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Abstract

This paper introduces a new class of generalized inverses for square matrices: core-EP G-Drazin (CEPGD)
inverse. The CEPGD inverse is not unique and defined as a proper composition of the core-EP and the
G-Drazin inverse. Representations of CEPGD inverses related to the core-nilpotent decomposition and the
Hartwig-Spindelböck decomposition are established. The existence of CEPGD inverses as well as a few
characterizations and representations of this inverse are discussed. In addition, we consider some additional
properties of the CEPGD inverses through an induced binary relation.
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1. Introduction

In this section, we will restate necessary definitions, notations and known results which will be utilized to
introduce and derive our main results. The notation Cn×n denotes the complex n× n matrices. The index
of A ∈ Cn×n, denoted by ind(A), is the least positive integer l which defines the border of rank-invariant
powers rank(Al) = rank(Al+1). Standard notations N (A), A∗, and R(A), respectively, are used to denote
the null space, conjugate transpose and the image of a complex matrix A. The orthogonal projection on
R(A) is denoted by PA. The Moore-Penrose inverse A† of a matrix A is a distinctive solver X of the matrix
system

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

In particular, if X satisfies the matrix equation AXA = A, then X is called an inner inverse of A. An
arbitrary inner inverse of A is indicated by A−. In addition, if AA− = A−A, we say A− is commuting inner
inverse or g-inverse of A. Similarly, if the matrix X fulfils the equation XAX = X , then it is denoted by
A(2). If the range and the null space of A(2) are predefined as R(X) = T,N (X) = S, then such A(2) is

denoted as X = A
(2)
T,S . For A ∈ Cn×n satisfying ind(A) = k, there exists the unique Drazin inverse AD,

satisfying
(1k) Ak+1X = Ak, (5) AX = XA, (2) XAX = X.

Preprint submitted to Elsevier May 9, 2023



Under the particular environment ind(A) = 1, the Drazin inverse becomes the group inverse A#.
Let A ∈ Cn×n and ind(A) = k. Then X ∈ Cn×n is called G-Drazin inverse of A if it serves as a solution

for the following equations [38]

(1) AXA = A, (k1) XAk+1 = Ak, (1k) Ak+1X = Ak. (1.1)

The G-Drazin inverse of A is denoted by AGD and it is not unique and represents the set in the general case.
The standard notation A{GD} will be used to signify the set of G-Drazin inverses of A. The extension of
G-Drazin inverses on rectangular matrices along with a weight matrix was discussed by Coll et.al. [6], and
on Banach space operators in [24].

Prasad and Mohana in [19] proposed the core-EP (CEP) inverse on the set of square matrices with
arbitrary index. The unique matrix X is said to be CEP inverse of A with ind(A) = k if it satisfies

(k1) XAk+1 = Ak, (6) AX2 = X, (3) (AX)∗ = AX

and it is signified as A †©. The CEP inverse possesses the representation [9]

A †© = Ak(Ak+1)† = ADAk(Ak)†.

Further, Prasad et al. in [20] proposed iterations to approximate the CEP inverse. Following this
research, Ferreyra et al. in [8] investigated some additional characterizations of the CEP inverse. Later,
Zhou et al. in [40] discussed limit representations of the CEP inverse. Gao and Chen studied several
characterizations of the CEP inverse in [10]. The CEP was extended to rectangular matrices by Ferreyra
et al. in [8]. Several numerical methods for finding CEP inverse, theoretical studies and characterizations
of the CEP inverse have been introduced recently. Certain new characterizations, representations, and
perturbations of the CEP and the weighted CEP were investigated in [16, 17, 1]. A number of authors
have focused on the CEP inverse and have achieved various representations. Main results are available in
[9, 15, 25, 26, 32].

Now we will discuss a few composite generalized inverses which have been developed very recently. In
the last few years, there has been a growing interest for developing composite generalized inverses, main of
which are composite outer inverses [28, 35]. Subsequently, Hernández et al. in [14] introduced 2MP-inverses,
MP2-inverses, and C2MP-inverses on the set of rectangular matrices.

Composite outer inverses are surveyed in Table 1.

Table 1: Survey of composite outer inverses.

Title Definition Reference

OMP A
(2),†
T,S = A

(2)
T,SAA

† [28]

MPO A
†,(2)
T,S = A†AA

(2)
T,S [28]

MPOMP A
†,(2),†
T,S = A†AA

(2)
T,SAA

† [28]

2MP A2MP = A(2)AA† [14]

MP2 AMP2 = A†AA(2) [14]
C2MP AC2MP = A†AA(2)AA† [14]

Composite generalized inverses have adopted in diverse areas of mathematics, including ring, matrix,
Banach algebra, Hilbert space operator to extend the DMP, OMP, MPO and MPOMP inverses [4, 18, 21,
27, 28, 29, 41, 42]. Further, the DMP inverse was generalized to rectangular matrices as the W-weighted
DMP inverse in [22].

A summarization of particular composite outer inverses on square matrices is presented in Table 2.
Composite one inverses were proposed in [13]. The authors of [13] introduced 1MP and MP1 generalized

inverses along with studied the reduction of 1MP-inverses to partial isometries. A survey of particular
composite one inverses is presented in Table 3.
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Table 2: Particular cases of composite outer inverses on square matrices.

Restrictions Title Composite outer inverse Reference
ind(A) = 1 core A#© = A#AA† [1]
ind(A) = 1 dual core A#© = A†AA# [5, 31]
- DMP AD,† = ADAA† [18, 27, 41]
- MPD A†,D = A†AAD [18]
- CMP Ac,† = A†AADAA† [21, 29]
- MPCEP A†, †© = A†AA †© [4]

Table 3: Particular cases of composite one inverses.

Title Composite one inverse Reference
1MP A−,† = A−AA† [13]
MP1 A†,− = A†AA− [13]
D1 AD,− = ADAA− [33]
1D A−,D = A−AAD [33]

Table 4: Particular cases of composite GD inverses.

Title Composite one inverse Reference
GDMP AGD,† = AGDAA† [12]
MPGD A†,GD = A†AAGD [12]

The authors in [12] introduced the GDMP-inverse and its dual for square matrices. Definitions of such
matrices are restated in in Table 4.

In addition, it is well known that generalized inverse is one of the main tools to study matrix partial order.
Recently, there has been a growing interest in analyzing binary relations (reflexive, transitive, antisymmetric)
on a non-empty set, such as genetics, information geometry, botanizes, data mining, physics, probability,
statistics, and environmental and socioeconomic sciences (see [7, 30, 34]).

Motivated by the above mentioned various composite generalized inverses, we aim to introduce and
investigate a new class of composite generalized inverses, called CEPGD inverses. This class of matrices
provides a generalization of the Drazin inverses to a more general class of generalized inverses.

The main results of this paper are highlighted as in the following:

(1) A novel class of generalized inverses, termed as CEPGD inverse, is introduced.

(2) A few representations and characterizations of the CEPGD inverses are investigated.

(3) Representations of CEPGD inverses based on the core-nilpotent decomposition and the Hartwig-
Spindelböck decomposition are established.

(4) Range and null space of CEPGD inverses is considered.

(5) A binary relation for these inverses is introduced along with some derived properties.

The global development of sections proceeded according to the following structure. Definition of the
CEPGD inverse is given in Section 2. A few characterizations of CEPGD inverses and their relation with
main existing generalized inverses and (B,C)-inverses are discussed in the same section. A binary relation
on CEPGD inverses is introduced in Section 3. Last section gives some concluding remarks.
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2. The CEPGD inverse

In this part, we establish the core-EP G-Drazin (CEPGD) inverse on the set of square matrices. Further,
we discuss a few characterizations of CEPGD inverses and their relation with main classes of generalized
inverses. From here onward, we will consider the matrix A ∈ Cn×n of index ind(A) = k.

Theorem 2.1 provides the motivation to investigate CEPGD inverses.

Theorem 2.1. For a fixed G-Drazin inverse AGD ∈ A{GD}, the matrix expression X = A †©AAGD is the
unique solution of the subsequent matrix equations:

XAX = X, XA = A †©A, and AX = AA †©AAGD. (2.1)

Proof. Let X = A †©AAGD. Then
XA = A †©AAGDA = A †©A,

AX = AA †©AAGD

and

XAX = A †©AAGDAA †©AAGD = A †©AA †©AAGD = A †©AAGD = X .

Next, we will show the uniqueness of X = A †©AAGD. Suppose there exist two solutions, say Z1 and Z2

satisfying equation (2.1). From the equalities Z1A = A †©A = Z2A and AZ1 = AA †©AAGD = AZ2, we
obtain

Z1 = Z1AZ1 = Z2AZ1 = Z2AZ2 = Z2,

which completes the proof.

In view of Theorem 2.1, now we define the CEPGD inverse as follows.

Definition 2.1. (a) Assume that AGD is an arbitrary but fixed G-Drazin inverse of A. Then the CEPGD
inverse of A is termed as A †©,GD and defined by the expression

A †©,GD = A †©AAGD.

(b) The CEPGD family of A is marked with A{ †©,GD} and defined as the set

A{ †©,GD} = A †©AA{GD} =
{

A †©AAGD : AGD ∈ A{GD}
}

.

Remark 2.1. Notice that every fixed G-Drazin inverse AGD may give rise to a different CEPGD inverse
of A. Henceforth, if we mention the CEPGD inverse of A, it is the CEPGD with previously fixed AGD.

Example 2.1. Observe the input matrix A =





−2 0 −4
4 2 4
3 2 2



. Clearly, rank(A) = 2, rank(A2) = rank(A3) =

1, so that k = ind(A) = 2. Then

A† =





8
81

7
81

11
81

19
81

13
162

16
81

− 22
81

1
81 − 10

81



 , AD = A2
(

A5
)†

A2 =





−1 −1 0
3
2

3
2 0

1 1 0



 ,

A†,D = A†AAD =





− 2
3 − 1

3 − 2
3

1 1
2 1

2
3

1
3

2
3



, AD,† = ADAA† =





− 2
3 − 1

3 − 2
3

1 1
2 1

2
3

1
3

2
3



 ,

A †© = A2
(

A3
)†

=





2
17 − 3

17 − 2
17

− 3
17

9
34

3
17

− 2
17

3
17

2
17



 , A†, †© = A†AA †© =





− 2
51

1
17

2
51

− 1
51

1
34

1
51

− 2
51

1
17

2
51



 .
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Further, for a fixed A− =





− 1
2 0 0
1 1

2 0
0 0 0



 , and AGD =





1 1 −1
− 1

2 − 1
2 1

−2 −3 3



, we have

A−,D = A−AAD =





1 1 0
− 1

2 − 1
2 0

0 0 0



 , AD,− = ADAA− =





−1 −1 0
3
2

3
2 0

1 1 0



 ,

A †©,− = A †©AA− =





1
17 − 5

17 0
− 3

34
15
34 0

− 1
17

5
17 0



, A−, †© = A−AA †© =





− 2
17

3
17

2
17

1
17 − 3

34 − 1
17

0 0 0



,

A†,GD = A†AAGD =





− 1
9 − 1

3
5
9

11
18

5
6 − 5

9
− 13

9 − 7
3

20
9



 , AGD,† = AGDAA† =





4
9 − 1

9
1
9

− 1
9

5
18

2
9

− 4
9

1
9 − 1

9



,

A †©,GD = A †©AAGD =





31
17

55
17 − 60

17
− 93

34 − 165
34

90
17

− 31
17 − 55

17
60
17



 , AGD, †© = AGDAA †© =





2
17 − 3

17 − 2
17

− 3
17

9
34

3
17

− 2
17

3
17

2
17



.

It is observable that the CEPGD inverse of A differs from the selected inner-inverse, CEP inverse, Drazin
inverse, Moore-Penrose inverse, G-Drazin inverse, DMP inverse, MPCEP inverse, MPD inverse, inner Drazin
inverse, Drazin inner inverse, inner-core-EP, core-EP-inner inverse, GDMP-inverse, and MPGD-inverse.

Remark 2.2. Example 2.1 revealed the identity AGD, †© ≡ A †©. The CEPGD inverse can be called a pre-dual
core-EP inverse since the dual GDCEP inverse (AGD, †© = AGDAA †© = A †©) is the same as the core-EP
inverse by

AGD, †© = AGDAA †© = AGDAk+1(A †©)k+1 = Ak(A †©)k+1 = A(A †©)2 = A †©.

Example 2.2. Our goal is to continue Example 2.1 in symbolic form on the same matrix A. The solution

to AXA = A with X in the general form X :=





x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3



 gives the set of inner inverses

A{1} =





x1,1 x1,2 x1,3

x2,1 2x1,1 − x1,2 + 2x2,1 −
1
2 −2x1,1 − x1,3 − 2x2,1 + 1

x3,1 x1,1 −
x1,2

2 + 2x3,1 +
1
2

1
2 (−2x1,1 − x1,3 − 4x3,1 − 1)



 ,

while the general solution to (1.1) defines the set

A{GD} =





x1,1 x1,2 x1,1 −
3x1,2

2 − 1
2

1
2 − x1,1

1
2 − x1,2

1
2 (−2x1,1 + 3x1,2 + 1)

x3,1 x1,1 −
x1,2

2 + 2x3,1 +
1
2

1
4 (−6x1,1 + 3x1,2 − 8x3,1 − 1)



 .

Further calculation in symbolic form gives

A{−,D} = A{1}AAD =





−2x1,1 + 3x1,2 + 2x1,3 −2x1,1 + 3x1,2 + 2x1,3 0
2x1,1 − 3x1,2 − 2x1,3 +

1
2 2x1,1 − 3x1,2 − 2x1,3 +

1
2 0

x1,1 −
3x1,2

2 − x1,3 +
1
2 x1,1 −

3x1,2

2 − x1,3 +
1
2 0



 ,

A{D,−} = ADAA{1} =





−2 (x1,1 + x2,1) −4x1,1 − 4x2,1 + 1 4x1,1 + 4x2,1 − 2
3 (x1,1 + x2,1) 6x1,1 + 6x2,1 −

3
2 −6x1,1 − 6x2,1 + 3

2 (x1,1 + x2,1) 4x1,1 + 4x2,1 − 1 −4x1,1 − 4x2,1 + 2



 ,
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A{ †©,−} = A †©AA{1} =




− 2
17 (11x1,1 + 5x2,1 + 12x3,1)

1
17 (−44x1,1 − 20x2,1 − 48x3,1 − 7) 2

17 (22x1,1 + 10x2,1 + 24x3,1 + 1)
3
17 (11x1,1 + 5x2,1 + 12x3,1)

3
34 (44x1,1 + 20x2,1 + 48x3,1 + 7) − 3

17 (22x1,1 + 10x2,1 + 24x3,1 + 1)
2
17 (11x1,1 + 5x2,1 + 12x3,1)

1
17 (44x1,1 + 20x2,1 + 48x3,1 + 7) − 2

17 (22x1,1 + 10x2,1 + 24x3,1 + 1)



 ,

A{−, †©} = A{1}AA †©

=





2
17 (2x1,1 − 3x1,2 − 2x1,3)

3
17 (−2x1,1 + 3x1,2 + 2x1,3)

2
17 (−2x1,1 + 3x1,2 + 2x1,3)

1
17 (−4x1,1 + 6x1,2 + 4x1,3 − 1) 3

34 (4x1,1 − 6x1,2 − 4x1,3 + 1) 1
17 (4x1,1 − 6x1,2 − 4x1,3 + 1)

1
17 (−2x1,1 + 3x1,2 + 2x1,3 − 1) 3

34 (2x1,1 − 3x1,2 − 2x1,3 + 1) 1
17 (2x1,1 − 3x1,2 − 2x1,3 + 1)



 ,

A†,GD = A†AA{GD} =





1
9 (x1,1 + 2x3,1 + 2) 1

9 (2x1,1 + 4x3,1 + 3) 1
9 (−2x1,1 − 4x3,1 − 1)

1
18 (−2x1,1 − 4x3,1 + 5) 1

18 (−4x1,1 − 8x3,1 + 3) 1
9 (2x1,1 + 4x3,1 + 1)

1
9 (4x1,1 + 8x3,1 − 1) 1

9 (8x1,1 + 16x3,1 + 3) − 4
9 (2x1,1 + 4x3,1 + 1)



 ,

AGD,† = A{GD}AA† =





1
9 (10x1,1 − 5x1,2 − 1) 1

9 (2x1,1 − x1,2 − 2) 1
18 (14x1,1 − 7x1,2 − 5)

1
9 (−10x1,1 + 5x1,2 + 4) 1

18 (−4x1,1 + 2x1,2 + 7) 1
18 (−14x1,1 + 7x1,2 + 11)

1
18 (−10x1,1 + 5x1,2 − 3) 1

18 (−2x1,1 + x1,2 + 3) 1
36 (−14x1,1 + 7x1,2 + 3)



 ,

A{ †©,GD} = A †©AA{GD}

=





1
17 (−12x1,1 − 24x3,1 − 5) 1

17 (−24x1,1 − 48x3,1 − 17) 12
17 (2x1,1 + 4x3,1 + 1)

3
34 (12x1,1 + 24x3,1 + 5) 3

34 (24x1,1 + 48x3,1 + 17) − 18
17 (2x1,1 + 4x3,1 + 1)

1
17 (12x1,1 + 24x3,1 + 5) 1

17 (24x1,1 + 48x3,1 + 17) − 12
17 (2x1,1 + 4x3,1 + 1)



 ,

A{GD, †©} = A{GD}AA †©

=





2
17 − 3

17 − 2
17

− 3
17

9
34

3
17

− 2
17

3
17

2
17



 .

The conclusion is that the CEPGD inverse of A is different from main classes of generalized inverses. In
addition, A{GD, †©} = {A †©}.

An equivalent definition of the CEPGD inverse is discussed in the following theorem.

Theorem 2.2. For arbitrary AGD ∈ A{GD}, the CEPGD inverse A †©,GD is the unique solution to the
following constrained matrix equations:

(i) AX = PR(Ak),N ((Ak)∗AAGD) and R(X) ⊆ R(Ak), where PR(Ak),N ((Ak)∗AAGD) is a projection onto

R(Ak) along N ((Ak)∗AAGD);

(ii) XA = PR(Ak),N ((Ak)∗A) and R(X∗) ⊆ R((AAGD)∗), where PR(Ak),N ((Ak)∗A) is a projection onto

R(Ak) along N ((Ak)∗A).

Proof. (i) The first condition AA †©,GD = PR(Ak),N ((Ak)∗AAGD) follows from A †© = ADAk(Ak)† and

AA †©,GD = AA †©AAGD = Ak(Ak)†AAGD.

From R(Ak) = R(A †©) ⊇ R(A †©AAGD) = R(A †©,GD), it follows that A †©,GD is the solution to the equation
(i).
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It remains to verify that the equation (i) is uniquely solvable. Suppose the existence of different solutions
X1 and X2 to the equation (i). Then

A(X1 −X2) = PR(Ak),N ((Ak)∗AAGD) − PR(Ak),N ((Ak)∗AAGD) = 0.

Consequently R(X1 −X2) ⊆ N (A) = N (A †©A). Further, using

R(X1) ⊆ R(Ak) = R(A †©A) and R(X2) ⊆ R(A †©A),

we conclude R(X1 −X2) ⊆ R(A †©A) ∩ N (A †©A) = {0}. Consequently, X1 = X2 and hence A †©,GD is the
unique solution to the equation (i).

(ii) Notice that
A †©,GDA = A †©A = ADAk(Ak)†A = PR(Ak),N ((Ak)∗A)

and
R((A †©,GD)∗) = R((A †©AAGD)∗) ⊆ R((AAGD)∗).

Hence, (ii) has the solution A †©,GD. If X1 and X2 are two solution of (ii), we observe

R(X∗
1 −X∗

2 ) ⊆ N (A∗) ∩R((AAGD)∗) ⊆ N ((AGD)∗A∗) ∩R((AGD)∗A∗) = {0},

which implies X1 = X2.

2.1. Characterization of CEPGD Inverses

In the first result, we discuss a few properties of the CEPGD inverses, which can be verified easily.

Proposition 2.1. For each AGD ∈ A{GD}, the CEPGD inverse A †©,GD satisfies the subsequent properties:

(i) A †©,GDA = A †©A.

(ii) A †©,GDAk+1 = Ak, k = ind(A).

(iii) A †©,GD = A †©,GDAAGD.

(iv) A †©,GDAA †©,GD = A †©,GD.

(v) A †©,GD = ADAl(Al)†AAGD = ADPR(Al)AA
GD, where l ≥ k = ind(A).

Theorem 2.3 characterizes the GDCEP inverse from an alternative algebraic access.

Theorem 2.3. For AGD ∈ A{GD}, the subsequent matrix systems are equivalent:

(i) X = A †©,GD.

(ii) XAX = X, AX = AA †©AAGD, XA = A †©A and AXA = AA †©A.

(iii) XA = A †©A and XAA †©AAGD = X.

(iv) AX = AA †©AAGD and A †©AX = X.

(v) XAA †©AX = X, XAA †©A = A †©A, AA †©AX = AA †©AAGD and
AA †©AXAA †©A = AA †©A.

(vi) XAA †©AX = X, XAA †©A = A †©A and AA †©AX = AA †©AAGD.

(vii) XAA †© = A †© and XAA †©AAGD = X.

(viii) XAA† = A †© and XAA †©AAGD = X.
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(ix) XAA∗ = A †©AA∗ and XAA †©AAGD = X.

(x) A†AX = A†, †©AAGD and A †©AX = X.

(xi) A∗AX = A∗AA †©AAGD and A †©AX = X.

(xii) AX = AA †©AAGD and A †©AXAAGD = X.

(xiii) XA = A †©A and A †©AXAAGD = X.

(xiv) AXA = AA †©A and A †©AXAAGD = X.

Proof. (i)⇒(ii) It is sufficient to show only AXA = AA †©A. Using A †©AAGD = X , we get AXA =
AA †©AAGDA = AA †©A.
(ii)⇒(iii) From AX = AA †©AAGD, we obtain XAA †©AAGD = XAX = X.

(iii)⇒(i) This implication is confirmed by X = XAA †©AAGD = A †©AA †©AAGD = A †©AAGD.
(ii)⇒(iv) Since XA = A †©A, then A †©AX = XAX = X .
(iv)⇒(i) Using AX = AA †©AAGD, it is concluded

X = A †©AX = A †©AA †©AAGD = A †©AAGD.

(i)⇒(v) From A †©AAGD = X , we obtain

XAA †©A = A †©AAGDAA †©A = A †©AA †©A = A †©A,

AA †©AX = AA †©AA †©AAGD = AA †©AAGD,

AA †©A(XAA †©A) = AA †©AA †©A = AA †©A,

and
(XAA †©A)X = A †©AA †©AAGD = A †©AAGD = X.

(v)⇒(vi) The proof is obvious.
(vi)⇒(i) This statement follows from the below expression:

A †©AAGD = A †©AA †©AAGD = A †©AA †©AX = A †©AX = XAA †©AX = X .

The remainder of the proof is completed similarly.

Proposition 2.2. Assume X ∈ Cn×n and AGD ∈ A{GD}. Then

(i) AA †©AX = AA †©AAGD ⇐⇒ A †©AX = A †©,GD.

(ii) XAA †©A = A †©A ⇐⇒ XAA †© = A †© ⇐⇒ XAk = A †©Ak.

(iii) AA †©,GD = AAGD ⇐⇒ A = AA †©A ⇐⇒ A† = A†, †© ⇐⇒ A∗ = A∗AA †©.

Proof. (i) Let AA †©AX = AA †©AAGD. Then

A †©AX = A †©AA †©AX = A †©AA †©AAGD = A †©,GD.

The converse part is trivial.

(ii) The first part follows from XAA †© = XAA †©AA †© = A †©AA †© = A †©. To show the next equivalent
statement, let XAA †© = A †©. Then

XAk = XA †©Ak+1 = XA(A †©)2Ak+1 = XAA †©Ak = A †©Ak.

Conversely, if XAk = A †©Ak, it follows

A †© = A †©Ak(A †©)k = XAk(A †©)k = XAA †©.
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(iii) Under the assumption AA †©,GD = AAGD, one obtains

A = AAGDA = AA †©AAGDA = AA †©A.

Vice versa, let AA †©A = A. In this case, AA †©,GD = AA †©AAGD = AAGD.

Next, we discuss the relations of the CEPGD inverse with CEP, G-Drazin, and (B,C)-inverse.

Proposition 2.3. Let AGD ∈ A{GD}. The CEPGD inverse satisfies the subsequent relations:

(i) A †©,GD = AGD ⇐⇒ R(AGD) ⊆ R(A †©).

(ii) A †©,GD = A †© ⇐⇒ AA †©,GD = AA †©.

Proof. (i) Assume R(AGD) ⊆ R(A †©). Then AGD = A †©Z for a selected Z ∈ Cn×n. Now

AGD = A †©Z = A †©AA †©Z = A †©AAGD = A †©,GD.

The converse is trivial.
(ii) Let AA †©,GD = AA †©. Then A †©,GD = A †©AA †©,GD = A †©AA †© = A †©. The converse is trivial.

Recall that A is called index EP (in short, i-EP) if Ak(Ak)† = (Ak)†Ak.

Theorem 2.4. If A is i-EP, then A †©,GD = A †©. Moreover, A †©,GD = A †© = AD.

Proof. Let A be i-EP. Then by [39, Theorem 2.4], it follows A †© = AD and AA †© = A †©A. Now,

A †©,GD = A †©AAGD = AA †©AGD

= Ak+1(A †©)k+1AGD = (A †©)k+1Ak+1AGD

= (A †©)k+1Ak = Ak(A †©)k+1 = A(A †©)2

= A †©,

which was our initial intention.

Definition 2.2 restates definition of (B,C)-inverses.

Definition 2.2. [2, 3] Let A,B,C ∈ Cn×n. A unique matrix X ∈ Cn×n is called the (B,C)-inverse of A if
it satisfies

XAB = B, CAX = C, N (C) = N (X), R(X) = R(B).

Theorem 2.5 and Corollary 2.1 provide useful representations of the CEPGD inverse in terms of (B,C)-
inverses.

Theorem 2.5. For arbitrary AGD ∈ A{GD}, A †©,GD represents the (B,C) inverse of A, where B = Ak

and C = AA †©AAGD.

Proof. Let X = A †©,GD, B = Ak and C = AA †©AAGD. Then

XAB = A †©AAGDAAk = A †©Ak+1 = Ak = B

CAX = AA †©AAGDAA †©AAGD = AA †©AAGD = C.

From X = A †©AAGD = Ak(A †©)k+1AAGD, it follows R(X) ⊆ R(B). Similarly, using B = Ak = A †©Ak+1 =
A †©AAGDAk+1 = XAAk+1, we conclude R(B) ⊆ R(X). Next we need to show N (X) = N (C). Let
y ∈ N (C). Then y ∈ N (AA †©AAGD) and subsequently, AA †©AAGDy = 0. Premultiplying A †© on both
sides we get A †©AAGDy = 0. Now Xy = A †©AAGDy = 0. Thus y ∈ N (X) and hence N (C) ⊆ N (X).
Conversely, if z ∈ N (X), then A †©AAGDz = 0. Now Cz = AA †©AAGDz = 0 and consequently, z ∈ N (C).
Hence N (X) ⊆ N (C), which completes the proof.
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Corollary 2.1. For an arbitrary AGD ∈ A{GD}, A †©,GD is the (B,C) inverse of A, such that B = A †©

and C = AA †©AAGD.

Proof. Let X := A †©,GD. The proof of the identity XAB = B follows from the following identities:

XAB = A †©AAGDAA †© = A †©AA †© = A †© = A †© = B,

The identity CAX = C follows from Theorem 2.5.

Corollary 2.2. For arbitrary AGD ∈ A{GD}, the subsequent representations are valid:

A †©,GD = Ak
(

AA †©Ak+1
)†

AA †©AAGD

= Ak
(

Ak+1
)†

AAGD;

Proof. Stated representations follow from Theorem 2.5, and the general representation of outer inverses with
known image and kernel from [36]. Based on Theorem 2.5, we obtain

A †©,GD = Ak
(

AA †©AAGDAAk
)†

AA †©AAGD

= Ak
(

AA †©Ak+1
)†

AA †©AAGD

= Ak
(

AA †©Ak+1
)†

AA †©,GD.

The second representation follows from A †© = Ak(Ak+1)†, which implies

A †©,GD = Ak
(

AAk(Ak+1)†Ak+1
)†

AAk(Ak+1)†AAGD

= Ak
(

Ak+1
)†

Ak+1(Ak+1)†AAGD

= Ak
(

Ak+1
)†

AAGD,

and the proof is complete.

Example 2.3. Consider the input matrix

A =





−2a 0 −4a
4a 2a 4a
3a 2a 2a



 ,

where a is an unevaluated variable with real values. The general solution to (1.1) gives the set

A{GD} =





3x1,2

2 + x1,3 +
1
2a x1,2 x1,3

−
3x1,2

2 − x1,3
1
2a − x1,2 −x1,3

−ax1,2+ax1,3−ax3,2+1
2a x3,2

1
2 (−x1,2 − x1,3 − 2x3,2)



 ,

which generates the set of CEPGD inverses of A:

A{ †©,GD} = A †©AA{GD}

=







−6ax1,2−12ax3,2+1
17a − 12ax1,2+24ax3,2+5

17a
12
17 (x1,2 + 2x3,2)

3(6ax1,2+12ax3,2−1)
34a

3(12ax1,2+24ax3,2+5)
34a − 18

17 (x1,2 + 2x3,2)
6ax1,2+12ax3,2−1

17a
12ax1,2+24ax3,2+5

17a − 12
17 (x1,2 + 2x3,2)






.

The matrices B and C from Theorem 2.5 are equal to

B := A2 =





−8a2 −8a2 0
12a2 12a2 0
8a2 8a2 0




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and
C := AA †©AA{GD}

=





− 2
17 (6ax1,2 + 12ax3,2 − 1) − 2

17 (12ax1,2 + 24ax3,2 + 5) 24
17a (x1,2 + 2x3,2)

3
17 (6ax1,2 + 12ax3,2 − 1) 3

17 (12ax1,2 + 24ax3,2 + 5) − 36
17a (x1,2 + 2x3,2)

2
17 (6ax1,2 + 12ax3,2 − 1) 2

17 (12ax1,2 + 24ax3,2 + 5) − 24
17a (x1,2 + 2x3,2)



 .

Symbolic calculation confirms that B(CAB)†C, which is in accordance with Theorem 2.2.
The core-EP of A in symbolic form is given by the matrix

A †© = A2
(

A3
)†

=





2
17a − 3

17a − 2
17a

− 3
17a

9
34a

3
17a

− 2
17a

3
17a

2
17a



 .

Using B1 := A †© and C := AA †©AA{GD} we conclude B(CAB)†C = B1(CAB1)
†C, which is a confirmation

of Corollary 2.2.

Theorem 2.6. For M ∈ Cn×n and AGD ∈ A{GD}, the next statements are mutually equivalent:

(i) A †©,GD = MAAGD.

(ii) MA = A †©A.

(iii) AMA = AA †©A and R(MA) = R(Ak).

(iv) M = A †© + Z(In −AAGD) for some Z ∈ Cn×n.

Proof. (i)⇒(ii) Let A †©,GD = MAAGD. Then MA = MAAGDA = A †©,GDA = A †©A.

(ii)⇒(iii) From, MA = A †©A, and A †© = A †©AA †© = MAA †©, we obtain R(MA) = R(A †©) = R(Ak).

(iii)⇒(i) Let R(MA) = R(Ak) = R(A †©). Then MA = A †©X for appropriate X ∈ Cn×n, which initiates

MAAGD = A †©XAGD = A †©AMAAGD = A †©AA †©AAGD = A †©,GD.

(ii)⇒(iv) We can easily verify that the general solution to the homogeneous equation MA = 0 is equal to
M = Z(In − AAGD), where Z ∈ Cn×n be arbitrary. Since A †© is a particular solution of MA = A †©A, so
the general solution to MA = A †©A is equal to

M = A †© + Z(In −AAGD), where Z ∈ Cn×n be arbitrary.

(iv)⇒(i) Let M = A †© + Z(In −AAGD) for a chosen Z ∈ Cn×n. In this case,

MAAGD = A †©AAGD + ZAAGD − ZAAGDAAGD = A †©AAGD = A †©,GD.

The proof is completed.

Theorem 2.7. For arbitrary M ∈ Cn×n and AGD ∈ A{GD}, the subsequent assertions are valid:

(i) A †©,GD = A †©AM ⇐⇒ M = AGD + (In −A †©A)Y for a hosen Y ∈ Cn×n.

(ii) A †©,GD = ZAM ⇐⇒ M = AGD + (In − A †©A)Y and Z = A †© +X(In − AAGD) for selected X,Y ∈
Cn×n.

Proof. (i) For M = AGD + (In − A †©A)Y it can be verified A †©AM = A †©,GD. Conversely, let A †©,GD =
A †©AM . It is known that AGD is a particular solution of A †©AM = A †©,GD. Suppose Y is any solution
of the homogeneous equation A †©AM = 0. Then A †©AY = 0, and we can write Y = Y − A †©AY =
(In−A †©A)Y . So the general solution of homogeneous equation A †©AM = 0 is given by M = (In−A †©A)Y
and consequently, M = AGD + (In −A †©A)Y is the general solution of A †©AM = A †©,GD, where Y ∈ Cn×n

is arbitrary.

(ii) This follows directly from part (i) and (iv) of Theorem 2.6.
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Next, we provide a representation of the CEP inverse and the GD inverse based on the core-EP matrix
decomposition. More precisely, the core-EP decomposition [37] of A ∈ Cn×n is defined by

A = U

[

T1 T2

0 N

]

U∗, (2.2)

where U is unitary, T1 ∈ Cr×r is a non-singular and N ∈ C(n−r)×(n−r) is a nilpotent matrix. Using the
decomposition given in (2.2), the following results are obtained.

Theorem 2.8. Observe the core-EP decomposition of A defined in (2.2). Then all CEPGD inverses of A
are represented by

A †©,GD = U

[

T−1
1 X2 + T−1

1 T2N
−

0 0

]

U∗,

where (T1X2 + T2N
−)N = 0, X2 = T

−(k+1)
1 T̃2 − T−k

1 T̃2N
− and T̃2 =

k−1
∑

i=0

T i
1 T2 Nk−1−i.

Proof. Let A = U

[

T1 T2

0 N

]

U∗. From A = AXA, we obtain

U

[

T1 T2

0 N

]

U∗ = U

[

T1 T2

0 N

] [

X1 X2

X3 X4

] [

T1 T2

0 N

]

U∗

= U

[

T1X1T1 + T2X3T1 T1X1T2 + T1X2N + T2X3T2 + T2X4N

NX3T1 NX3T2 +NX4N

]

U∗.

Thus, NX3 = 0, X4 = N−, T1X1 + T2X3 = I, (T1X2 + T2X4)N = 0. Next, we evaluate

Ak = U

[

T k
1 T̃2

0 0

]

U∗ (with T̃2 =
k−1
∑

i=0

T i
1 T2 Nk−1−i),

XAk = U

[

X1 X2

X3 X4

] [

T k
1 T̃2

0 0

]

U∗ = U

[

X1T
k
1 X1T̃2

X3T
k
1 X3T̃2

]

U∗,

and

AkX = U

[

T k
1 T̃2

0 0

] [

X1 X2

X3 X4

]

U∗ = U

[

T k
1 X1 + T̃2X3 T k

1 X2 + T̃2X4

0 0

]

U∗.

Using the condition XAk = AkX , we obtain X1T
k
1 = T k

1 X1, X3 = 0, X1T̃2 = T k
1 X2 + T̃2X4. Hence, GD

inverses of A are of the form

AGD = U

[

T−1
1 X2

0 N−

]

U∗, (2.3)

where (T1X2 + T2N
−)N = 0 and X2 = T

−(k+1)
1 T̃2 − T−k

1 T̃2N
−. In [37], the core-EP decomposition of A is

given by

A †© = U

[

T−1
1 0
0 0

]

U∗. (2.4)

From the equations (2.2), (2.3) and (2.4), we can see that CEPGD inverses are of the form

A †©,GD = U

[

T−1
1 X2 + T−1

1 T2N
−

0 0

]

U∗.
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2.2. CEPGD inverse in terms of HS-decomposition

We discuss the general form of CEPGD inverses via the Hartwig and Spindelböck decomposition (in short,
HS decomposition)[11]. For every matrix A ∈ Cn×n with having rank r, we can write the matrix A as

A = U

[

ΣK ΣL
0 0

]

U∗, (2.5)

where U ∈ Cn×n is unitary, Σ = diag(σIr1 , σIr2 , · · · , σIrs) is the diagonal matrix with elements equal to
singular values of A such that σ1 > σ2 > · · · > σs > 0, r1 + r2 + · · · + rs = r. The blocks K ∈ Cr×r and
L ∈ Cr×(n−r) are related with KK∗ + LL∗ = Ir .

Proposition 2.4 gives representations of the G-Drazin inverse based on the HS decomposition of A.

Proposition 2.4. Consider the matrix A as defined in (2.5). Then the GD inverses of A are of the form

AGD = U

[

X1 X2

X3 X4

]

U∗,

where
ΣKX1 +ΣLX3 = Ir, X1(ΣK)k = (ΣK)k−1, X3(ΣK)k−1 = 0

and

(ΣK)k+1X2 + (ΣK)kΣLX4 = (ΣK)k−1ΣL.

Proposition 2.5 establishes the CEP inverse of A utilizing the HS decomposition.

Proposition 2.5. [8, Theorem 3.2] Consider the matrix A as defined in (2.5). Then A †© is of the form

A †© = U

[

(ΣK) †© 0
0 0

]

U∗, where ind(ΣK) = k − 1.

The following result follows immediately in view of propositions 2.4 and 2.5.

Theorem 2.9. Consider the matrix A as defined in (2.5). Then CEPGD inverses of A are of the form

A †©,GD = U

[

(ΣK) †© (ΣK) †©(ΣKX2 +ΣLX4)
0 0

]

U∗,

where
ΣKX1 +ΣLX3 = Ir, X1(ΣK)k = (ΣK)k−1, X3(ΣK)k−1 = 0

and
(ΣK)k+1X2 + (ΣK)kΣLX4 = (ΣK)k−1ΣL.

3. Binary relation on CEPGD inverses

It is well known that a reflexive and transitive binary relation on a non-empty set is a pre-order [23]. In
addition, if the relation is also anti-symmetric, it is termed as a partial order.

Definition 3.1. [23, Definition 4.2.1] Let A,B ∈ Cn×n with ind(A) = 1. Then A is below B under the sharp
order A ≤# B if there exist commuting g-inverses A− and A= such that AA− = BA− and A=A = A=B.

A few examples of these relations are given below. The matrices A, B ∈ Cn×n are assumed.

• Star partial order [23, Page 2]:
We say A ≤∗ B if A†A = A† and AA† = BA†.
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• Left sharp partial order [23, Definition 6.3.1]:
If ind(A) ≤ 1, we say A#≤ B if A2 = AB and R(A) ⊆ R(B).

• Right sharp partial order [23, Definition 6.3.1]:
If ind(A) ≤ 1, we say A ≤#B if A2 = BA and R(A∗) ⊆ R(B∗).

• Core partial order [1]:
If ind(A) = 1, we say A ≤#© B if A#©A = A#©B and AA#© = BA#©.

• Core-EP pre-order [37]:
We say A ≤ †© B if A †©A = A †©B and AA †© = BA †©.

• Drazin pre-order [23, Page-118 ]:
We say A ≤D B if ADA = ADB and AAD = BAD.

We now establish a binary relation based on the CEPGD inverse, and then utilizing the definition, we
characterize the relationship in terms of partial order when we consider the matrices of at most index 1.

Definition 3.2. For A,B ∈ Cn×n, we will say that A is below B under the relation ≤ †©,GD if A †©,GDA =
A †©,GDB and AA †©,GD = BA †©,GD for a fixed AGD ∈ A{GD}. Such a relation is termed as A ≤ †©,GD B.

Clearly, the relation ≤ †©,GD is reflexive but need not be transitive, as shown in the below example.

Example 3.1. Let A =









1 1 1 1
0 0 0 0
0 0 0 0
0 1 −1 0









, B =









1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0









C =









1 1 1 1
0 0 0 −2
0 0 0 2
0 0 0 0









. Then we can find

that

AGD =









1 2 0 −1
0 0 0 1
0 1 1 0
0 0 0 0









, BGD =









1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0









, and A †© = B †©









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

It can be calculated
AA †©,GD = BA †©,GD, A †©,GDA = A †©,GDB,

as well as
BB †©,GD = CB †©,GD, B †©,GDB = B †©,GDC.

It is observable that AA †©,GD = CA †©,GD but

A †©,GDC =









1 1 1 −3
0 0 0 0
0 0 0 0
0 0 0 0









6= A †©,GDA.

Thus, the conclusion is that both the relations A ≤ †©,GD B and B ≤ †©,GD C hold, but A � †©,GD C.

Proposition 3.1. The subsequent statements are mutually equivalent for A,B ∈ Cn×n:

(i) A ≤ †©,GD B.

(ii) AA †©A = BA †©A = AA †©,GDB.

(iii) A †©A = A †©,GDB and AA †© = BA †©.
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Proof. (i)⇒(ii) Let A ≤ †©,GD B. Then

AA †©A = AA †©AA †©A = AA †©AAGDAA †©A

= BA †©AAGDAA †©A = BA †©AA †©A

= BA †©A,

and
AA †©A = AA †©AAGDA = AA †©AAGDB = AA †©,GDB.

(ii)⇒(iii) Let AA †©A = BA †©A = AA †©,GDB. Then

A †©A = A †©AAGDA = A †©AAGDB = A †©,GDB

and
AA †© = AA †©AA †© = AA †©AAGDAA †©

= BA †©AAGDAA †© = BA †©AA †© = BA †©.

(iii)⇒(i) Assume (iii) holds. Then it follows

A †©,GDA = A †©A = A †©,GDB

in conjuction with
AA †©,GD = AA †©AAGD = BA †©AAGD = BA †©,GD.

Theorem 3.1. Assume that A ∈ Cn×n is represented by (2.2). In addition, if B ∈ Cn×n the subsequent
statements are equivalent:

(i) A ≤ †©,GD B.

(ii) B = U

[

T1 T2 − (T1X2 + T2N
−)B4

0 B4

]

U∗.

Proof. (i)⇒(ii) Let A ≤ †©,GD B and consider B = U

[

B1 B2

B3 B4

]

U∗, where Bi (i = 1, 2, 3, 4) are arbitrary.

By comparing AA †©,GD = BA, we obtain

B1 = T1, B3 = 0.

Applying A †©,GDA = A †©,GDB, we get

T−1
1 T2 + (X2 + T−1

1 T2N
−)N = T−1

1 B2 + (X2 + T−1
1 T2N

−)B4. (3.1)

Using (T1X2+T2N
−)N = 0 (see Theorem 2.8) and the equality (3.1), we have B2 = T2−(T1X2+T2N

−)B4.
(ii)⇒(i) It follows by direct verification.

Lemma 3.1. Let A, B ∈ Cn×n and assume ind(A) ≤ 1. For a fixed AGD ∈ A{GD} satisfying A ≤ †©,GD B,
the following statements are valid:

(i) A# ≤ B, where # ≤ is the left sharp order.

(ii) A ≤ #B, where ≤ # is the right sharp order.

Proof. For ind(A) = 0, the result is trivial. Let ind(A) = 1 = k. Thus A †© = A#©. Further, from
A2AGD = A = AGDA2, we obtain AAGD = AGDA. Now if A ≤ †©,GD B, then

AAGD = BA#©AAGD and A#©A = A#©AAGDB.
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(i) Using these properties, it is derived

A2 = A2A#©A = A2A#©AAGDB = A2AGDB = AB.

The condition R(A) ⊆ R(B) follows from A = AAGDA = BA#©AAGDA. Hence by [23, Definition 6.3.1], we
conclude A# ≤ B.

(ii) It can be verified from the below expressions:

A∗ = (AA#©A)∗ = (A#©A)∗A∗ = B∗(AA#©AAGD)∗

and
A2 = AAGDA2 = BA#©AAGDA2 = BA#©A2 = BA.

Theorem 3.2. Assume A,B ∈ Cn×n and ind(A) ≤ 1. Under these conditions, it follows

A ≤# B ⇐⇒ A ≤ †©,GD B,

for some AGD ∈ A{GD}.

Proof. Let A ≤# B. Then by [23, Theorem 4.2.5], we have AA# = BA# and A#A = A#B. Now

AA †©,GD = AAGD = AA#AAGD = BA#AAGD

= BA#A2(AGD)2 = BA(AGD)2

= BA#©A2(AGD)2 = BA#©AAGD = BA †©,GD,

and
A †©,GDA = A#©A = A#©AA#A

= A#©AA#B = A#©AGDA2A#B

= A#©AGDAB = A#©AAGDB = A †©,GDB.

Hence, by Lemma 3.1, the proof is complete.

Remark 3.1. The relation ≤ †©,GD is a partial order on the set PO = {A,B ∈ Cn×n : ind(A) = ind(B) ≤ 1}.

4. Conclusion

A novel class of outer generalized inverses, termed as CEPGD inverse, is introduced as a proper composition
of the core-EP and the G-Drazin inverse. A few properties and computationally efficient representations
of the CEPGD inverses are presented and investigated. The image and nullity of CEPGD inverses are
considered. The representations of CEPGD inverses based on the core-nilpotent decomposition and the
Hartwig-Spindelböck decomposition are established. A binary relation induced by these inverses is intro-
duced along with some derived properties.

Some encouraging subjects for future investigation are mentioned as follows:
- development of iterations for computing the CEPGD inverses;
- perturbations, limit, and continuity of the CEPGD inverses;
- studying of CEPGD inverses for tensors;
- investigation of CEPGD inverses for Hilbert spaces operators.
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