLAB, whereas (17) 298

can. We certainly have the cost of calculating the pseudoin- 299

verse of M(t). Theorem 1 proves the exponential convergence 300

of the ZNDTV-NARE {(12), (14), (17)} to the theoretical 301

solution (9). 302

Theorem 1: Let A(t) ∈ R
m×m, B(t) ∈ R

m×n, D(t) ∈ 303

R
n×n, Q(t) ∈ R

n×m be differentiable. The ZNDTV-NARE 304

model {(12), (14), (17)} has exponential convergence to the 305

theoretical solution of TV-NARE (9), for any initial value 306

X(0). 307

Proof: The error matrix equation E(t) is determined as 308

in (10), inline with the ZND architecture, to achieve the solu- 309

tion X(t) of TV-NARE (9). From [50, Theorem], the solution 310

of (11) converges to the exact solution X∗(t) of (9) as t → ∞. 311

In addition, from the derivation process, the conclusion is 312

that (15) is a vectorized form of (11). As a conclusion, x(t) 313

defined by the dynamics (15) converges to x∗(t) = vec(X∗(t)) 314

as t → ∞. Since the convergence x(t) → x∗(t) = vec(X∗(t)) 315

is valid for arbitrary ẋ(t) in (16), it is also valid for ẋ(t) in (17). 316

Thus, the proof is finished. 317

IV. PARTICULAR CASES OF ZNDTV-NARE DESIGN 318

The applicability of the defined model is illustrated by 319

several covered cases. 320

A. TI-NARE Problem Formulation via ZND Method 321

Consider the general type of a TI-NARE 322

DX(t)+ X(t)A − X(t)BX(t)+ Q = 0 (18) 323

wherein A ∈ R
m×m, B ∈ R

m×n, D ∈ R
n×n, Q ∈ R

n×m, X(t) ∈ 324

R
n×m, and 0 ∈ R

n×m. In addition, X(t) ∈ R
n×m is an unknown 325

matrix. 326

By setting the error function 327

E(t) = DX(t)+ X(t)A − X(t)BX(t)+ Q 328

which fulfills 329

Ė(t) = DẊ(t)+ Ẋ(t)A − Ẋ(t)BX(t)− X(t)BẊ(t) 330

the general evolution (8) initiates 331

− λE(t) = DẊ(t)+ Ẋ(t)A − Ẋ(t)BX(t)− X(t)BẊ(t). (19) 332

An application of the vectorization rules to (19) gives 333

vec(−λE(t))

=
(

Im⊗D+AT⊗In−(BX(t))T⊗In−Im⊗X(t)B
)

vec
(
Ẋ(t)

)
.

334

Furthermore, by setting 335

v(t) = −λvec(E(t)), ẋ(t) = vec
(
Ẋ(t)

)
(20) 336
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and337

M(t) = Im ⊗ D + AT ⊗ In − (BX(t))T ⊗ In − Im ⊗ X(t)B338

(21)339

one obtains the system of linear equations of the form (15).340

One of the solutions of the implicit system (15) is given by the341

explicit dynamics (17). Note that {(17), (20), (21)} represents342

the proposed ZNDTI-NARE model which can efficiently be343

implemented with the use of an ode MATLAB solver.344

B. ZNDTV-NARE Design for Solving Particular Equations345

The choice of B(t) ≡ 0 in NARE makes the ZNDTV-NARE346

design suitable for solving the TV SE. That is, the TV SE is347

defined using the error matrix348

E(t) = D(t)X(t)+ X(t)A(t)+ Q(t)349

where A(t) ∈ R
m×m, D(t) ∈ R

n×n, Q(t) ∈ R
n×m, X(t) ∈ R

n×m.350

Then, the ZNDTV-NARE design becomes the ZND for solving351

the TV SE352

− λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)− Q̇(t)353

= D(t)Ẋ(t)+ Ẋ(t)A(t). (22)354

In [51], [52], [53], and [54], various finite-time convergent355

ZND models of type (22) are used to solve the SE and are356

centered on appropriate nonlinear activation.357

Finite-time convergent RNN models based on improving the358

standard ZND evolution are considered in [55] and [56].359

The proposed explicit dynamical system {(12), (14), (17)}360

can be applied in solving the TV SE in the particular case361

ẋ(t) = vec
(
Ẋ(t)

) = (
Im ⊗ D(t)+ A(t)T ⊗ In

)†
v(t) (23)362

where363

v(t) = vec
(−λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)− Q̇(t)

)
.364

The choice of B(t) ≡ 0, D(t) ≡ A(t)T in NARE makes365

the ZNDTV-NARE design suitable for solving the Lyapunov366

equation.367

ZND models for solving the Lyapunov equation based on368

appropriate nonlinear activation are considered in [57], [58],369

[59], and [60]. The finite-time convergent RNN model based370

on improving the standard ZND evolution was considered371

in [61].372

The following particular case of the explicit dynamical373

system {(12), (14), (17)} can be applied in solving the TV374

Lyapunov equation:375

ẋ(t) = (
Im ⊗ (A(t))T + (A(t))T ⊗ In

)†
v(t) (24)376

where377

v(t) = vec
(−λE(t)− ȦT(t)X(t)− X(t)Ȧ(t)− Q̇(t)

)
.378

It is essential to mention that the evolution (23) [resp., (24)]379

has not been used so far in solving the Sylvester (resp.,380

Lyapunov) equation. Finally, the LME (5) can be solved using381

the dynamics382

ẋ(t) = (Im ⊗ D(t))†v(t). (25)383

The dual LME (6) can be solved using the dynamics 384

ẋ(t) = (
(A(t))T ⊗ In

)†
v(t). (26) 385

V. HYBRID TV-NARE MODEL IN FTRE CONTROL 386

The backward-in-time Riccati equation, which uses 387

advanced dynamics knowledge to calculate feedback gains 388

over the control horizon, is used to manage optimal control of 389

LTV systems (see [62], [63]). The proposed hybrid model has 390

the ability to stabilize LTV systems. It uses the FTRE approach 391

presented in [2], which is motivated by the equivalent SDRE 392

process. The SDRE technique is a systematic and efficient 393

way to design nonlinear feedback controllers for a wide range 394

of nonlinear systems. More precisely, SDRE is employed 395

for nonlinear dynamics ż(t) = f (z, u) which can be formu- 396

lated in the pseudo-linear shape ż(t) = A(z, u)z + G(z, u)u, 397

for which the solution of ARE is generated at each time 398

instant t, as A(z(t),U(t)) and G(z(t),U(t)) being the chosen 399

dynamics and the input matrices, respectively. The FTRE con- 400

trol is associated with the SDRE approach and includes the 401

factorization 402

ż(t) = f (z(t),U(t)), z(0) = z0 (27) 403

into the state-dependent style, where z ∈ R
n represents the 404

state vector, u ∈ R
m represents the input vector, f : Rn → R

n is 405

a function, and G : Rn → R
n×m. The linear structure provided 406

by the factorization is as follows: 407

ż(t) = A(z(t),U(t))z(t)+ G(z(t),U(t))U(t) 408

z(0) = z0. (28) 409

Furthermore, in controller design, state-dependent weight- 410

ing matrices provide versatility. 411

The task is to obtain a state-feedback control law in the pat- 412

tern U(t) = −K(z(t))z(t), which minimizes the cost function 413

of infinite-horizon performance [2] 414

J(z0, u) = 1

2

∫ ∞

0

[
zT(t)R1(z(t))z(t)+ uT(t)R2(z(t))U(t)

]
dt 415

(29) 416

where R1(z) ∈ R
n×n is positive semidefinite, R2(z) ∈ R

m×m is 417

positive definite. The state-feedback control law is defined as 418

U(t) = −K(z(t))z(t) 419

= −R−1
2 (z(t))GT(z(t),U(t))X(z(t))z(t) (30) 420

such that X(z) means the solution of the state-dependent ARE 421

AT(z)X(z)+ X(z)A(z)− X(z)G(z)R−1
2 (z)GT(z)X(z)+ R1(z) = 0. 422

(31) 423

The SDRE approach is heuristic because the control law 424

may not always be optimal and may not have been stabilized. 425

As proposed in [2], we adapt the SDRE approach to LTV 426

systems. In the FTRE process, at each moment, we “freeze” 427

the state and input matrices and deal with them as time- 428

invariant matrices. The solution X(t) to the frozen-time ARE 429

can be launched as a solution to 430
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AT(t)X(t)+ X(t)A(t)− X(t)G(t)R−1
2 (t)GT(t)X(t)+ R1(t) = 0.431

(32)432

The control law is calculated in the same way as the linear433

quadratic regulator problem434

U(t) = −R−1
2 (t)GT(t)X(t)z(t). (33)435

In [64] and [65], it has been shown that the FTRE control436

inherits the stability properties of the SDRE controller.437

By setting D(t) = A(t), B(t) = G(t)R−1
2 (t)GT(t) and438

Q(t) = R1(t) in (9), it is observable that (32) can be solved439

via the ZNDTV-NARE model {(12), (14), (17)}. Considering440

that the solution X(t) to (32) is identified, the state-feedback441

control law of (33) can also be found and then (28) is solvable.442

Thus, (28) is rewritten as443

ż(t) = A(t)z(t)+ G(t)
( − R−1

2 (t)GT(t)X(t)z(t)
)

444

or in the next equivalent form445

ż(t) = (
A(t)− G(t)R−1

2 (t)GT(t)X(t)
)
z(t). (34)446

The stability of the SDRE method is demonstrated in447

Theorem 2, which considers the general infinite-horizon non-448

linear regulator problem of minimizing (29) concerning the449

state x and the control w subject to the nonlinear differential450

constraint (28). Furthermore, keep in mind that Ck indicates451

the space of continuous functions with continuous first k452

derivatives.453

Theorem 2: With respect to the state z and the control454

U, consider the generic infinite-horizon nonlinear regulator455

problem of minimizing (29) under the nonlinear differen-456

tial constraint (28). Let us assume, that A(z), G(z), R1(z),457

and R2(z) belong to C
k and that A(z) is both a stabilizable458

and detectable parameterization of the nonlinear system. The459

SDRE method then generates a closed-loop solution that is460

locally asymptotically stable.461

Proof: It is important to keep in mind that (34) provides the462

closed-loop solution, i.e.,463

ż = (
A(z)− G(z)R−1

2 (z)GT(z)X(z)
)
z

= Ac(z)z
464

and the Riccati equation theory guarantees that the closed-loop465

matrix466

Ac(z) = A(z)− G(z)R−1
2 (z)GT(z)X(z)467

is stable at every point z. X(z) and Ac(z) are both smooth due468

to the smoothness assumptions. We expand the matrix Ac(z)469

into the partial Taylor series expansion about zero470

ż ≈ Ac(z)z + ψ(z) · ‖z‖471

with ψ(z) of k order and472

lim‖z‖→0
ψ(z) = 0.473

The linear term, which involves a constant stable coef-474

ficient matrix, prevails the higher-order term in a narrow475

neighborhood around the origin, resulting in local asymptotic476

stability.477

Setting D(t) = AT(t), B(t) = G(t)R−1
2 (t)GT(t), Q(t) = 478

R1(t), (32) yields (9). Based on this, (34) can be rewrittenas 479

ż(t) = (
A(t)− B(t)X(t)

)
z(t). (35) 480

Thus, the HZND-FTREC model is obtained by combin- 481

ing (15) and (35) as in the following: 482

[
v(t)(

A(t)− B(t)X(t)
)
z(t)

]
=

[
M(t) 0

0 Im

][
ẋ(t)
ż(t)

]
. (36) 483

One explicit form of the dynamics (36) is equal to 484

[
ẋ(t)
ż(t)

]
=

[
M(t) 0

0 Im

]†[ v(t)(
A(t)− B(t)X(t)

)
z(t)

]
. (37) 485

The proposed HZND-FTREC model is (37), which can effi- 486

ciently be solved with the use of an ode MATLAB solver. 487

The stability of the HZND-FTREC model (37) is demon- 488

strated in Theorem 2, which considers the general infinite- 489

horizon nonlinear regulator problem of minimizing (29) with 490

respect to the state x and the control w under the nonlinear 491

differential restriction (28). 492

Theorem 3: With respect to the state z and the control U, 493

consider the generic infinite-horizon nonlinear regulator 494

problem of minimizing (29) under the nonlinear differen- 495

tial constraint (28). Let us assume, that A(z), G(z), R1(z), 496

and R2(z) belong to C
k and that A(z) is both a stabilizable 497

and detectable parameterization of the nonlinear system. The 498

HZND-FTREC method then generates a closed-loop solution 499

that is locally asymptotically stable. 500

Proof: Because the HZND-FTREC model (37) is composed 501

of the ZNDTV-NARE model {(12), (14), (17)} and the SDRE 502

method, it can be deduced from Theorems 1 and 2 that the 503

HZND-FTREC model (37) generates a locally asymptotically 504

stable closed-loop solution. 505

VI. NUMERICAL EXAMPLES 506

This section includes ten examples, four of which are shown 507

to verify the efficacy and accuracy of the ZNDTV-NARE 508

{(12), (14), (17)}, and three more are shown to verify the effi- 509

cacy and accuracy of the ZNDTI-NARE {(20), (21), (17)}. 510

The examples applied to LTV and nonlinear systems are 511

intended to validate the efficacy and accuracy of the evolu- 512

tion (37). As a preliminary to the following examples, it is 513

necessary to identify the parameters and symbols and provide 514

additional details. 515

1) The time interval for the computation is limited to 516

[0, 10]. That is, t0 = 0 is the initial time and tf = 10 is 517

the final time. 518

2) ‖·‖F denotes the Frobenius norm of a matrix. 519

3) We have set λ = 10 in all numerical examples in this 520

section, with the exception of the numerical example 521

Section VI-A, where λ = 10, 100, 1000. 522

4) The solution of {(17), (20), (21)}, the solution of 523

{(12), (14), (17)}, and the solution of (37) are obtained 524

by employing the ode15s MATLAB solver. 525
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Performance of ZNDTV-NARE for solving examples Sections VI-A–VI-C and VI-G. (a)–(d) Error E(t) produced by ZNDTV-NARE in examples
Sections VI-A–VI-C and VI-G, respectively. (e)–(h) Trajectories of the solution X(t) produced by ZNDTV-NARE in examples Sections VI-A–VI-C and VI-G,
respectively.

A. Numerical Example 1526

In this example, consider the initial matrices D(t), A(t),527

B(t), and Q(t) of dimensions 4 × 4, 2 × 2, 2 × 4, and 4 × 2,528

respectively, as529

D(t) =

⎡
⎢⎢⎢⎣

sin(t)+ 1 sin(t)+ 1 sin(t)+ 1 sin(2t)+ 1

sin(t)+ 2 sin(t)+ 2 sin(t)+ 2 sin(2t)+ 2

sin(t)+ 3 sin(t)+ 3 sin(t)+ 3 sin(2t)+ 3

sin(t)+ 4 sin(t)+ 4 sin(t)+ 4 sin(2t)+ 4

⎤
⎥⎥⎥⎦530

B(t) =
[

sin(t)+ 1 sin(t)+ 4 sin(t)+ 4 sin(t)+ 4

sin(t)+ 4 sin(t)+ 2 − sin(t)− 5 sin(t)+ 4

]
531

A(t) =
[

cos(t)+ 3 sin(t)+ 4

sin(t)+ 2 − sin(t)− 7

]
Q(t) =

⎡
⎢⎢⎢⎣

sin(t)+ 7 sin(t)+ 4

sin(t)+ 4 sin(t)+ 6

sin(t)+ 1 sin(t)+ 6

sin(t)+ 6 sin(t)+ 3

⎤
⎥⎥⎥⎦.532

Setting the initial value of X(t) as X(0) =
[

1 0 0 0
0 1 0 0

]T

,533

the results of ZNDTV-NARE are depicted in Fig. 2(a) and (e).534

B. Numerical Example 2535

Let A(t), B(t), and Q(t) as536

A(t) =
⎡
⎣

sin(t)+ 2 sin(t)+ 4 cos(t)− 2
− sin(t)+ 4 sin(2t)+ 4 3 sin(t)− 20
− cos(2t)− 3 − sin(t)− 2 − sin(2t)− 5

⎤
⎦537

B(t) =
⎡
⎣

3 sin(t)+ 9 − sin(t)+ 5 cos(3t)+ 2
− sin(t)+ 5 cos(t)+ 1/2 cos(t)+ 6
cos(3t)+ 2 cos(t)+ 6 sin(2t)+ 3/2

⎤
⎦538

Q(t) =
⎡
⎣

2 sin(t)+ 10 cos(t)+ 7 cos(2t)+ 3/2
cos(t)+ 7 2 − cos(t)+ 5

cos(2t)+ 3/2 − cos(t)+ 5 sin(2t)+ 4

⎤
⎦.539

Additionally, we set D(t) = AT(t), transforming in that way540

the NARE into an ARE. By initializing X(t) with the two541

values listed as 542

X1(0) =
⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ and X2(0) =

⎡
⎣

1 1 0
1 − 1 1
0 1 − 2

⎤
⎦ 543

the results of ZNDTV-NARE are depicted in Fig. 2(b) and (f). 544

Note that Fig. 2(f) also includes the Schur method’s suggested 545

solution from [32]. 546

C. Numerical Example 3 547

The following input matrices A(t) and Q(t) are considered 548

in this example: 549

A(t) =
[−1 − 1/2 cos(2t) 1/2 sin(2t)

1/2 sin(2t) − 1 + 1/2 cos(2t)

]

Q(t) =
[

sin(2t) cos(2t)
− cos(2t) sin(2t)

]
.

550

Additionally, we set B(t) = 0 and D(t) = AT(t), converting 551

the NARE to a CLE. By initializing X(t) with X(0) = 0, the 552

results of ZNDTV-NARE are depicted in Fig. 2(c) and (g). 553

Note that the theoretical solution of this example is 554

X�(t) =
[ − sin(2t)(−2+cos(2t))

3
(1−2 cos(2t))(2+cos(2t))

6
(1+2 cos(2t))(2−cos(2t))

6
(2+cos(2t)) sin(2t)

3

]
. 555

D. Numerical Example 4 556

The following constant matrices A,B, and Q of dimensions 557

2 × 2 are considered in this example: 558

A =
[

4 1
−2 8

]
,B =

[
7 4
4 6

]
,Q =

[
3 − 4

−4 5

]
. 559

Moreover, we convert the NARE to an ARE by using D(t) = 560

AT(t). Setting 561

X1(0) =
[

2 − 2
−2 4

]
,X2(0) =

[
0 0
0 0

]
, and X3(0) =

[
1 1
1 1

]
562
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Performance of ZNDTI-NARE for solving examples Section VI-D–
VI-F. (a)–(c) Error E(t) generated by ZNDTI-NARE in examples
Section VI-D–VI-F, respectively. (d)–(f) Trajectories of the solution X(t)
generated by ZNDTI-NARE in examples Section VI-D–VI-F, respectively.

as three initial values of X(t), the results of ZNDTI-NARE are563

depicted in Fig. 3(a) and (d). Note that Fig. 3(d) also includes564

the Schur method’s suggested solution from [32].565

E. Numerical Example 5566

In this example the following matrices D, A, and Q of567

dimensions 4 × 4, 2 × 2, 2 × 4, and 4 × 2, respectively, are568

given as input569

D =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, A =

[
0 − 1
1 0

]
, Q =

⎡
⎢⎢⎣

−1 0
1 0
0 − 1

−1 1

⎤
⎥⎥⎦.570

Additionally, we convert the NARE to a SE by setting571

B = 0. Setting the initial value of X(t) as X(0) = 0, the results572

of ZNDTI-NARE {(17), (20), (21)} are depicted in Fig. 3(b)573

and (e). Note that the theoretical solution in this example is574

X�(t) =
[

0.7 − 1.3 0.5 0
−0.1 − 0.1 − 0.5 1

]T

.575

F. Numerical Example 6576

In this example, the input matrices D and Q are given as577

D =
⎡
⎣

1 0 1
1 1 0
1 1 1

⎤
⎦, Q =

⎡
⎣

−1 0 0
0 − 1 0
0 0 − 1

⎤
⎦.578

Additionally, we set A = B = 0, so converting the NARE 579

to an MIE. By setting X(0) = 0, as the initial value of X(t), 580

the obtained results of ZNDTI-NARE are depicted in Fig. 3(c) 581

and (f). Note that the theoretical solution of this example is 582

X�(t) =
⎡
⎣

1 1 − 1
−1 0 1
0 − 1 1

⎤
⎦. 583

G. Example on Larger Dimensions 584

The following n-dimensional input matrices are used in 585

this example: D(t) = (4 + sin(t))In, B(t) = (7 + sin(t))In, 586

Q(t) = (5 + sin(t))In. Furthermore, we use D(t) = AT(t), thus 587

converting the NARE to an ARE. Starting from the initial state 588

of X(0) = In and for n = 50, the results of ZNDTV-NARE are 589

depicted in Fig. 2(b) and (f). Note that Fig. 2(f) also includes 590

the Schur method’s suggested solution from [32]. 591

H. Application to LTV 592

The Mathieu equation [66] is a linear differential equation 593

with variable (periodic) coefficients and typically occurs in 594

two different ways in solving nonlinear vibration problems. 595

One way is in systems where periodic forcing occurs, and the 596

other is in stability studies of periodic motions in autonomous 597

nonlinear systems. By considering the Mathieu equation 598

q̈(t)+ (ζ + θ cos(ωt))q(t) = gU(t) (38) 599

and by defining the state vector z(t) =
[

q(t)
q̇(t)

]
, the dynam- 600

ics (38) can be rewritten in state-dependent coefficient form 601

with 602

A(t) =
[

0 1
(ζ + θ cos(ωt)) 0

]
,G(t) =

[
0
g

]
. 603

The parameter values are ζ = 1, θ = 1, ω = 1, g = 1, and 604

by letting R1 = I2, R2 = 0.001 and R2 = 1, we set the initial 605

value of X(t) as X(0) = ones(2) and apply (37). Furthermore, 606

z(t) has two sets of initial conditions (ICs), denoted as IC1 607

and IC2. The IC1 corresponds to z(0) = [3, 0]T, and IC2 608

corresponds to z(0) = [−5, 1]T. Note that the goal should 609

be to drive the states to the equilibrium [0, 0]T and, hence, 610

to stabilize (38). By applying (37) and the FTRE and FPRE 611

controls [2], the results of phase portraits of the closed-loop 612

responses, for two values of IC, are displayed in Fig. 4(b) for 613

R2 = 0.001, and in Fig. 4(d) for R2 = 1. 614

I. Applications to Nonlinear Systems 615

A nonconservative oscillator with nonlinear damping that 616

has been successfully applied in several fields, such as biomed- 617

ical engineering, power system, control, combustion process, 618

robotics, etc., is the Van der Pol oscillator [67]. As a con- 619

sequence, Van der Pol oscillator control has considerable 620

practical significance. In this application, we consider the 621

FPRE stabilization of the Van der Pol oscillator 622

q̈(t)− μ
(

1 − q2(t)
)

q̇(t)+ q(t) = gU(t) (39) 623
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation and stabilizing the Van der Pol oscillator and a spring–mass
system. (a) and (b) Mathieu Equation’s closed-loop outputs and associated phase portraits with R2 = 0.001. (c) and (d) Mathieu Equation’s closed-loop outputs
and associated phase portraits with R2 = 1. (e) and (f) Van der Pol oscillator’s closed-loop outputs and associated phase portraits. (g) and (h) Closed-loop
outputs and associated phase portraits for the mass joined to a wall through a spring.

where μ > 0 and g are real numbers. Defining the state624

vector z(t) =
[

q(t)
q̇(t)

]
, (39) can be written in state-dependent625

coefficient form with A(t) =
[

0 1
1 μ(1 − q2(t))

]
,G(t) =

[
0
g

]
.

626
In this application, we use the parameter values μ = 0.25,627

g = 1, and let z(0) = [5, 3]T, R1 = I2, and R2 = 1.628

Furthermore, we consider three options of IC, namely, IC1,629

IC2, and IC3, where we have set as initial values of X(t),630

X1(0) = zeros(2), X2(0) = 10I2, and X3(0) = 100I2, respec-631

tively. By applying (37) and the FTRE and FPRE controls [2],632

the generated results of phase portraits of the closed-loop633

responses for three sets of IC are displayed in Fig. 4(f).634

J. Application to Specific Scenario635

This application considers a mass that is connected to a wall636

by a spring with variable stiffness k(t). The open-loop system637

is described by638

z(t) =
[

q(t)
q̇(t)

]
, A(t) =

[
0 1

− k(t)
m 0

]
, G(t) =

[
0
1
m

]
639

where q(t) signifies the position, k(t) signifies the stiffness,640

which varies over time and can be positive or negative, and641

q̇(t) signifies the mass’s velocity. Let k(t) = sin(t), m = 4,642

R1(t) = I2, and R2(t) = 1, we initialize X(t) and z(t) with643

X(0) =ones(2) and z(0) = [4,−1]T. By applying (37) and644

the FTRE and FPRE controls [2], the generated results of645

phase portraits of the closed-loop responses are displayed in646

Fig. 4(h).647

K. Analysis of Experimental Results648

In this section, the presented experimental results for649

the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC650

are commented on and analyzed. In numerical examples 651

Section VI-A–VI-C, we notice that the error ‖E(t)‖F = 652

‖D(t)X(t)+ X(t)A(t)− X(t)B(t)X(t)+ Q(t)‖F, rapidly con- 653

verges to zero in Fig. 2(a)–(d). That is, ZNDTV-NARE (9) 654

is convergent. Particularly, Fig. 2(a) includes three errors 655

produced from three different design parameter values, i.e., 656

λ = 10, 100, 1000. The graphs in this figure demonstrate that 657

the model produces a lower overall error with a faster con- 658

vergence as the value of the parameter λ increases. Fig. 2(b) 659

includes two errors produced from two initial values of X(t) in 660

Example Section VI-B. The graphs in this figure show that the 661

initial values of X(t) have no impact on the model’s overall 662

error or speed of the convergence. In Fig. 2(e) and (f) tra- 663

jectories of the solution X(t) produced by ZNDTV-NARE are 664

presented, wherefrom it is observable that X(t) rapidly con- 665

verges to the exact solution. Particularly, Fig. 2(e) includes 666

three solutions produced from three different design parame- 667

ter values, i.e., λ = 10, 100, 1000. The graphs in this figure 668

show that as the parameter λ increases, the model generates the 669

same solution but with a faster convergence. Fig. 2(f) includes 670

trajectories of two solutions produced from two initial values 671

of X(t) in Example Section VI-B as well as the solution pro- 672

vided by the Schur method originated in [32]. The graphs in 673

Fig. 2(f) show the influence of the initial values for X(t) on 674

the model’s solution. It is clear that the ZND model generates 675

various solutions X1(t) and X2(t) depending on the initial val- 676

ues of X(t). Fig. 2(g) and (h) include the theoretical and the 677

Schur’s method solution, respectively. 678

In numerical examples Section VI-D-VI-F, we observe that 679

the error ‖E(t)‖F = ‖DX(t)+ X(t)A − X(t)BX(t)+ Q‖F, is 680

rapidly convergent to 0 in Fig. 3(a)–(c). That is, ZNDTI- 681

NARE (18) is solved. Fig. 3(a) includes three errors produced 682

from three initial values in Example Section VI-D. The 683

solution X(t) produced by ZNDTI-NARE is presented in 684
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation with R2 = 0.001 and stabilizing a spring–mass system
under various settings of ode15s MATLAB solver. (a) and (b) Mathieu Equation’s ARE error under default settings of ode15s MATLAB solver. (c) and
(d) Mathieu Equation’s ARE trajectories under custom settings of ode15s MATLAB solver. (e) and (f) Spring–mass system’s ARE error under default settings
of ode15s MATLAB solver. (g) and (h) Spring–mass system’s ARE trajectories under custom settings of ode15s MATLAB solver.

Fig. 3(d)–(f), where we see that X(t) quickly converges to the685

solution. The graphs in Fig. 3(a) and (d) illustrate the behavior686

of solutions X1(t),X2(t),X3(t) generated by the initial values687

of X(t) in example Section VI-D. Fig. 3(a) shows the influence688

of the initial values on the error matrix ‖E(t)‖F generated by689

X1(t),X2(t),X3(t). Graphs in Fig. 3(d) show the trajectories of690

elements in X1(t),X2(t),X3(t). It is clear that the ZND model691

generates various solutions X1(t),X2(t),X3(t) depending on692

the initial values. Fig. 3(d) includes three solutions produced693

for three different initial values of X(t) as well as the solu-694

tion provided by the Schur method from [32]. Furthermore,695

Fig. 3(e) and (f) includes graphs of theoretical solutions.696

In addition, the following is important to mention about697

numerical examples Section VI-A–VI-G.698

1) The coefficient matrices in Sections VI-B, VI-D,699

and VI-G converted the NARE to an ARE.700

2) The input coefficient matrices in Section VI-C converted701

the NARE to a CLE.702

3) The input coefficient matrices in Section VI-E converted703

the NARE to an SE.704

4) The input coefficient matrices in Section VI-F converted705

the NARE to an MIE.706

In applications Section VI-H–VI-J, the asymptotic stability707

of the HZND-FTREC (37) is always slightly better than the708

stability of the FTRE control [2] and significantly better than709

that of the FPRE control [2]. More precisely, in application710

to LTV Section VI-H, the Mathieu equation is stabilized for711

two different ICs of z(t) under two different values in R2.712

The closed-loop responses of z(t) and their phase portraits are713

displayed in Fig. 4(a) and (c) and (b) and (d), respectively,714

where we observe that HZND-FTREC of (37) provides faster715

stabilization than the FTRE and FPRE controls, even for large716

values of R2. In application to nonlinear systems Section VI-I,717

the Van der Pol oscillator is stabilized for three different initial718

values of X(t). The closed-loop responses of z(t) and their 719

phase portraits are displayed in Fig. 4(e) and (f), where we 720

observe that HZND-FTREC of (37) provides, slightly, more 721

stable asymptotic behavior than the FTRE and FPRE controls. 722

In application to specific scenario Section VI-J, a mass con- 723

nected to a wall by a spring with variable stiffness k(t) is 724

stabilized. In Fig. 4(g) and (h), the closed-loop responses of 725

z(t) and their phase portraits are displayed, where we observe 726

that HZND-FTREC of (37) provides, slightly, more stable 727

asymptotic behavior than the FTRE and FPRE controls. 728

To further validate the performance of the HZND- 729

FTREC model (37) and demonstrate the distinction between 730

the HZND-FTREC, FTRE, and FPRE controls, the ARE 731

error ‖AX(t)+ X(t)A − X(t)BX(t)+ Q‖F of the applications 732

Section VI-H and VI-J is measured under various settings 733

of ode15s MATLAB solver. It is important to note that all 734

numerical examples and applications in this section have used 735

the default settings of ode15s MATLAB solver calculating 736

with double precision (eps = 2.22 · 10−16). Therefore, the 737

minimum value for most error measurements in this section 738

is of the order 10−5. For the custom settings used in the 739

results of Fig. 5, we set the relative tolerance and the absolute 740

tolerance of ode15s to 10−15, while the design parameter 741

was set to λ = 104. Particularly, Fig. 5(a) and (e) shows 742

the ARE errors of Mathieu Equation with R2 = 0.001 and 743

spring–mass system, respectively, under the default settings 744

of ode15s and the design parameter λ = 10. In these fig- 745

ures, we observe that the FTRE that uses the Schur method’s 746

suggested solution has the best accuracy and the FPRE has 747

the worst accuracy. When using the custom settings, the ARE 748

errors of Mathieu Equation with R2 = 0.001 and spring–mass 749

system are presented in Fig. 5(c) and (g). In these figures, 750

we note that the HZND-FTREC has the best accuracy, while 751

the performance of FTRE and FPRE is unaffected by the 752
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changes in the settings of the ode15s. This conclusion is753

further supported by a comparison between the ARE trajecto-754

ries shown in Fig. 5(b) and (f) and those shown in Fig. 5(d)755

and (h), respectively. While the ARE trajectories generated756

by FTRE and FPRE are unaffected by the changes in the757

ode15s settings, we observe in these figures that the ARE tra-758

jectories generated by HZND-FTREC converge faster to the759

ARE trajectories generated by FTRE. We also observe that760

FPRE generates a different and less accurate ARE solution761

than FTRE in both applications. The HZND-FTREC generates762

the same ARE solution as the FTRE, and under the ode15s763

custom settings, the HZND-FTREC solution is more accurate764

than FTRE’s.765

Consequently, we can say that the TV-NARE problem (9),766

the TI-NARE problem (18), and HZND-FTREC problem (37)767

can be successfully solved by the ZNDTV-NARE, ZNDTI-768

NARE, and HZND-FTREC, respectively, while the HZND-769

FTREC is a more advanced version of the FTRE and is more770

effective than both the FTRE and FPRE.771

VII. CONCLUSION772

This article examines the TV-NARE problem in detail. The773

ZND approach, in conjunction with the definition of a conve-774

nient error matrix for addressing the TV-NARE problem, led775

to the development of the suggested ZNDTV-NARE model.776

Several particular cases of ZNDTV-NARE design are derived,777

including the ZNDTI-NARE model, and models for solv-778

ing Sylvester and Lyapunov equation. Furthermore, a hybrid779

TV-NARE model, called HZND-FTREC, is introduced to780

incorporate the FTRE approach to optimal control of the781

LTV system. Computer simulation further showed that the782

proposed models successfully solved ten examples, three of783

which included applications to LTV and nonlinear systems.784

In that manner, the efficacy of the proposed flows for solv-785

ing the TV-NARE, TI-NARE, and optimal control of LTV786

systems has thus been demonstrated. The finding reached is787

that the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC788

models are helpful and efficient in solving the TV-NARE, TI-789

NARE, and optimal control of LTV systems, respectively. It790

is worth mentioning that the ZNDTV-NARE model’s ability791

to provide several solutions for various initial values without792

allowing the user to specify a particular solution as the target793

is a disadvantage.794

Some areas of future research can be pointed out.795

1) The ZNDTV-NARE and HZND-FTREC streams can796

be investigated using a nonlinear activation function.797

Nonlinear ZNDTV-NARE and HZND-FTREC flows798

with terminal convergence could be studied in this direc-799

tion. This approach will be a generalization of finite-time800

convergent nonlinearly activated dynamical systems for801

calculating the time-varying matrix pseudoinverse [14],802

as well as for solving the time-varying SE [42], [43],803

[51], [58].804

2) It is helpful to extend recently proposed finite-time805

convergent neural flows for solving time-varying linear806

complex matrix equations [7] or the time-varying807

Sylvester matrix equation [55] into more general finite- 808

time convergent ZNDTV-NARE and HZND-FTREC 809

evolutions. 810

3) The open area of research in machine control that is 811

related to fuzzy logic (see [27], [28], [68]) could be 812

paired with the ZND design. This research will lead to 813

the creation of novel ZND designs for tracking control 814

of nonlinear systems. 815

4) Because all types of noise have a significant impact 816

on the accuracy of the proposed ZND approaches, the 817

proposed ZNDTV-NARE, ZNDTI-NARE, and HZND- 818

FTREC models suffer from noise insensitivity. Future 819

research can be directed at expanding derived mod- 820

els into integration-enhanced and noise-tolerant ZND 821

dynamical systems. 822

5) As analyzed in the introduction, heterogeneous ARE 823

variants are involved in solutions to numerous contin- 824

uous time or discrete time problems. Each of these 825

applications provides the possibility of applying the 826

proposed models or their discretization. 827

6) Note that convergence occurs faster for greater values of 828

λ. For further noteworthy characteristics and variations 829

of the ZND’s design parameter λ see [15], [69]. 830
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Riccati Equations With Zeroing Neural Dynamics

Theodore E. Simos, Vasilios N. Katsikis , Spyridon D. Mourtas , and Predrag S. Stanimirović

Abstract—The problem of solving algebraic Riccati equations1

(AREs) and certain linear matrix equations which arise from2

the ARE frequently occur in applied and pure mathematics,3

science, and engineering applications. In this article, by con-4

sidering the nonsymmetric ARE (NARE) as a general form of5

ARE, the time-varying NARE (TV-NARE) problem is proposed6

and investigated. As a particular case of TV-NARE, the time-7

invariant NARE (TI-NARE) problem is investigated too. Then,8

by employing the zeroing neural dynamics (ZND) design, a
AQ1

9

ZND TV-NARE (ZNDTV-NARE) model and a ZND TI-NARE10

(ZNDTI-NARE) model are proposed and investigated. Also, by11

combining the ZNDTV-NARE model with the frozen-time Riccati12

equation (FTRE) approach to optimal control of linear time-13

varying (LTV) systems based on the state-dependent Riccati14

equation (SDRE) process, a hybrid ZND FTRE control (HZND-15

FTREC) model is developed and investigated. The effectiveness16

of the proposed dynamical systems is proven in ten numerical17

experiments, three of which include applications to LTV and18

nonlinear systems.19
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Index Terms—Continuous-time model, dynamical system, non- 20

linear system, nonsymmetric algebraic Riccati equations (AREs), 21

zeroing neural dynamics. 22

I. INTRODUCTION 23

ALGEBRAIC Riccati Equations (AREs) appear commonly 24

in mathematics, science, and engineering. The ARE 25

class includes both nonlinear and linear matrix equations 26

(LMEs) which are specifically of great interest in optimal 27

control, filtering, and estimation problems. The practice has 28

revealed that solving a Riccati equation is a principal topic in 29

optimal control theory (see [1], [2], [3], [4], [5]). The uti- 30

lization of ARE equations of various types can commonly 31

be found in solving linear multiagent systems [1], in H∞ 32

controller design for wind generation systems [3], in the anal- 33

ysis and synthesis of linear quadratic Gaussian (LQG) control 34

problems [4], [5]. In one or another form, ARE play signifi- 35

cant roles in optimal control of multivariable and large-scale 36

systems, estimation, scattering theory, and detection proce- 37

dures. Moreover, closed-form solutions of Riccati Equations 38

are used to solve some problems, such as numerical precision 39

in direct and iterative algorithms and losing controllability. It 40

is worth noting that other related fields of research are the 41

matrix Ricatti differential equations (MRDEs) (see [6]). 42

The Zhang neural dynamics (ZND) method is used 43

to approach the time-varying nonsymmetric ARE (TV- 44

NARE) problem and the time-invariant nonsymmetric ARE 45

(TI-NARE) problem, which is a particular case of TV-NARE, 46

by considering the nonsymmetric ARE (NARE) as a gen- 47

eral form of ARE. Because the ZND has already been 48

suggested in the literature as a useful method for solv- 49

ing a wide range of time-variant problems, two models are 50

created by employing the ZND method, namely, the ZND 51

TV-NARE (ZNDTV-NARE) model and the ZND TI-NARE 52

(ZNDTI-NARE) model, which can be solved with exponential 53

convergence performance. Furthermore, the models proposed 54

in [7], [8], [9], [10], and [11] have exponential convergence 55

when the ZND design parameter is adjusted using the ZND 56

method [12], [13], [14], [15] and their speed of convergence 57

can be handled. Compared to traditional numerical algo- 58

rithms, the ZND method, which is based on recurrent neural 59

networks (RNNs), has several advantages in real-time appli- 60

cations, including high-speed parallel processing, distributed 61

storage, and adaptive self-learning natures. As a result, such 62

an approach is widely regarded as a powerful alternative to 63

online computation and optimization [16], [17], [18], [19]. 64

2168-2216 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Diagrammatic representation of the matrix equations explored in this study.

Several papers, including [20] and [21], discuss the ability65

of such models to handle noise.66

A comprehensive overview of ARE-type matrix equations67

and solutions to some special TV-NARE equations were68

provided in [21], [22], and [23]. The time-varying ARE69

problem was approached in [21] through a noise-tolerant70

ZND model, by a fixed-time ZND model in [22], and by71

an eigendecomposition-based ZND model in [23]. The sym-72

metric solutions they always offer to the time-varying ARE73

problem are what these papers have in common. It is cru-74

cial to note that AREs with symmetric solutions have square75

coefficient matrices with certain properties, whereas NAREs76

are a generic form of AREs whose coefficient matrices are77

not required to be square with particular properties and whose78

solutions are not required to be symmetric. Since this study79

focuses on solving the general TV-NARE problem rather than80

only the problem of time-varying ARE, it differs significantly81

from the aforementioned papers.82

The tracking control has become one of the most impor-83

tant schemes in past studies [24], [25], [26], [27], [28]. These84

studies include a position-tracking control strategy using out-85

put feedback and an adaptive sliding-mode approach in [24],86

a hybrid coordinated control method using a backstepping87

scheme and Hamilton control in [25], a control method using88

an error-to-actuator-based event-triggered framework [26], and89

two controllers that combine a backstepping scheme, fuzzy90

logic system, and finite-time Lyapunov stability theory in [27]91

and [28]. It is well known that the state-dependent Riccati92

equation (SDRE) method [3] can be used as a basis for the93

frozen-time Riccati equation (FTRE) approach to optimal con-94

trol of linear time-varying (LTV) systems. In this article, by95

combining the ZNDTV-NARE model and the FTRE, a Hybrid96

ZND FTRE Control (HZND-FTREC) model is developed and97

investigated. It is worth noting that the advantages of the98

HZND-FTREC and ZNDTV-NARE models are the same.99

The following summarizes the key contributions of our100

research in this article.101

1) The ZND systems dynamics for solving TV-NARE and102

TI-NARE problems are proposed. According to our best103

knowledge, ZND approach for solving NARE has not104

been used so far.105

2) An additional explicit dynamical system is proposed for106

solving TV-NARE besides the standard ZND.107

3) Applying the proposed explicit dynamical system in par-108

ticular cases, it is possible to generate corresponding109

neural dynamics for solving the Sylvester, Lyapunov, 110

and LMEs. 111

4) Simulation examples are run to validate the proposed 112

model’s applicability and effectiveness. 113

5) Besides the numerical simulations, we present two appli- 114

cations in optimal control of LTV systems and an 115

application in solving nonlinear systems. 116

The following structure guides the overall organization 117

of sections in this article. Section II contains preliminary 118

information about the ARE and certain LMEs which could 119

be arising from the NARE, including the Sylvester and 120

Lyapunov equations. Section III describes the TV-NARE 121

problem and then defines the corresponding ZNDTV-NARE 122

model. Section IV comprises prominent particular cases of the 123

ZNDTV-NARE design, including the ZNDTI-NARE model. 124

Section V introduces a hybrid TV-NARE model, called 125

HZND-FTREC, which incorporates the FTRE approach to 126

optimal control of the LTV system. Section VI contains ten 127

different examples with different-dimensional input matrices, 128

three of these include LTV and nonlinear system applications. 129

The simulation tests validate the efficacy of the suggested 130

models. Finally, the concluding remarks are presented in 131

Section VII. 132

II. MATRIX EQUATIONS OF ARE TYPE 133

This section will provide a comprehensive overview of the 134

matrix equations discussed in this article. These equations 135

are in the form of the pure ARE and certain LMEs derived 136

from the ARE class. A diagrammatic representation of these 137

equations is presented in Fig. 1. 138

A. Algebraic Riccati Equations 139

In this section, we introduce the definitions of all the AREs 140

treated in this research. 141

1) Nonsymmetric Algebraic Riccati Equation: An NARE 142

is a quadratic matrix equation of the form 143

DX + XA − XBX + Q = 0 (1) 144

where A ∈ R
m×m, B ∈ R

m×n, D ∈ R
n×n and Q ∈ R

n×m are 145

the block coefficients, X ∈ R
n×m is the unknown matrix to be 146

obtained and 0 represents a zero n × m matrix. Note that the 147

term “nonsymmetric” is improperly used to denote that (1) is 148

in its general form without assumption on the symmetry of 149

the matrix coefficients. 150
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2) Continuous-Time Algebraic Riccati Equation: The151

continuous-time ARE (CARE)152

ATX + XA − XBX + Q = 0 (2)153

in which the superscript ()T denotes the transpose operator154

and all the coefficient matrices belong to R
n×n, is a quadratic155

matrix equation and plays a central role in the LQR/LQG con-156

trol, H2 and H∞ control, Kalman filtering, and spectral or157

co-prime factorizations (see [29], [30], [31], [32], [33], [34]).158

The phrase “continuous-time” in the notation “CARE” is159

taken from control theory problems in continuous-time, where-160

from (2) emerges. Note that CARE is an NARE where the161

block coefficients are square (i.e., m = n) and D = AT,162

B = BT, Q = QT (see [35]). Moreover, B, Q are symmet-163

ric and non-negative definite matrices (i.e., B = BT ≥ 0 and164

Q = QT ≥ 0). Solutions X ∈ R
n×n of the CARE (2) can be165

symmetric or nonsymmetric, with definite or indefinite sign166

and the solutions set can be either infinite or finite (see [36]).167

B. Linear Matrix Equations of ARE Type168

In this section, we restate the definitions of all the LMEs169

arising from the ARE.170

1) Continuous-Time Lyapunov Equation: The continuous-171

time Lyapunov equation (CLE) is a matrix equation given as172

ATX + XA + Q = 0 (3)173

where A ∈ R
n×n, Q ∈ R

n×n are the matrix coefficients and174

X ∈ R
n×n is the unknown matrix. Lyapunov methods could175

be applied successfully in numerous scientific and engineering176

fields, such as in the analysis of various kinds of nonlinear and177

linear control systems, in control theory, optimization, signal178

processing, large space flexible structures, and communica-179

tions (see [37], [38], [39]). Note that (3) is an appearance180

of NARE where the block coefficients are square and satisfy181

D = AT, B = 0.182

2) Sylvester Equation: The Sylvester equation (SE) is an183

LME of the form184

DX + XA + Q = 0 (4)185

where D ∈ R
n×n, A ∈ R

m×m, Q ∈ R
n×m are the block186

coefficients and X ∈ R
n×m is the unknown matrix to be gener-187

ated. Equation (4) is an NARE where the block coefficient B188

satisfies B = 0. SE is closely associated with the analysis and189

synthesis of dynamic systems, such as the design of feedback190

control systems through pole assignment (see [40], [41]).191

C. Linear Matrix Equation192

The LME is of the general form193

DX + Q = 0 (5)194

or195

XA + Q = 0 (6)196

where D ∈ R
n×n, A ∈ R

m×m, Q ∈ R
n×m are the block197

coefficients and X ∈ R
n×m is the unknown matrix to be calcu-198

lated. Note that (5) is an NARE where the block coefficients199

satisfy A = 0 and B = 0. Also, (6) is an NARE where D = 0 200

and B = 0. LMEs frequently appear in science and engineer- 201

ing fields, such as robotic motion tracking and angle-of-arrival 202

localization [42], [43], [44], [45], [46]. 203

D. Matrix Inversion Equation 204

The matrix inversion (MI) equation is the LME of the form 205

DX − In = 0 (7) 206

in which D ∈ R
n×n is the block coefficient, In denotes the 207

n × n identity matrix and X ∈ R
n×n is unknown approxi- 208

mation of the inverse D−1 of D to be obtained. Notice also 209

that (7) is an NARE where the block coefficients are square 210

and A = 0, B = 0 and Q = −In. The MI problem is commonly 211

involved in numerous problems of science and engineering, for 212

example, as former steps in optimization, signal processing, 213

electromagnetic systems, and robot inverse kinematics [47], 214

[48], [49]. 215

III. SOLVING TV-NARE VIA ZND METHOD 216

In this section, both the TI NARE case and the TV NARE 217

case are approached by the ZND method. Note that, based 218

on the analysis provided in Section II, we can observe that 219

it is possible to extract all the remaining equations presented 220

therein from the NARE general form (1). Since 2001, when 221

Zhang and Wang [50] proposed the ZND evolution, this 222

method has been studied and established as a crucial class 223

of RNNs. Furthermore, the ZND evolution has been ana- 224

lyzed theoretically and substantiated comparatively for solving 225

time-varying problems accurately and efficiently. Following 226

the ZND design formula (see [7], [8], [9], [10], [11], [12], 227

[13], [14], [15]) under the linear activation, an appropriately 228

defined error matrix E(t) can dynamically adjusted as a result 229

of the evolution 230

Ė(t) = −λE(t) (8) 231

at which (̇) represents the first derivative operator as a function 232

of time t and λ > 0 represents the ZND design parameter. In 233

addition, the gain parameter λ determines the speed of con- 234

vergence. It is known that the exponential convergence rate of 235

the ZND dynamics is equal to λ [15]. The larger the value 236

of λ, the higher the convergence speed, and, thus, λ should be 237

set as large as the hardware permits. According to the ZND 238

design formula, E(t) is pushed to converge exponentially to 239

the null matrix. 240

A. TV-NARE Problem Formulation via ZND Method 241

Consider the subsequent general type of a TV-NARE 242

D(t)X(t)+ X(t)A(t)− X(t)B(t)X(t)+ Q(t) = 0 (9) 243

where A(t) ∈ R
m×m, B(t) ∈ R

m×n, D(t) ∈ R
n×n, Q(t) ∈ R

n×m, 244

X(t) ∈ R
n×m, and 0 ∈ R

n×m. Moreover, X(t) is an unknown 245

matrix of interest. 246

It is important to mention that the results in [21], [22], 247

and [23] refer to the particular case D(t) = AT(t) in (9). Our 248

goal is to solve the general TV-NARE problem. 249
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According to (9), the error matrix is equal to250

E(t) = D(t)X(t)+ X(t)A(t)− X(t)B(t)X(t)+ Q(t) (10)251

while its derivative is252

Ė(t) = Ḋ(t)X(t)+ D(t)Ẋ(t)+ Ẋ(t)A(t)+ X(t)Ȧ(t)253

− Ẋ(t)B(t)X(t)− X(t)Ḃ(t)X(t)− X(t)B(t)Ẋ(t)+ Q̇(t).254

Consequently, because of (8), the expanded ZND255

evolution is256

−λE(t) = Ḋ(t)X(t)+ D(t)Ẋ(t)+ Ẋ(t)A(t)+ X(t)Ȧ(t)257

− Ẋ(t)B(t)X(t)− X(t)Ḃ(t)X(t)258

− X(t)B(t)Ẋ(t)+ Q̇(t)259

or260

− λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)+ X(t)Ḃ(t)X(t)− Q̇(t)261

= D(t)Ẋ(t)+ Ẋ(t)A(t)− Ẋ(t)B(t)X(t)− X(t)B(t)Ẋ(t). (11)262

Note that, to ensure solvability of (11) we cannot include263

X(t) inside the mass matrix of (11), and to overcome this dif-264

ficulty, the vectorization procedure and the Kronecker product265

⊗ are applied on (11). We set as v(t) the result of vectorization266

in the left part of (11), so we have267

v(t) = vec
(

− λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)268

+X(t)Ḃ(t)X(t)− Q̇(t)
)
. (12)269

We repeat the process (i.e., vectorization) in the right part270

of (11), and we have271

vec
(

D(t)Ẋ(t)+ Ẋ(t)A(t)− Ẋ(t)B(t)X(t)− X(t)B(t)Ẋ(t)
)

272

=
(

Im ⊗ D(t)+ A(t)T ⊗ In − Im ⊗ X(t)B(t)273

− (B(t)X(t))T ⊗ In

)
vec

(
Ẋ(t)

)
. (13)274

In addition, by setting275

M(t) = Im ⊗ D(t)+ A(t)T ⊗ In − Im ⊗ X(t)B(t)276

− (B(t)X(t))T ⊗ In (14)277

and278

ẋ(t) = vec
(
Ẋ(t)

)
279

the combination of (13) and (11) results in implicit dynamic280

behavior shown below281

v(t) = M(t)ẋ(t) (15)282

in which v(t) is defined by (12). The consistency of the linear283

system (15) is constrained by284

M(t)M(t)†v(t) = v(t)285

and its general solution in this case is286

ẋ(t) = M(t)†v(t)+
(

I − M†(t)M(t)
)

y (16)287

such that y is a vector of proper size. The best approximate288

solution to the dynamics (15) is given by289

ẋ(t) = M(t)†v(t) (17)290

where ()† denotes the pseudoinverse operator. If (15) is solv- 291

able, (17) is its solution, while in the opposite case, (17) gives 292

the best approximate solution to (15). Note that {(12), (14), 293

(17)} consist of the suggested ZNDTV-NARE model which 294

could be efficiently solved with the use of an ode MATLAB 295

solver. 296

According to the previous discussion, we may conclude 297

that (11) cannot be implemented in MATLAB, whereas (17) 298

can. We certainly have the cost of calculating the pseudoin- 299

verse of M(t). Theorem 1 proves the exponential convergence 300

of the ZNDTV-NARE {(12), (14), (17)} to the theoretical 301

solution (9). 302

Theorem 1: Let A(t) ∈ R
m×m, B(t) ∈ R

m×n, D(t) ∈ 303

R
n×n, Q(t) ∈ R

n×m be differentiable. The ZNDTV-NARE 304

model {(12), (14), (17)} has exponential convergence to the 305

theoretical solution of TV-NARE (9), for any initial value 306

X(0). 307

Proof: The error matrix equation E(t) is determined as 308

in (10), inline with the ZND architecture, to achieve the solu- 309

tion X(t) of TV-NARE (9). From [50, Theorem], the solution 310

of (11) converges to the exact solution X∗(t) of (9) as t → ∞. 311

In addition, from the derivation process, the conclusion is 312

that (15) is a vectorized form of (11). As a conclusion, x(t) 313

defined by the dynamics (15) converges to x∗(t) = vec(X∗(t)) 314

as t → ∞. Since the convergence x(t) → x∗(t) = vec(X∗(t)) 315

is valid for arbitrary ẋ(t) in (16), it is also valid for ẋ(t) in (17). 316

Thus, the proof is finished. 317

IV. PARTICULAR CASES OF ZNDTV-NARE DESIGN 318

The applicability of the defined model is illustrated by 319

several covered cases. 320

A. TI-NARE Problem Formulation via ZND Method 321

Consider the general type of a TI-NARE 322

DX(t)+ X(t)A − X(t)BX(t)+ Q = 0 (18) 323

wherein A ∈ R
m×m, B ∈ R

m×n, D ∈ R
n×n, Q ∈ R

n×m, X(t) ∈ 324

R
n×m, and 0 ∈ R

n×m. In addition, X(t) ∈ R
n×m is an unknown 325

matrix. 326

By setting the error function 327

E(t) = DX(t)+ X(t)A − X(t)BX(t)+ Q 328

which fulfills 329

Ė(t) = DẊ(t)+ Ẋ(t)A − Ẋ(t)BX(t)− X(t)BẊ(t) 330

the general evolution (8) initiates 331

−λE(t) = DẊ(t)+ Ẋ(t)A − Ẋ(t)BX(t)− X(t)BẊ(t). (19) 332

An application of the vectorization rules to (19) gives 333

vec(−λE(t))

=
(

Im⊗D+AT⊗In−(BX(t))T⊗In−Im⊗X(t)B
)

vec
(
Ẋ(t)

)
.

334

Furthermore, by setting 335

v(t) = −λvec(E(t)), ẋ(t) = vec
(
Ẋ(t)

)
(20) 336
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and337

M(t) = Im ⊗ D + AT ⊗ In − (BX(t))T ⊗ In − Im ⊗ X(t)B338

(21)339

one obtains the system of linear equations of the form (15).340

One of the solutions of the implicit system (15) is given by the341

explicit dynamics (17). Note that {(17), (20), (21)} represents342

the proposed ZNDTI-NARE model which can efficiently be343

implemented with the use of an ode MATLAB solver.344

B. ZNDTV-NARE Design for Solving Particular Equations345

The choice of B(t) ≡ 0 in NARE makes the ZNDTV-NARE346

design suitable for solving the TV SE. That is, the TV SE is347

defined using the error matrix348

E(t) = D(t)X(t)+ X(t)A(t)+ Q(t)349

where A(t) ∈ R
m×m, D(t) ∈ R

n×n, Q(t) ∈ R
n×m, X(t) ∈ R

n×m.350

Then, the ZNDTV-NARE design becomes the ZND for solving351

the TV SE352

− λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)− Q̇(t)353

= D(t)Ẋ(t)+ Ẋ(t)A(t). (22)354

In [51], [52], [53], and [54], various finite-time convergent355

ZND models of type (22) are used to solve the SE and are356

centered on appropriate nonlinear activation.357

Finite-time convergent RNN models based on improving the358

standard ZND evolution are considered in [55] and [56].359

The proposed explicit dynamical system {(12), (14), (17)}360

can be applied in solving the TV SE in the particular case361

ẋ(t) = vec
(
Ẋ(t)

) = (
Im ⊗ D(t)+ A(t)T ⊗ In

)†
v(t) (23)362

where363

v(t) = vec
(−λE(t)− Ḋ(t)X(t)− X(t)Ȧ(t)− Q̇(t)

)
.364

The choice of B(t) ≡ 0, D(t) ≡ A(t)T in NARE makes365

the ZNDTV-NARE design suitable for solving the Lyapunov366

equation.367

ZND models for solving the Lyapunov equation based on368

appropriate nonlinear activation are considered in [57], [58],369

[59], and [60]. The finite-time convergent RNN model based370

on improving the standard ZND evolution was considered371

in [61].372

The following particular case of the explicit dynamical373

system {(12), (14), (17)} can be applied in solving the TV374

Lyapunov equation:375

ẋ(t) = (
Im ⊗ (A(t))T + (A(t))T ⊗ In

)†
v(t) (24)376

where377

v(t) = vec
(−λE(t)− ȦT(t)X(t)− X(t)Ȧ(t)− Q̇(t)

)
.378

It is essential to mention that the evolution (23) [resp., (24)]379

has not been used so far in solving the Sylvester (resp.,380

Lyapunov) equation. Finally, the LME (5) can be solved using381

the dynamics382

ẋ(t) = (Im ⊗ D(t))†v(t). (25)383

The dual LME (6) can be solved using the dynamics 384

ẋ(t) = (
(A(t))T ⊗ In

)†
v(t). (26) 385

V. HYBRID TV-NARE MODEL IN FTRE CONTROL 386

The backward-in-time Riccati equation, which uses 387

advanced dynamics knowledge to calculate feedback gains 388

over the control horizon, is used to manage optimal control of 389

LTV systems (see [62], [63]). The proposed hybrid model has 390

the ability to stabilize LTV systems. It uses the FTRE approach 391

presented in [2], which is motivated by the equivalent SDRE 392

process. The SDRE technique is a systematic and efficient 393

way to design nonlinear feedback controllers for a wide range 394

of nonlinear systems. More precisely, SDRE is employed 395

for nonlinear dynamics ż(t) = f (z, u) which can be formu- 396

lated in the pseudo-linear shape ż(t) = A(z, u)z + G(z, u)u, 397

for which the solution of ARE is generated at each time 398

instant t, as A(z(t),U(t)) and G(z(t),U(t)) being the chosen 399

dynamics and the input matrices, respectively. The FTRE con- 400

trol is associated with the SDRE approach and includes the 401

factorization 402

ż(t) = f (z(t),U(t)), z(0) = z0 (27) 403

into the state-dependent style, where z ∈ R
n represents the 404

state vector, u ∈ R
m represents the input vector, f : Rn → R

n is 405

a function, and G : Rn → R
n×m. The linear structure provided 406

by the factorization is as follows: 407

ż(t) = A(z(t),U(t))z(t)+ G(z(t),U(t))U(t) 408

z(0) = z0. (28) 409

Furthermore, in controller design, state-dependent weight- 410

ing matrices provide versatility. 411

The task is to obtain a state-feedback control law in the pat- 412

tern U(t) = −K(z(t))z(t), which minimizes the cost function 413

of infinite-horizon performance [2] 414

J(z0, u) = 1

2

∫ ∞

0

[
zT(t)R1(z(t))z(t)+ uT(t)R2(z(t))U(t)

]
dt 415

(29) 416

where R1(z) ∈ R
n×n is positive semidefinite, R2(z) ∈ R

m×m is 417

positive definite. The state-feedback control law is defined as 418

U(t) = −K(z(t))z(t) 419

= −R−1
2 (z(t))GT(z(t),U(t))X(z(t))z(t) (30) 420

such that X(z) means the solution of the state-dependent ARE 421

AT(z)X(z)+ X(z)A(z)− X(z)G(z)R−1
2 (z)GT(z)X(z)+ R1(z) = 0. 422

(31) 423

The SDRE approach is heuristic because the control law 424

may not always be optimal and may not have been stabilized. 425

As proposed in [2], we adapt the SDRE approach to LTV 426

systems. In the FTRE process, at each moment, we “freeze” 427

the state and input matrices and deal with them as time- 428

invariant matrices. The solution X(t) to the frozen-time ARE 429

can be launched as a solution to 430
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AT(t)X(t)+ X(t)A(t)− X(t)G(t)R−1
2 (t)GT(t)X(t)+ R1(t) = 0.431

(32)432

The control law is calculated in the same way as the linear433

quadratic regulator problem434

U(t) = −R−1
2 (t)GT(t)X(t)z(t). (33)435

In [64] and [65], it has been shown that the FTRE control436

inherits the stability properties of the SDRE controller.437

By setting D(t) = A(t), B(t) = G(t)R−1
2 (t)GT(t) and438

Q(t) = R1(t) in (9), it is observable that (32) can be solved439

via the ZNDTV-NARE model {(12), (14), (17)}. Considering440

that the solution X(t) to (32) is identified, the state-feedback441

control law of (33) can also be found and then (28) is solvable.442

Thus, (28) is rewritten as443

ż(t) = A(t)z(t)+ G(t)
( − R−1

2 (t)GT(t)X(t)z(t)
)

444

or in the next equivalent form445

ż(t) = (
A(t)− G(t)R−1

2 (t)GT(t)X(t)
)
z(t). (34)446

The stability of the SDRE method is demonstrated in447

Theorem 2, which considers the general infinite-horizon non-448

linear regulator problem of minimizing (29) concerning the449

state x and the control w subject to the nonlinear differential450

constraint (28). Furthermore, keep in mind that Ck indicates451

the space of continuous functions with continuous first k452

derivatives.453

Theorem 2: With respect to the state z and the control454

U, consider the generic infinite-horizon nonlinear regulator455

problem of minimizing (29) under the nonlinear differen-456

tial constraint (28). Let us assume, that A(z), G(z), R1(z),457

and R2(z) belong to C
k and that A(z) is both a stabilizable458

and detectable parameterization of the nonlinear system. The459

SDRE method then generates a closed-loop solution that is460

locally asymptotically stable.461

Proof: It is important to keep in mind that (34) provides the462

closed-loop solution, i.e.,463

ż = (
A(z)− G(z)R−1

2 (z)GT(z)X(z)
)
z

= Ac(z)z
464

and the Riccati equation theory guarantees that the closed-loop465

matrix466

Ac(z) = A(z)− G(z)R−1
2 (z)GT(z)X(z)467

is stable at every point z. X(z) and Ac(z) are both smooth due468

to the smoothness assumptions. We expand the matrix Ac(z)469

into the partial Taylor series expansion about zero470

ż ≈ Ac(z)z + ψ(z) · ‖z‖471

with ψ(z) of k order and472

lim‖z‖→0
ψ(z) = 0.473

The linear term, which involves a constant stable coef-474

ficient matrix, prevails the higher-order term in a narrow475

neighborhood around the origin, resulting in local asymptotic476

stability.477

Setting D(t) = AT(t), B(t) = G(t)R−1
2 (t)GT(t), Q(t) = 478

R1(t), (32) yields (9). Based on this, (34) can be rewrittenas 479

ż(t) = (
A(t)− B(t)X(t)

)
z(t). (35) 480

Thus, the HZND-FTREC model is obtained by combin- 481

ing (15) and (35) as in the following: 482

[
v(t)(

A(t)− B(t)X(t)
)
z(t)

]
=

[
M(t) 0

0 Im

][
ẋ(t)
ż(t)

]
. (36) 483

One explicit form of the dynamics (36) is equal to 484

[
ẋ(t)
ż(t)

]
=

[
M(t) 0

0 Im

]†[ v(t)(
A(t)− B(t)X(t)

)
z(t)

]
. (37) 485

The proposed HZND-FTREC model is (37), which can effi- 486

ciently be solved with the use of an ode MATLAB solver. 487

The stability of the HZND-FTREC model (37) is demon- 488

strated in Theorem 2, which considers the general infinite- 489

horizon nonlinear regulator problem of minimizing (29) with 490

respect to the state x and the control w under the nonlinear 491

differential restriction (28). 492

Theorem 3: With respect to the state z and the control U, 493

consider the generic infinite-horizon nonlinear regulator 494

problem of minimizing (29) under the nonlinear differen- 495

tial constraint (28). Let us assume, that A(z), G(z), R1(z), 496

and R2(z) belong to C
k and that A(z) is both a stabilizable 497

and detectable parameterization of the nonlinear system. The 498

HZND-FTREC method then generates a closed-loop solution 499

that is locally asymptotically stable. 500

Proof: Because the HZND-FTREC model (37) is composed 501

of the ZNDTV-NARE model {(12), (14), (17)} and the SDRE 502

method, it can be deduced from Theorems 1 and 2 that the 503

HZND-FTREC model (37) generates a locally asymptotically 504

stable closed-loop solution. 505

VI. NUMERICAL EXAMPLES 506

This section includes ten examples, four of which are shown 507

to verify the efficacy and accuracy of the ZNDTV-NARE 508

{(12), (14), (17)}, and three more are shown to verify the effi- 509

cacy and accuracy of the ZNDTI-NARE {(20), (21), (17)}. 510

The examples applied to LTV and nonlinear systems are 511

intended to validate the efficacy and accuracy of the evolu- 512

tion (37). As a preliminary to the following examples, it is 513

necessary to identify the parameters and symbols and provide 514

additional details. 515

1) The time interval for the computation is limited to 516

[0, 10]. That is, t0 = 0 is the initial time and tf = 10 is 517

the final time. 518

2) ‖·‖F denotes the Frobenius norm of a matrix. 519

3) We have set λ = 10 in all numerical examples in this 520

section, with the exception of the numerical example 521

Section VI-A, where λ = 10, 100, 1000. 522

4) The solution of {(17), (20), (21)}, the solution of 523

{(12), (14), (17)}, and the solution of (37) are obtained 524

by employing the ode15s MATLAB solver. 525
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Performance of ZNDTV-NARE for solving examples Sections VI-A–VI-C and VI-G. (a)–(d) Error E(t) produced by ZNDTV-NARE in examples
Sections VI-A–VI-C and VI-G, respectively. (e)–(h) Trajectories of the solution X(t) produced by ZNDTV-NARE in examples Sections VI-A–VI-C and VI-G,
respectively.

A. Numerical Example 1526

In this example, consider the initial matrices D(t), A(t),527

B(t), and Q(t) of dimensions 4 × 4, 2 × 2, 2 × 4, and 4 × 2,528

respectively, as529

D(t) =

⎡
⎢⎢⎢⎣

sin(t)+ 1 sin(t)+ 1 sin(t)+ 1 sin(2t)+ 1

sin(t)+ 2 sin(t)+ 2 sin(t)+ 2 sin(2t)+ 2

sin(t)+ 3 sin(t)+ 3 sin(t)+ 3 sin(2t)+ 3

sin(t)+ 4 sin(t)+ 4 sin(t)+ 4 sin(2t)+ 4

⎤
⎥⎥⎥⎦530

B(t) =
[

sin(t)+ 1 sin(t)+ 4 sin(t)+ 4 sin(t)+ 4

sin(t)+ 4 sin(t)+ 2 − sin(t)− 5 sin(t)+ 4

]
531

A(t) =
[

cos(t)+ 3 sin(t)+ 4

sin(t)+ 2 − sin(t)− 7

]
Q(t) =

⎡
⎢⎢⎢⎣

sin(t)+ 7 sin(t)+ 4

sin(t)+ 4 sin(t)+ 6

sin(t)+ 1 sin(t)+ 6

sin(t)+ 6 sin(t)+ 3

⎤
⎥⎥⎥⎦.532

Setting the initial value of X(t) as X(0) =
[

1 0 0 0
0 1 0 0

]T

,533

the results of ZNDTV-NARE are depicted in Fig. 2(a) and (e).534

B. Numerical Example 2535

Let A(t), B(t), and Q(t) as536

A(t) =
⎡
⎣

sin(t)+ 2 sin(t)+ 4 cos(t)− 2
− sin(t)+ 4 sin(2t)+ 4 3 sin(t)− 20
− cos(2t)− 3 − sin(t)− 2 − sin(2t)− 5

⎤
⎦537

B(t) =
⎡
⎣

3 sin(t)+ 9 − sin(t)+ 5 cos(3t)+ 2
− sin(t)+ 5 cos(t)+ 1/2 cos(t)+ 6
cos(3t)+ 2 cos(t)+ 6 sin(2t)+ 3/2

⎤
⎦538

Q(t) =
⎡
⎣

2 sin(t)+ 10 cos(t)+ 7 cos(2t)+ 3/2
cos(t)+ 7 2 − cos(t)+ 5

cos(2t)+ 3/2 − cos(t)+ 5 sin(2t)+ 4

⎤
⎦.539

Additionally, we set D(t) = AT(t), transforming in that way540

the NARE into an ARE. By initializing X(t) with the two541

values listed as 542

X1(0) =
⎡
⎣

0 0 0
0 0 0
0 0 0

⎤
⎦ and X2(0) =

⎡
⎣

1 1 0
1 − 1 1
0 1 − 2

⎤
⎦ 543

the results of ZNDTV-NARE are depicted in Fig. 2(b) and (f). 544

Note that Fig. 2(f) also includes the Schur method’s suggested 545

solution from [32]. 546

C. Numerical Example 3 547

The following input matrices A(t) and Q(t) are considered 548

in this example: 549

A(t) =
[−1 − 1/2 cos(2t) 1/2 sin(2t)

1/2 sin(2t) − 1 + 1/2 cos(2t)

]

Q(t) =
[

sin(2t) cos(2t)
− cos(2t) sin(2t)

]
.

550

Additionally, we set B(t) = 0 and D(t) = AT(t), converting 551

the NARE to a CLE. By initializing X(t) with X(0) = 0, the 552

results of ZNDTV-NARE are depicted in Fig. 2(c) and (g). 553

Note that the theoretical solution of this example is 554

X�(t) =
[ − sin(2t)(−2+cos(2t))

3
(1−2 cos(2t))(2+cos(2t))

6
(1+2 cos(2t))(2−cos(2t))

6
(2+cos(2t)) sin(2t)

3

]
. 555

D. Numerical Example 4 556

The following constant matrices A,B, and Q of dimensions 557

2 × 2 are considered in this example: 558

A =
[

4 1
−2 8

]
,B =

[
7 4
4 6

]
,Q =

[
3 − 4

−4 5

]
. 559

Moreover, we convert the NARE to an ARE by using D(t) = 560

AT(t). Setting 561

X1(0) =
[

2 − 2
−2 4

]
,X2(0) =

[
0 0
0 0

]
, and X3(0) =

[
1 1
1 1

]
562
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Performance of ZNDTI-NARE for solving examples Section VI-D–
VI-F. (a)–(c) Error E(t) generated by ZNDTI-NARE in examples
Section VI-D–VI-F, respectively. (d)–(f) Trajectories of the solution X(t)
generated by ZNDTI-NARE in examples Section VI-D–VI-F, respectively.

as three initial values of X(t), the results of ZNDTI-NARE are563

depicted in Fig. 3(a) and (d). Note that Fig. 3(d) also includes564

the Schur method’s suggested solution from [32].565

E. Numerical Example 5566

In this example the following matrices D, A, and Q of567

dimensions 4 × 4, 2 × 2, 2 × 4, and 4 × 2, respectively, are568

given as input569

D =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, A =

[
0 − 1
1 0

]
, Q =

⎡
⎢⎢⎣

−1 0
1 0
0 − 1

−1 1

⎤
⎥⎥⎦.570

Additionally, we convert the NARE to a SE by setting571

B = 0. Setting the initial value of X(t) as X(0) = 0, the results572

of ZNDTI-NARE {(17), (20), (21)} are depicted in Fig. 3(b)573

and (e). Note that the theoretical solution in this example is574

X�(t) =
[

0.7 − 1.3 0.5 0
−0.1 − 0.1 − 0.5 1

]T

.575

F. Numerical Example 6576

In this example, the input matrices D and Q are given as577

D =
⎡
⎣

1 0 1
1 1 0
1 1 1

⎤
⎦, Q =

⎡
⎣

−1 0 0
0 − 1 0
0 0 − 1

⎤
⎦.578

Additionally, we set A = B = 0, so converting the NARE 579

to an MIE. By setting X(0) = 0, as the initial value of X(t), 580

the obtained results of ZNDTI-NARE are depicted in Fig. 3(c) 581

and (f). Note that the theoretical solution of this example is 582

X�(t) =
⎡
⎣

1 1 − 1
−1 0 1
0 − 1 1

⎤
⎦. 583

G. Example on Larger Dimensions 584

The following n-dimensional input matrices are used in 585

this example: D(t) = (4 + sin(t))In, B(t) = (7 + sin(t))In, 586

Q(t) = (5 + sin(t))In. Furthermore, we use D(t) = AT(t), thus 587

converting the NARE to an ARE. Starting from the initial state 588

of X(0) = In and for n = 50, the results of ZNDTV-NARE are 589

depicted in Fig. 2(b) and (f). Note that Fig. 2(f) also includes 590

the Schur method’s suggested solution from [32]. 591

H. Application to LTV 592

The Mathieu equation [66] is a linear differential equation 593

with variable (periodic) coefficients and typically occurs in 594

two different ways in solving nonlinear vibration problems. 595

One way is in systems where periodic forcing occurs, and the 596

other is in stability studies of periodic motions in autonomous 597

nonlinear systems. By considering the Mathieu equation 598

q̈(t)+ (ζ + θ cos(ωt))q(t) = gU(t) (38) 599

and by defining the state vector z(t) =
[

q(t)
q̇(t)

]
, the dynam- 600

ics (38) can be rewritten in state-dependent coefficient form 601

with 602

A(t) =
[

0 1
(ζ + θ cos(ωt)) 0

]
,G(t) =

[
0
g

]
. 603

The parameter values are ζ = 1, θ = 1, ω = 1, g = 1, and 604

by letting R1 = I2, R2 = 0.001 and R2 = 1, we set the initial 605

value of X(t) as X(0) = ones(2) and apply (37). Furthermore, 606

z(t) has two sets of initial conditions (ICs), denoted as IC1 607

and IC2. The IC1 corresponds to z(0) = [3, 0]T, and IC2 608

corresponds to z(0) = [−5, 1]T. Note that the goal should 609

be to drive the states to the equilibrium [0, 0]T and, hence, 610

to stabilize (38). By applying (37) and the FTRE and FPRE 611

controls [2], the results of phase portraits of the closed-loop 612

responses, for two values of IC, are displayed in Fig. 4(b) for 613

R2 = 0.001, and in Fig. 4(d) for R2 = 1. 614

I. Applications to Nonlinear Systems 615

A nonconservative oscillator with nonlinear damping that 616

has been successfully applied in several fields, such as biomed- 617

ical engineering, power system, control, combustion process, 618

robotics, etc., is the Van der Pol oscillator [67]. As a con- 619

sequence, Van der Pol oscillator control has considerable 620

practical significance. In this application, we consider the 621

FPRE stabilization of the Van der Pol oscillator 622

q̈(t)− μ
(

1 − q2(t)
)

q̇(t)+ q(t) = gU(t) (39) 623
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation and stabilizing the Van der Pol oscillator and a spring–mass
system. (a) and (b) Mathieu Equation’s closed-loop outputs and associated phase portraits with R2 = 0.001. (c) and (d) Mathieu Equation’s closed-loop outputs
and associated phase portraits with R2 = 1. (e) and (f) Van der Pol oscillator’s closed-loop outputs and associated phase portraits. (g) and (h) Closed-loop
outputs and associated phase portraits for the mass joined to a wall through a spring.

where μ > 0 and g are real numbers. Defining the state624

vector z(t) =
[

q(t)
q̇(t)

]
, (39) can be written in state-dependent625

coefficient form with A(t) =
[

0 1
1 μ(1 − q2(t))

]
,G(t) =

[
0
g

]
.

626
In this application, we use the parameter values μ = 0.25,627

g = 1, and let z(0) = [5, 3]T, R1 = I2, and R2 = 1.628

Furthermore, we consider three options of IC, namely, IC1,629

IC2, and IC3, where we have set as initial values of X(t),630

X1(0) = zeros(2), X2(0) = 10I2, and X3(0) = 100I2, respec-631

tively. By applying (37) and the FTRE and FPRE controls [2],632

the generated results of phase portraits of the closed-loop633

responses for three sets of IC are displayed in Fig. 4(f).634

J. Application to Specific Scenario635

This application considers a mass that is connected to a wall636

by a spring with variable stiffness k(t). The open-loop system637

is described by638

z(t) =
[

q(t)
q̇(t)

]
, A(t) =

[
0 1

− k(t)
m 0

]
, G(t) =

[
0
1
m

]
639

where q(t) signifies the position, k(t) signifies the stiffness,640

which varies over time and can be positive or negative, and641

q̇(t) signifies the mass’s velocity. Let k(t) = sin(t), m = 4,642

R1(t) = I2, and R2(t) = 1, we initialize X(t) and z(t) with643

X(0) =ones(2) and z(0) = [4,−1]T. By applying (37) and644

the FTRE and FPRE controls [2], the generated results of645

phase portraits of the closed-loop responses are displayed in646

Fig. 4(h).647

K. Analysis of Experimental Results648

In this section, the presented experimental results for649

the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC650

are commented on and analyzed. In numerical examples 651

Section VI-A–VI-C, we notice that the error ‖E(t)‖F = 652

‖D(t)X(t)+ X(t)A(t)− X(t)B(t)X(t)+ Q(t)‖F, rapidly con- 653

verges to zero in Fig. 2(a)–(d). That is, ZNDTV-NARE (9) 654

is convergent. Particularly, Fig. 2(a) includes three errors 655

produced from three different design parameter values, i.e., 656

λ = 10, 100, 1000. The graphs in this figure demonstrate that 657

the model produces a lower overall error with a faster con- 658

vergence as the value of the parameter λ increases. Fig. 2(b) 659

includes two errors produced from two initial values of X(t) in 660

Example Section VI-B. The graphs in this figure show that the 661

initial values of X(t) have no impact on the model’s overall 662

error or speed of the convergence. In Fig. 2(e) and (f) tra- 663

jectories of the solution X(t) produced by ZNDTV-NARE are 664

presented, wherefrom it is observable that X(t) rapidly con- 665

verges to the exact solution. Particularly, Fig. 2(e) includes 666

three solutions produced from three different design parame- 667

ter values, i.e., λ = 10, 100, 1000. The graphs in this figure 668

show that as the parameter λ increases, the model generates the 669

same solution but with a faster convergence. Fig. 2(f) includes 670

trajectories of two solutions produced from two initial values 671

of X(t) in Example Section VI-B as well as the solution pro- 672

vided by the Schur method originated in [32]. The graphs in 673

Fig. 2(f) show the influence of the initial values for X(t) on 674

the model’s solution. It is clear that the ZND model generates 675

various solutions X1(t) and X2(t) depending on the initial val- 676

ues of X(t). Fig. 2(g) and (h) include the theoretical and the 677

Schur’s method solution, respectively. 678

In numerical examples Section VI-D-VI-F, we observe that 679

the error ‖E(t)‖F = ‖DX(t)+ X(t)A − X(t)BX(t)+ Q‖F, is 680

rapidly convergent to 0 in Fig. 3(a)–(c). That is, ZNDTI- 681

NARE (18) is solved. Fig. 3(a) includes three errors produced 682

from three initial values in Example Section VI-D. The 683

solution X(t) produced by ZNDTI-NARE is presented in 684
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Results of HZND-FTREC (37), FTRE, and FPRE [2] for solving the Mathieu Equation with R2 = 0.001 and stabilizing a spring–mass system
under various settings of ode15s MATLAB solver. (a) and (b) Mathieu Equation’s ARE error under default settings of ode15s MATLAB solver. (c) and
(d) Mathieu Equation’s ARE trajectories under custom settings of ode15s MATLAB solver. (e) and (f) Spring–mass system’s ARE error under default settings
of ode15s MATLAB solver. (g) and (h) Spring–mass system’s ARE trajectories under custom settings of ode15s MATLAB solver.

Fig. 3(d)–(f), where we see that X(t) quickly converges to the685

solution. The graphs in Fig. 3(a) and (d) illustrate the behavior686

of solutions X1(t),X2(t),X3(t) generated by the initial values687

of X(t) in example Section VI-D. Fig. 3(a) shows the influence688

of the initial values on the error matrix ‖E(t)‖F generated by689

X1(t),X2(t),X3(t). Graphs in Fig. 3(d) show the trajectories of690

elements in X1(t),X2(t),X3(t). It is clear that the ZND model691

generates various solutions X1(t),X2(t),X3(t) depending on692

the initial values. Fig. 3(d) includes three solutions produced693

for three different initial values of X(t) as well as the solu-694

tion provided by the Schur method from [32]. Furthermore,695

Fig. 3(e) and (f) includes graphs of theoretical solutions.696

In addition, the following is important to mention about697

numerical examples Section VI-A–VI-G.698

1) The coefficient matrices in Sections VI-B, VI-D,699

and VI-G converted the NARE to an ARE.700

2) The input coefficient matrices in Section VI-C converted701

the NARE to a CLE.702

3) The input coefficient matrices in Section VI-E converted703

the NARE to an SE.704

4) The input coefficient matrices in Section VI-F converted705

the NARE to an MIE.706

In applications Section VI-H–VI-J, the asymptotic stability707

of the HZND-FTREC (37) is always slightly better than the708

stability of the FTRE control [2] and significantly better than709

that of the FPRE control [2]. More precisely, in application710

to LTV Section VI-H, the Mathieu equation is stabilized for711

two different ICs of z(t) under two different values in R2.712

The closed-loop responses of z(t) and their phase portraits are713

displayed in Fig. 4(a) and (c) and (b) and (d), respectively,714

where we observe that HZND-FTREC of (37) provides faster715

stabilization than the FTRE and FPRE controls, even for large716

values of R2. In application to nonlinear systems Section VI-I,717

the Van der Pol oscillator is stabilized for three different initial718

values of X(t). The closed-loop responses of z(t) and their 719

phase portraits are displayed in Fig. 4(e) and (f), where we 720

observe that HZND-FTREC of (37) provides, slightly, more 721

stable asymptotic behavior than the FTRE and FPRE controls. 722

In application to specific scenario Section VI-J, a mass con- 723

nected to a wall by a spring with variable stiffness k(t) is 724

stabilized. In Fig. 4(g) and (h), the closed-loop responses of 725

z(t) and their phase portraits are displayed, where we observe 726

that HZND-FTREC of (37) provides, slightly, more stable 727

asymptotic behavior than the FTRE and FPRE controls. 728

To further validate the performance of the HZND- 729

FTREC model (37) and demonstrate the distinction between 730

the HZND-FTREC, FTRE, and FPRE controls, the ARE 731

error ‖AX(t)+ X(t)A − X(t)BX(t)+ Q‖F of the applications 732

Section VI-H and VI-J is measured under various settings 733

of ode15s MATLAB solver. It is important to note that all 734

numerical examples and applications in this section have used 735

the default settings of ode15s MATLAB solver calculating 736

with double precision (eps = 2.22 · 10−16). Therefore, the 737

minimum value for most error measurements in this section 738

is of the order 10−5. For the custom settings used in the 739

results of Fig. 5, we set the relative tolerance and the absolute 740

tolerance of ode15s to 10−15, while the design parameter 741

was set to λ = 104. Particularly, Fig. 5(a) and (e) shows 742

the ARE errors of Mathieu Equation with R2 = 0.001 and 743

spring–mass system, respectively, under the default settings 744

of ode15s and the design parameter λ = 10. In these fig- 745

ures, we observe that the FTRE that uses the Schur method’s 746

suggested solution has the best accuracy and the FPRE has 747

the worst accuracy. When using the custom settings, the ARE 748

errors of Mathieu Equation with R2 = 0.001 and spring–mass 749

system are presented in Fig. 5(c) and (g). In these figures, 750

we note that the HZND-FTREC has the best accuracy, while 751

the performance of FTRE and FPRE is unaffected by the 752
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changes in the settings of the ode15s. This conclusion is753

further supported by a comparison between the ARE trajecto-754

ries shown in Fig. 5(b) and (f) and those shown in Fig. 5(d)755

and (h), respectively. While the ARE trajectories generated756

by FTRE and FPRE are unaffected by the changes in the757

ode15s settings, we observe in these figures that the ARE tra-758

jectories generated by HZND-FTREC converge faster to the759

ARE trajectories generated by FTRE. We also observe that760

FPRE generates a different and less accurate ARE solution761

than FTRE in both applications. The HZND-FTREC generates762

the same ARE solution as the FTRE, and under the ode15s763

custom settings, the HZND-FTREC solution is more accurate764

than FTRE’s.765

Consequently, we can say that the TV-NARE problem (9),766

the TI-NARE problem (18), and HZND-FTREC problem (37)767

can be successfully solved by the ZNDTV-NARE, ZNDTI-768

NARE, and HZND-FTREC, respectively, while the HZND-769

FTREC is a more advanced version of the FTRE and is more770

effective than both the FTRE and FPRE.771

VII. CONCLUSION772

This article examines the TV-NARE problem in detail. The773

ZND approach, in conjunction with the definition of a conve-774

nient error matrix for addressing the TV-NARE problem, led775

to the development of the suggested ZNDTV-NARE model.776

Several particular cases of ZNDTV-NARE design are derived,777

including the ZNDTI-NARE model, and models for solv-778

ing Sylvester and Lyapunov equation. Furthermore, a hybrid779

TV-NARE model, called HZND-FTREC, is introduced to780

incorporate the FTRE approach to optimal control of the781

LTV system. Computer simulation further showed that the782

proposed models successfully solved ten examples, three of783

which included applications to LTV and nonlinear systems.784

In that manner, the efficacy of the proposed flows for solv-785

ing the TV-NARE, TI-NARE, and optimal control of LTV786

systems has thus been demonstrated. The finding reached is787

that the ZNDTV-NARE, ZNDTI-NARE, and HZND-FTREC788

models are helpful and efficient in solving the TV-NARE, TI-789

NARE, and optimal control of LTV systems, respectively. It790

is worth mentioning that the ZNDTV-NARE model’s ability791

to provide several solutions for various initial values without792

allowing the user to specify a particular solution as the target793

is a disadvantage.794

Some areas of future research can be pointed out.795

1) The ZNDTV-NARE and HZND-FTREC streams can796

be investigated using a nonlinear activation function.797

Nonlinear ZNDTV-NARE and HZND-FTREC flows798

with terminal convergence could be studied in this direc-799

tion. This approach will be a generalization of finite-time800

convergent nonlinearly activated dynamical systems for801

calculating the time-varying matrix pseudoinverse [14],802

as well as for solving the time-varying SE [42], [43],803

[51], [58].804

2) It is helpful to extend recently proposed finite-time805

convergent neural flows for solving time-varying linear806

complex matrix equations [7] or the time-varying807

Sylvester matrix equation [55] into more general finite- 808

time convergent ZNDTV-NARE and HZND-FTREC 809

evolutions. 810

3) The open area of research in machine control that is 811

related to fuzzy logic (see [27], [28], [68]) could be 812

paired with the ZND design. This research will lead to 813

the creation of novel ZND designs for tracking control 814

of nonlinear systems. 815

4) Because all types of noise have a significant impact 816

on the accuracy of the proposed ZND approaches, the 817

proposed ZNDTV-NARE, ZNDTI-NARE, and HZND- 818

FTREC models suffer from noise insensitivity. Future 819

research can be directed at expanding derived mod- 820

els into integration-enhanced and noise-tolerant ZND 821

dynamical systems. 822

5) As analyzed in the introduction, heterogeneous ARE 823

variants are involved in solutions to numerous contin- 824

uous time or discrete time problems. Each of these 825

applications provides the possibility of applying the 826

proposed models or their discretization. 827

6) Note that convergence occurs faster for greater values of 828

λ. For further noteworthy characteristics and variations 829

of the ZND’s design parameter λ see [15], [69]. 830
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“Finite-time convergent zeroing neural network for solving time-906

varying algebraic Riccati equations,” J. Franklin Inst., vol. 359, no. 18,907

pp. 10867–10883, 2022.908

[23] T. E. Simos, V. N. Katsikis, S. D. Mourtas, and P. S. Stanimirović,909
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