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Abstract: A number of real-world problems of automatic grouping of objects or clustering require
a reasonable solution and the possibility of interpreting the result. More specific is the problem
of identifying homogeneous subgroups of objects. The number of groups in such a dataset is not
specified, and it is required to justify and describe the proposed grouping model. As a tool for
interpretable machine learning, we consider formal concept analysis (FCA). To reduce the problem
with real attributes to a problem that allows the use of FCA, we use the search for the optimal number
and location of cut points and the optimization of the support set of attributes. The approach to
identifying homogeneous subgroups was tested on tasks for which interpretability is important: the
problem of clustering industrial products according to primary tests (for example, transistors, diodes,
and microcircuits) as well as gene expression data (collected to solve the problem of predicting
cancerous tumors). For the data under consideration, logical concepts are identified, formed in the
form of a lattice of formal concepts. Revealed concepts are evaluated according to indicators of
informativeness and can be considered as homogeneous subgroups of elements and their indicative
descriptions. The proposed approach makes it possible to single out homogeneous subgroups of
elements and provides a description of their characteristics, which can be considered as tougher
norms that the elements of the subgroup satisfy. A comparison is made with the COBWEB algorithm
designed for conceptual clustering of objects. This algorithm is aimed at discovering probabilistic
concepts. The resulting lattices of logical concepts and probabilistic concepts for the considered
datasets are simple and easy to interpret.

Keywords: formal concept analysis; conceptual clustering; support set of attributes

1. Introduction

A number of real problems of automatic grouping of objects or clustering require a
reasonable solution and the possibility of interpreting the result. The initial data in our
study are the values of numerical features that describe a set of objects. These objects by
their nature can form subgroups, but there is no information about such a division of objects
into groups in the initial data, i.e., we are dealing with unsupervised learning. The task is
to substantiate the selection of subgroups of objects using their logical description. Such a
description is useful for interpreting the results, identifying the distinctive characteristics
of the distinguished subgroups of objects and substantiating the division and allocation of
similar objects into subgroups. The proposed approach can also be useful for analyzing
data that are data for a classification problem (supervised learning) to detect, refine, and
describe new classes of objects.

To identify compact subgroups of objects, it is proposed to use FCA, designed to detect
concepts. For the data considered in our study, the concepts are subgroups of objects that
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have the same description concerning binary features. When applying FCA to the problems
we are considering, it is necessary to evaluate the resulting concepts in order to select the
most informative of them. This requires measures for evaluating concepts, both external,
based on a comparison with a known breakdown into classes, and internal, calculated only
from the original data.

An interesting feature of FCA is that the result of its application can be represented as
a lattice of concepts, which contributes to decision support when identifying subgroups of
objects. However, the use of such tools is effective only with a small dimension (a small
number of features). Known methods of reduction of the lattice of concepts are aimed at
improving the readability and interpretation of the results [1]. For the problems under
consideration, a method is needed to form a lattice of small-sized concepts and obtain short
descriptions of the concepts themselves. For this, it is proposed to use the ideas of building
sparse logical models, including algorithms of test theory and logical data analysis.

Logical Data Analysis (LAD) is a data analysis methodology first described by Peter
L. Hammer in [2]. LAD creates robust classification models with high accuracy. The main
advantage of LAD is that it offers a classification along with an explanation that experts can
understand. The first publications were mainly devoted to theoretical and computational
development [3]. Subsequently, attention was focused on practical applications.

The LAD methodology is widely used in industry. In [4], LAD was used to detect
unauthorized aircraft parts. Shaaban et al. proposed a tool-wear monitoring system based
on LAD [5]. The results showed that the developed alarm system detects worn parts and
triggers an alarm to replace the cutting tool at an age that is relatively close to the actual
failure time. Based on LAD, Mortada proposed an approach to automatic diagnostics of
bearing failures as well as a multiclass LAD classifier for diagnosing power-transformer
failures [6]. In [7], LAD was used to predict the estimated time to equipment failure under
various operating conditions. In [8], LAD was applied in the field of occupational health
and safety to highlight different types of occupational accidents. In addition, LAD has
been applied in aviation to forecast passenger traffic in order to determine overbooking [9].
The proposed method proved to be competitive compared to statistically based tools used
by airlines. The multiclass version of LAD has been used for face recognition [10]. The
results showed that LAD is superior to other face-recognition methods. LAD has also
been successfully used in medicine to diagnose the health status of patients and predict
the spread of certain diseases such as breast cancer [11], ovarian cancer [12], coronary
disease [13] and ischemic stroke [14]. LAD has found wide application in the financial
system to build credit-risk ratings for countries and for financial institutions [15]. LAD
has also been applied to several classes of stochastic optimization problems [16]. Mathe-
matical models obtained using the LAD approach can be exact reformulations or internal
approximations of problems with random constraints.

Formal concept analysis (FCA) was introduced in the early 1980s by Rudolf Wille as a
mathematical theory [17] for the formalization of concepts and conceptual thinking. FCA
identifies interesting clusters (formal concepts) in a set of objects and their attributes and
organizes them into a structure called a concept lattice. The mathematical basis of FCA is
described in [18]. Tilley and Eklund in [19] reviewed 47 articles on FCA-based software
development. The authors classified these documents into 10 categories defined in the ISO
12207 software development standard and visualized them in a concept grid. Cole and
Stumme in [20] presented an email management system that stores its email in a conceptual
grid rather than a conventional tree structure. The use of such a conceptual multi-hierarchy
provides more flexibility when searching for saved emails. Poelmans, Elzinga, Neznanov,
Viaene, Dedene, and Kuznetsov [21] reviewed FCA research in information retrieval. The
main advantage of FCA for information retrieval is the ability to extract context, which can
be used both to improve the extraction of certain elements from a text collection and to
guide the analysis of its contents. FCA is widely used to analyze medical and biological data.
Belohlavek, Sigmund, and Zacpal in [22] present an FCA-based questionnaire evaluation
method that gives the assessor a structured view of the data contained in the International
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Physical Activity Questionnaire. Kaytoue, Kuznetsov, Napoli, and Duplessis in [23] present
two FCA-based methods for clustering gene expression data. In [24], FCA is used as a data
mining tool to identify hypomethylated genes among breast cancer subtypes. The lattice of
concepts is built based on a formal context consisting of formal concepts. The use of FCA is
a powerful tool for discovering hidden relationships between subtypes of breast cancer.
Finding connections between them is a big problem, because it allows you to reduce the
number of parameters that must be taken into account in a mathematical model. FCA is
seen as a promising method to address this problem by expanding the knowledge that can
be drawn from any context using positive and negative information. FCA has also been
used in the context of machine learning. In particular, the model of learning from positive
and negative examples, called the JSM method, was described in terms of FCA in [25].

Ref. [26] describes the relationship between formal FCA concepts and LAD models
based on the equivalence of their basic building blocks. As a potential advantage of this
relationship, the authors suggest using FCA algorithms to compute LAD patterns. In
addition, the article proposes an interface between FCA and LAD, which makes it possible
to transfer theorems and algorithms from one methodology to another.

In this paper, we consider the use of FCA as an algorithm for identifying concepts in
numerical data. This can be used both when searching for compact subgroups of objects
in cluster analysis (unsupervised learning) and in classification problems to refine and
justify the selected classes and search for new classes of objects in the data under study.
The structure of the paper is as follows. Section 2 discusses the apparatus of the test
theory, which is of practical importance for identifying homogeneous groups of objects.
In Section 3, we introduce a review of conceptual clustering algorithms. In Section 4,
we describe Formal Concept Analysis (FCA). In Section 5, we consider applicability of
internal quality measures to evaluate identified subgroups. In Section 6, we describe
our computational experiment. Our computational experiment was carried out using
two approaches: the concept-formation algorithm CloseByOne (FCA) and the conceptual-
clustering algorithm COBWEB. In Section 7, we present a short discussion.

2. Determination of the Support Set of Features Using Test Theory Algorithms

This section discusses the apparatus of test theory, which is of practical importance for
identifying homogeneous groups of objects. The basic concepts of test theory (TT) are a test
table (decision table), a test (support set), a dead-end test, and a conditional test (decision
tree) [3]. Furthermore, TT uses the concepts of a representative set (decision rule, template)
and a non-deterministic decision tree (a system of decision rules). All applications of TT
can be divided into two groups: when complete information about the problem is known
(i.e., the entire decision table) and when we have incomplete information about the problem
(i.e., only some rows of the entire decision table are known).

Decision tables and decision trees as well as rules and tests are popular ways to
represent data and knowledge. Decision trees, decision rule systems, and some test-based
structures can be thought of as predictors or algorithms for solving problems given a finite
set of attributes.

Let k be a natural number (k > 2). A k-valued decision table is a rectangular corner
table whose elements belong to the set {0, . . . , k − 1}. The columns of this table are marked
with conditional attributes f 0, . . . , fn. The rows of the table are pairwise distinct, and each
row is labeled with a non-negative integer, the value of the decision attribute d. Denote
by N(T) the number of rows in the decision table T. A decision tree over T is a finite tree
with a root, in which each terminal node is labeled with a decision (non-negative integer),
and each non-terminal node (we will call these worker nodes) is labeled with an attribute
from the set {f 1, . . . , fn}. Each worker node starts at most k edges. These edges are pairwise
labeled with different numbers from the set {0, . . . , k − 1}.

Let G be a decision tree over T. For a given row r of T, the evaluation of this tree starts
at the root of G. If the node in question is a finite node, then the result of evaluation of G is
the number attached to that node. Assume that the node currently under consideration is a
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worker node labeled with the f attribute. If the value of f in the row under consideration is
equal to the number assigned to one of the edges outgoing from the node, then we pass
along this edge. Otherwise, the computation of G terminates at the considered non-terminal
node without result. We will assume that G is a decision tree for T if, for any row T, the
evaluation of G ends at the final node, which is labeled with the solution attached to the
row in question.

Denote by h(G) the depth of G, which is the maximum length of the path from the
root to the end node. Denote by h(T) the minimum depth of the decision tree for the table
T. We also take into account the average depth of decision trees. To do this, suppose that
we are given a probability distribution P = (p1, . . . , pN(T)) for T, where p1, . . . , pN(T) are

positive real numbers and ∑
N(T)
i=1 pi = 1. Then, the average depth of G with respect to P is

equal to havg(G, P) = ∑
N(T)
i=1 pili, where li is the path length from the root to the end node

as the computation for the ith row. Denote by havg(T, P) the minimum average depth of
the decision tree for the table T with respect to P.

The value H(P) = −∑
N(T)
i=1 pi log2 pi represents the entropy of the distribution proba-

bilities P [3].
The decision rule over T is an expression of the form fi1 = b1 ∧ . . . ∧ fim = bm → t ,

where fi1 , . . . , fim ∈ { f1, . . . , fn}, b1, . . . , bm ∈ {0, . . . , k− 1}, and t represents the value of
the solution attribute d. The number m is the length of the rule. This rule is called realizable
for the row r = (δ1, . . . , δn), if δi1 = b1, . . . , δim = bm. A rule is said to be true for T if any
row r of the matrix T for which this rule is realizable is labeled with a decision attribute
value of t. Denote by L(T, r) the minimum length of a rule over T that is true for T and
realizable for r. We will say that the rule under consideration is a rule for T and r if this
rule is true for T and realizable for r.

A system of decision rules S is called a complete system of decision rules for T if every
rule from S is true for T and for every row of T there is a rule from S that is implemented for
this row. Denote by L(S) the maximum length of a rule from S, and by L(T), we denote the
minimum value of L(S) among all complete systems of decision rules S for T. The parameter
L(S) will be called the depth of S.

The criterion for T is such a subset of columns (conditional signs) that at the intersection
with these columns, any two rows with different solutions are different. The power of a
test will sometimes be referred to as the length of that test. A reduction for T is a test for
T for which every proper subset is not a test. It is clear that each test has a reduction as a
subset. Denote by R(T) the minimum cardinality of a reduct for T [3].

Appropriate algorithms are needed to build and optimize tests that decide rules and
trees. The most interesting are the following optimization problems:

• The task of minimizing the power of a test: Given a decision table T, it is required to
construct a test that has the minimum power;

• The problem of minimizing the length of the decision rule: For a given decision table T
and a row r, it is required to construct a decision rule over T that is true for T, realizable
for r, and has a minimum length;

• The problem of optimizing the system of decision rules: For a given decision table T,
it is required to build a complete system of decision rules S with the minimum value
of the parameter L(S);

• The problem of minimizing the depth of a decision tree: For a given decision table T,
it is required to build a decision tree that has a minimum depth.

Test theory algorithms can be used both independently to classify objects based on a
set of dead-end tests and as part of other approaches, namely LAD and FCA to identify
sets of essential features sufficient to divide objects into classes.

The initial set of features can be excessively large, which makes it difficult to search for
concepts in such a multidimensional space. In addition, the presence of a large number of
features complicates the interpretation of the results. There are different ways of selecting
the most informative features. Some of them are based on statistical criteria that evaluate a
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feature by how effectively it separates examples of different classes. These are such criteria
as Envelope Eccentricity, Separation Measure, System Entropy, Pearson Correlation, and
Signal-to-Noise Correlation [27]. This approach can significantly reduce the set of features
but does not take into account their combinatorial influence. The combinatorial influence
of features is taken into account in test theory when forming dead-end tests as well as in
logical data analysis when forming a support set of features.

To use this method, features must be binarized. Binarization of features occurs through
their discretization using cut-points. Determination of the number and location of cut-
points can be performed both through frequency sampling and by creating a complete set
of potential cut-points and their further selection.

Let there be two classes of observations K+ and K− : K+ ∪ K− = K, K+ ∩ K− = ø.
Observations are described by real features. Let us arrange all possible values of each attribute
j = 1, . . . , d for the observations of this sample in ascending order b(j)

1 < b(j)
2 < b(j)

3 < · · · .
Potential cut-points can be taken as midpoints between the two closest feature values

β
j
i =

(
b(j)

i + b(j)
i+1

)
/2. Obviously, it makes sense to take as potential cut-points only those

(from the above) for which the nearest feature values on different sides of the cut-point
correspond to observations of different classes, i.e., there are z ∈ K+ and w ∈ K− (or
vice versa) such that zj = b(j)

i and wj = b(j)
i+1. Thus, for each real feature describing the

recognition object, we have a set of potential cut-points β
j
1, β

j
2, . . . , β

j
kj

. Binary variables
indicate whether the value of the feature of the object has exceeded the corresponding
cut-point (1).

xij =

{
1, bj ≥ β

j
i,

0, bj < β
j
i.

(1)

From the obtained binary features, a support set of features is formed through the
search for a dead-end test.

Consider observations of different classes z ∈ K+ and w ∈ K−, for which we define
the quantities azw

ij = |xz
ij − xw

ij |. If azw
ij = 1, then the observations z and w are different in the

binary variable xij. That is, the values of the numerical feature bj for these observations

lie on opposite sides of the cut-point β
j
i. Let us introduce a binary variable yij, indicating

whether the variable xij will be included in the support set:

yij =

{
1, i f the variable xij is included in the support set,

0, otherwise.
(2)

The feature selection method used in the formation of the support set consists in
solving the optimization problem [28]. The optimization model (3) is aimed at reducing the
number of features sufficient to separate observations of different classes.

d
∑

j=1

ki
∑

i=1
yij → min

Y
,

d
∑

j=1

ki
∑

i=1
azw

ij yij ≥ 1, z ∈ K+, w ∈ K−,
(3)

where yij ∈ {0, 1} is the control variable that determines the use of the corresponding

binary feature, azw
ij =

∣∣∣xz
ij − xw

ij

∣∣∣ for z ∈ K+ and w ∈ K−.
The above problem is the set covering problem. The set of elements (universe) U in

this problem is all possible pairs of examples z ∈ K+ and w ∈ K−. Consider a table whose
rows are the elements zw. The columns are (binary) features and the cells of the table
contain the values azw

ij . The collection of sets S is defined using the columns of the table;
for each column, the elements with value 1 form a subset. Thus, the problem of forming
the support set of features is solved using a greedy algorithm (Algorithm 1) for finding
coverage of C ⊆ S by successively selecting columns with the largest number of ones.
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Algorithm 1 Greedy algorithm for finding a support feature set

Input: U—all possible pairs of examples of different classes, S—a family of subsets determined by
the features and values of the table azw

ij .
Output: a subset of features that define C ⊆ S coverage.

1. Initialization: Set the initial set of elements X← U. Cover C← ∅.
2. For each feature that defines a subset A ∈ S, determine the cardinality of the subset |X ∩ A|

as the number of pairs of examples it shares.
3. Choose A ∈ S with the largest |X ∩ A|
4. Remove covered elements from the table X← X\A
5. C ← C ∩ {A} (add the corresponding feature to the support set)
6. If X = ∅, then go to step 6 (there are no undivided pairs of examples left). Otherwise, go

to step

Return C.

It should be noted that when solving the clustering problem, the breakdown into
classes is not initially known. In this case, the number of clusters can be determined
using clustering validation methods, including visualization methods such as VAT and
iVAT [29], as well as applying any cluster analysis method, for example, k-means [30], to
obtain a primary breakdown that can be used in the problem of generating the support set
of features.

3. A Review of Conceptual Clustering Algorithms

Conceptual clustering algorithms (conceptual algorithms), in addition to the list of
objects belonging to the clusters, provide for each cluster one or several concepts as an
explanation of the clusters. Formally, the problem of conceptual clustering is defined as
follows [31]. Let O = {o1, o2, . . . , on} be a set of objects, each of which is described by a set
of attributes A = {a1, a2, . . . , am}, which can be quantitative or qualitative, and take the
values V = {V11, . . . , Vmk}. The problem of conceptual clustering is to organize a set O into
a set of clusters C = {c1, c2, . . . , ck}, such that the following three conditions are satisfied:

• Each cluster ci, I = 1, . . . , k has associated an extensional and an intentional description;
the extensional description contains the objects that belong to the cluster, whereas the
intentional one contains the concepts (statistical or logical properties) that describe
the objects belonging to the cluster in terms of the attribute set A and using a given
language. Depending on the complexity of the language, the concepts will be difficult
or easy to understand by a final user;

• ∀oi ∈ O, i = 1, . . . , n, ∃cj ∈ c, j = 1, . . . , k such that oi ∈ cj. This property ensures that
every object in the collection belongs to at least one cluster;

• @cj ∈ c, j = 1, . . . , k such that cj = ∅. This property ensures that each cluster in the
solution contains at least one object of the collection.

In this section, we present an overview of the most common algorithms in the field of
conceptual clustering, highlighting their limitations or shortcomings. Refs. [31,32] presents
conceptual optimization-based algorithms that, starting from an initial set of clusters,
build a clustering through a continuous process of optimizing this initial set, typically
using an objective function. These algorithms require tuning of some parameters (for
example, the number of clusters), which can be a difficult problem. In addition, conceptual
optimization-based algorithms have high computational complexity.

Many authors have proposed conceptual algorithms that use a classification tree or
hierarchical structure to organize objects. Each node in this structure represents a class and
is labeled with a concept that describes the objects classified under the node. COBWEB [33]
is a well-known incremental and hierarchical conceptual algorithm that describes the
clusters using pairs of attribute-values, which summarize the probability distribution of
objects classified under the sub-tree determined by that cluster. Perner and Attig propose
in [34] a stepwise and hierarchical fuzzy conceptual algorithm. This algorithm can place an
object in more than one node and describes clusters using a fuzzy center computed based
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on the objects stored in the cluster. There are also conceptual algorithms that use graph
theory to build clusters. As a rule, these algorithms represent a set of objects in the form of
a graph in which the vertices are objects, and the edges express the similarity relationship
that exists between the objects and build a clustering through covering this graph with a
special kind of subgraph. Examples of algorithms based on this approach are presented
in [35]. These algorithms have a high computational complexity and can also create clusters
described by a large number of terms, which can also be difficult to understand in real
problems [36]. Funes presents an agglomerative conceptual algorithm that use a bottom-up
approach for clustering [37]. Agglomerative algorithms create clusters, the concepts of
which can be difficult to understand in real-world problems for large datasets, and they
require tuning of the parameter values used to build clusters, which, as mentioned earlier,
can be a difficult problem [35]. Unlike agglomerative algorithms, the literature presents
algorithms that use top-down approaches to build conceptual clustering. These algorithms
consist of the following steps: as the top level of the hierarchy, we take a cluster consisting
of all objects and divide each node into two or more clusters using a modern clustering
algorithm. These steps are repeated a specified number of times or until a specified stop
condition is met. Examples of clustering algorithms based on this approach are presented
in [38]. The authors note the high computational complexity of the algorithms. Gutiérrez-
Rodríguez, Martínez Trinidad, García-Borroto, and Carrasco-Ochoa in [39] present the
conceptual clustering algorithms based on a subset of patterns they discover from the set
of objects. Generally, a pattern is a structure that belongs to the description of an object.
These structures can be sets, sequences, trees, or graphs. The set of objects in which a
pattern is presented and the size of this set are known as the cover and the support of the
pattern, respectively. The interestingness of a pattern is measured by a function that could
be as simple as its frequency of apparition in the data. Taking into account this criterion, a
pattern is considered as frequent (i.e., interesting) in a set of objects iff its support is greater
than a predefined cut-point value. The algorithms following this approach assume each
extracted pattern and its cover constitutes the concept and the cluster, respectively. Most of
these algorithms were proposed for processing documents or news. Various sources [40,41]
present conceptual clustering algorithms that build clusters using an evolutionary approach.
The general structure of these algorithms includes the following steps: creation of an initial
population of individuals; applying evolutionary operators to the current population to
build the next generation; assessment of the current and next generations using one or more
objective functions; and application of heuristics to preserve and improve the best solutions.
Typically, these steps are repeated a predetermined number of times or until a stop criterion
is met. The algorithm proposed by Fanizzi [41] can build clusters with a large description
and high computational complexity. In addition to the above, there are algorithms that
perform biclustering (clustering in a set of objects and in a set of features that describe these
objects). These two clusterings satisfy that either can be derived from the other, thus a
group of features associated with a group of objects can be considered a concept describing
these objects [36]. There are two main approaches to constructing such biclusters. The
first rapproach is to detect them one by one [42], whereas the second approach involves
direct detection of a predetermined number k of biclusters [43].

The COBWEB algorithm is a classic incremental conceptual clustering method that
was proposed by Douglas Fisher in 1987 [33]. The COBWEB algorithm creates a hierarchical
clustering in the form of a classification tree: each node of this tree refers to a concept and
contains a probabilistic description of this concept. A node located at a certain level of a
classification tree is called a slice. To build a classification tree, the algorithm uses a heuristic
measure of evaluation called category utility (CU)—the increase in the expected number
of correct guesses about attribute values with knowledge of their belonging to a certain
category relative to the expected number of correct guesses about attribute values without
this knowledge. To embed a new object in a classification tree, the COBWEB algorithm
iteratively traverses the entire tree in search of the “best” node to which this object belongs.
Node selection is based on placing an object in each node and computing the category
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utility of the resulting slice. The algorithm solves the problem of clustering the initial set of
objects O into classes C = {C1, C2, . . . , Ck} so as to maximize the clustering utility function.
The utility of clustering is considered a CU function that determines the similarity of objects
within one cluster and their difference in relation to objects from other clusters:

CU =
∑Ck∈C

P(Ck)
[
∑i ∑j P(Ai=Vij|Ck)

2−∑i ∑j P(Ai=Vij)
2]

|C| ,

P
(

Ai = Vij
)
=
|{Ol |Ol∈C, Ai=Vij}|

|{Ol |Ol∈C}| ,

P
(

Ai = Vij
∣∣Ck
)
=
|{Ol |Ol∈Ck ,Ai=Vij}|
|{Ol |Ol∈Ck}|

,

(4)

where P(Ck) is the probability of an object to belong to a given class, P(Ai = Vij|Ck) is the
probability of an object having the value Vij for the attribute Ai provided that it belongs
to the class Ck, and {Ok} is the set of objects belonging to this class. When executing the
algorithm, a classification tree is iteratively built. Each node in the tree represents a class. A
tree slice represents a possible partition into non-overlapping classes. The utility function
CU applies specifically to the slice. COBWEB (Algorithm 2) adds objects element by element
to the classification tree, wherein each vertex is a probabilistic concept that represents a
class. Thus, the algorithm descends the tree along the corresponding path, updates the
probabilistic characteristics of the classes on the path, and performs one of the following
operations at each level:

• Assigning an object to an existing class;
• Creating a new class;
• Combining two classes into one;
• Splitting one class into two.

Algorithm 2 Conceptual clustering algorithm COBWEB

Input: Node root, Instance to insert record
Output: Classification tree.
If Node is a leaf then

Create two children of Node L1 and L2.
Set the probabilities of L1 to those of Node.
Set the probabilities of L2 to those of Instance.
Add Instance to Node, updating Node’s probabilities.

Else
Add Instance to Node, updating Node’s probabilities.
For each child C of Node

Compute the category utility of clustering achieved by placing Instance in C.
end for

S1← the score for the best categorization (Instance is placed in C1).
S2← the score for the second best categorization (Instance is placed in C2).
S3← the score for placing Instance in a new category.
S4← the score for merging C1 and C2 into one category.
S5← the score for splitting C1 (replacing it with its child categories).

end if
If S1 is the best score then call COBWEB (C1, Instance).
If S3 is the best score then set the new category’s probabilities to those of Instance.
If S4 is the best score then call COBWEB (Cm, Instance), where Cm is the result of merging C1
and C2.
If S5 is the best score then split C1 and call COBWEB (Node, Instance).
Return Classification tree.

The time complexity of the COBWEB algorithm is O
(

B2·logB(n)·AV
)
, where B is the

average branching factor of the tree, n is the number of instances being categorized, A is
the average number of attributes per instance, and V is the average number of values per
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attribute [33]. The space complexity of the COBWEB algorithm is O(n·A·V·L), where L is
the number of probabilistic concepts.

The formal concept analysis approach is an alternative method of conceptual clustering [23].

4. Formal Concept Analysis

Formal Concept Analysis (FCA) [18] is a conceptual modeling paradigm that studies
how objects can be hierarchically grouped together according to their common attributes.
This grouping of objects actually represents their biclustering. This approach is based on
the idea of preserving the object-attribute description of the similarity of clusters. The result
of FCA algorithms is a conceptual lattice (lattice of formal concepts or Galois lattice) [18],
which contains hierarchically related formal concepts, which are biclusters.

Let G and M be sets, called sets of objects and their features, respectively, and
I ⊆ G×M be a relation. This relation is interpreted as follows: for g ∈ G, m ∈ M takes
place gIm if the object g has the feature m. The triple K = (G, M, I) is called the formal
context. The context can be specified in the form of an object-attribute (0, 1)—matrix. In
this matrix, objects correspond to rows and features-columns, and matrix elements encode
the presence/absence of features in objects [44]. The Galois correspondence between the
ordered sets (2G, ⊆) and (2M, ⊆) is given by the following pair of mappings (called Galois
operators) for arbitrary A ⊆ G and B ⊆ G :

A↑ : {m ∈ M|gIm for all g ∈ A },
B↓ : {g ∈ G|gIm for all m ∈ B }. (5)

A pair of sets (A, B) such that A ⊆ G, B ⊆ G, A↑ = B, B↓ = A is called a formal
concept of context K with (formal) scope A and (formal) content B. The sets A and B in
a formal concept (A, B) are called the extent and the intent, respectively [44]. Note that
the formal definition of the concept in the form of pair (A, B) is in accordance with the
logico-philosophical tradition. For example, it is close to the idea of the concept in the Logic
of Port-Royal (A. Arnaud, P. Nicole, France, XVII century). If the context is represented
as a (0, 1)—matrix, then the formal concept corresponds to its maximum submatrix filled
with ones.

As shown in [17,18], the set of all formal context concepts K forms a complete lattice
with the operations ∧ (intersection) and ∧ (union) :

(A1, B1) ∨ (A2, B2) , ((B1 ∩ B2)
↓, B1 ∩ B2),

(A1, B1) ∧ (A2, B2) , (A1 ∩ A2, (A1 ∩ A2)
↑).

(6)

This lattice, called the lattice of formal concepts (or the Galois lattice in French and
Canadian literature), is denoted B(K).

In addition to formal contexts, FCA explores the so-called multi-valued contexts in
which features can take values from a certain set of values. Formally, a multivalued context
is a quadruple (G, M, W, I), where G, M, and W are sets (objects, features, and feature
values, respectively), and I is a ternary relation I ⊆ G×M×W, which specifies the value
w of feature m, and (g, m, w) ∈ I and (g, m, v) ∈ I implies w = v. The representation of
multi-valued contexts with two-valued ones is called scaling. Possible types of scaling are
discussed in [18].

Let K = (G, M, I) be a formal context and (A, B) be some formal concept. In this case,
the stability index σ of the concept (A, B) is determined by the expression σ(A, B) = |C(A,
B)|/2|A|, where C(A, B) is the union of subsets C ⊆ A such that C = B′. It is obvious that
0 ≤ σ(A, B) ≤ 1. If the value σmin ∈ [0, 1] is chosen, then the formal concept (A, B) is called
stable if σ(A, B) ≥ σmin. Biclusters, as well as dense and stable formal concepts, are used to
form hypotheses in solving clustering problems [25].

In FCA, the In-Close family of algorithms [44] is considered to contain the newest
algorithms. All these algorithms are based on the Close-by-One (CbO) algorithm introduced
by Kuznetsov [45]. Each of the algorithms of the family uses a specific combination of
functions that optimizes and speeds up calculations. The pseudocode of CbO is shown in
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Algorithm 3. The input set B is closed. Therefore, we directly print out the pair (A, B). The
new set D is generated by adding i into B followed by subsequently closing. The recursive
call is made only if D satisfies the canonicity test.

Algorithm 3 Close-by-One algorithm (CbO)

CbO(A, B, y):
Input: A—extent, B—intent, y—last added attribute
print(<A,B>)
for i← y + 1 to n do

if i /∈ B then
C← A ∩ i↓

D← C↑

if Di = Bi then
CbO(C, D, i)

end for

CbO has a polynomial delay in O(|X|·|Y|2). This means that the time between
the start of the algorithm and output of the first concept, the time between the output
of two consequent concepts, and the time between outputting the last concept and the
termination of the algorithm is in O(|X|·|Y|2) [44]. CbO’s total time complexity is thusly
in O(|X|·|Y|2·|B(X, Y, I)|). CbO’s total space complexity is O(|X|·|Y|·|B(X, Y, I)|).
Therefore, the space complexity of CbO and COBWEB is similar.

5. Applicability of Internal Quality Measures to Evaluate Identified Subgroups

There are a number of so-called internal measures for evaluating the quality of cluster-
ing, and some of them, perhaps, could be used to evaluate concepts. However, it should be
taken into account that many of these measures are based on the assessment of the resulting
clustering, while only one potential cluster is known when evaluating the concept. Let us
consider the most known measures and their possibilities for evaluating concepts.

5.1. The Calinski–Harabasz Index, Dunn Index, and Davies–Bouldin Index

The Calinski-Harabasz index is a measure of the quality of the partitioning of a dataset
in a clustering. This index is based on intergroup variance and intragroup variance. For
calculations, the distance to the cluster centers is used [46]. An alternative to this index
is the Dunn Index. The Dunn Index compares the inter-cluster distance with the cluster
diameter [46]. An alternative to the Dunn Index is the Davies–Bouldin Index. The Davies–
Bouldin Index determines the average similarity between clusters and the cluster closest to
it [46]. These indices cannot be used to evaluate concepts, since the values of intercluster
distances or distances to cluster centers are used to calculate them.

5.2. The S_Dbw Index

The S_Dbw index [46] uses two concepts to determine the quality of clustering: nor-
malized intracluster distance and intercluster density. To evaluate concepts, you can use
the first part of this index, since it is not possible to determine the second. The normalized
intracluster distance is defined as :

Scatt(C) =
1
K ∑ck∈C

σ(ck)

σ(X)
, (7)

where ‖x‖ = (xTx)(1/2) is Euclidean norm, and σ(X) = 1
|X| ∑xi∈X(xi − x)2 is variance

within a cluster. This indicator is a measure of the compactness of clusters.

5.3. The Silhouette Index

Silhouette [47] is defined as:
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SWC = 1
N ∑N

j=1 Sxj ,

Sxj =
bpj−apj

max(apj ,bpj)
,

bpj = minq 6=pdqj,

(8)

where dqj is the average distance from xj to objects from another cluster cq (q 6= p), and
apj is the average distance from xj to other objects from the same cluster cp, provided that
element xj belongs to cluster cp. The best grouping is characterized by the maximum SWC
evaluation index; this is achieved when the distance within the cluster apj is small and the
distance between the elements of neighboring clusters bpj is large. This metric can be used
to evaluate concepts if objects that are not included in the selected subgroup are used as
another concept.

In our study, the Silhouette index and a part of the S_Dbw index (normalized intra-
cluster distance) are used.

5.4. External Measures of Quality Assessment

We use the Quality Function (QF) [48] as an external measure:

QF =

(
NSG
N

)α( pSG
NSG

− p
N

)
, (9)

where α is a parameter, N is the total number of objects, p is the number of positive objects,
NSG is the number of objects in the allocated subgroup, and pSG is the number of objects of
the prevailing class in the allocated subgroup. QF uses α to weight the relative NSG

N of a
subcluster. According to [48], in the experiments, we used the value α = 0.5.

6. Results of Computational Experiment

Computational experiments on the practical problem of grouping objects are presented.
Samples of industrial products [49] and data on gene expression for predicting can-

cer [50] were used as initial data:
(a) Transistors 2P771A is a dataset containing 182 transistors, described by 12 real

features, representing the results of test electrical effects. The dataset contains a mixture of
two homogeneous product groups;

(b) Diodes 3D713V is a dataset containing 258 diodes, described by 12 real features,
representing the results of test electrical effects. The dataset is formed by a mixture of
two homogeneous product groups;

(c) Microcircuit 1526LE5 is a dataset containing 619 microcircuits described by 120 real
features, which are the results of test electrical influences. This is a more interesting dataset,
which is formed by a mixture of three homogeneous product groups;

(e) GSE42568 is a gene-expression dataset of 116 patients (16 negative and 101 positive).
The description consists of 54676 real features;

(f) GSE45827 is a gene-expression dataset from 151 patients (7 negative and 144 posi-
tive). The description consists of 54676 real features.

For computational experiments, the following test system was used: Intel (R) Core
(TM) i5-8250UCPU, 16 GB of RAM, and Python was used to implement the algorithms.

To highlight the internal structure of the data in this work, we used the algorithms for
visual assessment of the tendency to clustering VAT/iVAT [29]. The VAT/iVAT algorithms
are tools for visually evaluating the clustering tendency of a set of points by reordering the
dissimilarity matrix so that possible clusters appear as diagonal dark boxes on a cluster
heatmap. This cluster heat map can be used to visually estimate the number of clusters in a
dataset [29]. For the datasets used, heat maps are shown in Figure 1. Analysis of heat maps
allows you to visually identify groups of clusters, the number of which corresponds to the
labels of the original data.
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6.1. The Transistors 2P771A Dataset

The use of the entire set of features in FCA leads to a huge number of concepts that
make further analysis difficult. The work combines two approaches. Using the test theory
algorithm, the smallest dead-end test (the support set of features) is found. FCA is then
applied to the features of the dead-end test.

Application of the support set search algorithm (dead-end test) revealed four features
sufficient to separate observations of different classes: T4, T6, T10, and T12.

For these features, the following boundary values were found:
T4 = 2.925;
T6 = 0.03425;
T10 = 0.6975;
T12 = 0.04065.
A computational experiment was carried out using two approaches:

• A concept formation algorithm, CloseByOne (FCA);
• A conceptual clustering algorithm, COBWEB.

The results obtained are presented in Appendix A and Figures A1 and A2. It should
be noted that class labels were used only to validate the results, but not to build sets of
concepts. Figure A2 shows part of the formal concept lattice for 2P771A with a breakdown
according to class (from CloseByOne).

When displaying the results, the following encoding of binary features was used in
accordance with the cut-points:

1(+): x1 = 1, which corresponds to T4 ≥ 2.925;
1(−): x1 = 0, which corresponds to T4 < 2.925;
2(+): x2 = 1, which corresponds to T6 ≥ 0.03425;
2(−): x2 = 0, which corresponds to T6 < 0.03425;
. . .
As a result of the concept formation algorithm based on the selected features, 64 formal

concepts were found. For each of them, an estimate was made using the normalized
intracluster distance (D) and the silhouette index (S).

Examples of the most informative subgroups obtained by FCA are shown in Table 1.

Table 1. Concepts obtained with FCA for the Transistors 2P771A dataset.

Concept Class According
to Labels Coverage Homogeneity Intracluster

Distance, D
Silhouette
Index, S StandardQF

x3 = 0 neg 64 0.97 0.482 0.247 0.317

x1 = 1,
x3 = 0 neg 50 1 0.292 0.352 0.297

x2 = 0,
x3 = 0 neg 57 1 0.455 0.271 0.317

x1 = 1, x3 = 1, x4 = 1 pos 93 1 0.748 0.110 0.310

After imposing class labels, one can determine that among them there are pure-
positive, pure-negative, and mixed concepts. The StandardQF score was used to evaluate
compliance with known labels.

By analyzing the results obtained, the following conclusion can be drawn: If the
silhouette index is high, say, more than 0.1, and the number of objects to be distinguished
is large, for example, more than 20, then the distinguished subgroup is compact and at the
same time corresponds to labels.

The study of the tree of concepts obtained with the help of Cobweb shows that the
division into homogeneous subgroups (according to labels) occurs on the top branch.
However, the description and interpretation of such concepts are difficult since they are
based on the probabilities of accepting a certain value according to the features (Table 2).
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Table 2. Concepts obtained with COBWEB for the Transistors 2P771A dataset.

Concept Class According
to Labels Coverage Homogeneity Intracluster

Distance, D
Silhouette
Index, S StandardQF

x1 = 1 (0.95),
x2 = 1 (0.82),
x3 = 1 (0.99),
x4 = 1 (0.95)

pos 102 1 0.908 0.054 0.288

x1 = 1 (0.81),
x2 = 0 (0.93),
x3 = 0 (0.79),
x4 = 0 (0.99)

neg 80 0.99 0.735 0.144 0.396

6.2. The Diodes 3D713V Dataset

The application of the algorithm for searching for the support set leads to the identifi-
cation of five features sufficient to separate observations of different classes: T10, T2, T9,
T8, and T11.

For these features, the following boundary values were found:
T10 = 0.4555;
T2 = 0.5275;
T9 = 0.3965;
T8 = 0.2035;
T11 = 0.6255.
The results obtained using the CloseByOne and COBWEB algorithms are shown in

Appendix A and Figures A3 and A4. For a more convenient presentation, the results are
shown on a truncated set of the three most-influencing signs: T10, T2, and T9.

6.3. The Microcircuit 1526LE5 Dataset

The use of the support set search algorithm leads to the identification of seven cut-point
values of features sufficient to separate observations of different classes:

T43 = −6.88;
T39 = 3.26;
T43 = −7.04;
T45 = −8.065;
T46 = −6.8;
T41 = 3.18;
T44 = −7.12.
The results obtained using the CloseByOne and COBWEB algorithms are presented in

Appendix A, Figures A5 and A6, and Tables 3 and 4. For a more convenient presentation,
the results are shown on a truncated set of the four most-influential feature cut-points.

Table 3. Concepts obtained with CloseByOne for the Microcircuit 1526LE5 dataset.

Concept Class According
to Labels Coverage Homogeneity Intracluster

Distance, D
Silhouette
Index, S StandardQF

x2 = 1,
x3 = 1,
x4 = 0

a 212 0.89 0.455 0.380 0.336

x1 = 0 b, c 437 0.95 0.245 0.385 0.123

x5 = 0 b, c 436 0.95 0.244 0.386 0.120

The analysis of the obtained results shows that with the help of both algorithms,
subgroups containing objects of class a, as well as subgroups containing the union of
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objects of classes b and c, are distinguished. However, it is not possible to separate classes
b and c using these algorithms, perhaps due to the similarity of these objects.

Table 4. Concepts obtained with COBWEB for the Microcircuit 1526LE5 dataset.

Concept Class According
to Labels Coverage Homogeneity Intracluster

Distance, D
Silhouette
Index, S StandardQF

x1 = 1 (0.98),
x2 = 1 (1),
x3 = 1 (1),
x4 = 0 (1),

x5 = 1 (0.99)

a 185 0.95 0.345 0.489 0.347

x1 = 0 (0.81),
x2 = 1 (0.93),
x3 = 0 (0.79),
x4 = 0 (0.99),
x5 = 1 (0.99)

b, c 434 0.95 0.241 0.390 0.218

The features of data on industrial products (transistors, diodes, and microcircuits)
should be noted. The data represent the results of the primary non-destructive tests to
which all components are subjected. Further, for a part of the products, destructive tests
are supposed to be carried out. However, the actual items in the kit can be produced
under different production conditions. The results of destructive tests can only be extended
to homogeneous products produced under similar conditions. The task is to identify
homogeneous subgroups of products. Such allocation of subgroups should be justified and
based on certain limits of parameter values, which can be considered as tougher norms for
test parameters. To test the algorithms, sets of products were taken, which were formed
by mixing several production batches. Batch-distribution information was used only to
evaluate results and was not used to find concepts.

The logical concepts found with the help of FCA correspond to subgroups of products.
These subgroups are described according to the above characteristics. Homogeneous
subgroups, the elements of which belong mainly to the same batch, are distinguished via a
low intracluster distance and a high value of the silhouette index (Figures A2, A4 and A6).
At the same time, useful concepts can be located at different levels; that is, they can have
different degrees (the number of literals). The concepts of the upper levels are more general
and simple, the concepts of the lower levels are more selective (homogeneous) but have
less coverage.

The result of the COBWEB algorithm is a lattice of probabilistic concepts. These
concepts are fairly homogeneous already at the higher levels (for 2P771A transistors on the
first branch and for 3D713V diodes on the second branch level). The branching factor is 2 or
3, and the branching depth is 3 and 4 for different data, i.e., the lattice of concepts turns out
to be quite compact. The silhouette and intracluster distance values also make it possible
to find homogeneous subgroups and, taking into account the coverage, select suitable
concepts (Figures A1, A3 and A5). Neither FCA nor COBWEB could find subgroups
corresponding to the second and third classes of 1526LE5 chips, possibly due to their
indistinguishability according to the selected features.

6.4. The GSE42568 Dataset

For this dataset, one of the options for the support set of features consists of four
binary features that correspond to the cut-point values:

206030_at = 6.079;
1553020_at = 4.346;
1555741_at = 4.236;
1553033_at = 3.993.
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The results obtained using the CloseByOne and COBWEB algorithms are shown in
Figures 2 and 3. The color is responsible for label class.
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6.5. The GSE45827 Dataset

The support set was used, consisting of six binary features that correspond to the
cut-point values:

213007_at = 4.92074688046871;
221104_s_at = 3.51124853594935;
230595_at = 5.68936451280485;
235542_at = 5.43939791715374;
239071_at = 6.10825188641847;
239183_at = 3.24904004202841.
The results obtained using the CloseByOne and COBWEB algorithms are shown in

Appendix A and Figures A7 and A8.
The concepts found on the GSE42568 and GSE45827 datasets are shown in Tables 5 and 6.

Table 5. Concepts obtained with CloseByOne for the GSE42568 and GSE45827 datasets.

Concept Class According
to Labels Coverage Homogeneity Intracluster

Distance, D
Silhouette
Index, S StandardQF

GSE42568

x1 = 0,
x2 = 0,
x3 = 1,
x4 = 1

neg 14 1 0.263 0.727 0.302

x3 = 0,
x4 = 0 pos 102 0.99 0.123 0.409 0.112

GSE45827

x2 = 1,
x3 = 1 neg 8 0.88 0.934 0.561 0.191

x2 = 0 pos 138 1 0.286 0.216 0.044

Table 6. Concepts obtained with COBWEB for the GSE42568 and GSE45827 datasets.

Concept Class According
to Labels Coverage Homogeneity Intracluster

Distance, D
Silhouette
Index, S StandardQF

GSE42568

x1 = 0 (1),
x2 = 0 (1),
x3 = 1 (1),
x4 = 1 (1),

neg 14 1 0.263 0.727 0.302

x1 = 0 (0.99),
x2 = 0 (0.99),

x3 = 0 (1),
x4 = 0 (1)

pos 102 0.99 0.123 0.409 0.112

GSE45827

x1 = 1 (1),
x2 = 1 (1),
x3 = 1 (1)

neg 6 0.83 1.114 0.538 0.157

x1 = 0 (1),
x2 = 0 (0.97),
x3 = 0 (0.86)

pos 87 0.98 0.442 0.279 0.019

Data for the prediction of cancerous tumors according to gene expression are charac-
terized by a rather large number of initial features; however, using the LAD methodology,
a reference set of attributes of a small size was found. The data are characterized by a small
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number of examples that are not balanced across classes. The resulting grids of logical
concepts and probabilistic concepts for the GSE42568 set are simple and easy to interpret
(Figures 2 and 3).

Examples of the GSE45827 set are also not balanced according to class (144 positive
and 7 negative). However, using the FCA, we managed to find logical concepts that cover
almost all positive observations (138 positive and no negative) as well as a concept that
covers mostly negative observations (all 7 negative and 1 positive), which is characterized
by the highest value of the silhouette among the concepts with a similar amount of coverage
(Figure A8). With the help of COBWEB, it was possible to find a probabilistic concept,
which includes only five negative examples along with one positive one (Figure A7).

Analyzing the obtained concept lattices (Figures 2, 3 and A1–A6), it can be observed
that the number of logical concepts obtained using FCA is greater than the number of
concepts in the lattice constructed with COBWEB. However, it should be borne in mind that
the FCA-based approach to identifying logical concepts can be formalized for subgroup
sets, allowing for overlap between the subgroups. This does not apply to the lattice of
concepts generated with COBWEB, wherein subgroup intersections are not allowed.

A graphical comparison of the running time of the CloseByOne and COBWEB algo-
rithms is shown in Figure 4.
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7. Discussion and Conclusions

FCA is most often used to analyze the classification of text data. In our work, we
consider the use of FCA as an algorithm for identifying concepts in numerical data. This
can be used both when searching for compact subgroups of objects in cluster analysis
(unsupervised learning) and in classification problems to refine and justify the selected
classes and search for new classes of objects in the data under study. For example, FCA
can be used to identify subtypes of breast cancers based on the data on gene expression
considered in this work. This line of work is the goal of further research.

The application of FCA for the described tasks requires an evaluation of the resulting
concepts. According to the results of the work, we found that the most useful internal
validation index for a concept as a compact subgroup is the silhouette index. Experiments
show that a high value of the silhouette index (the specific cut-point value depends on
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the analyzed data) corresponds to the most informative subgroups (when compared with
labels of previously known classes). Thus, when analyzing data with an unknown markup
in advance, the silhouette index can be used as a selection criterion for concepts obtained
in FCA to form compact subgroups of objects. It should be noted that these subgroups
can intersect with each other, which corresponds to fuzzy clustering. The normalized
intra-cluster distance can be used as an auxiliary criterion to confirm validation.

It is also worth noting that the concepts in FCA have a simple logical description,
which is consistent with the principles of interpretive machine learning.

For comparison, the data were analyzed using the COBWEB conceptual clustering
algorithm. This algorithm has significant differences from FCA both in the way of con-
structing a set of concepts and in the very type of concepts obtained. As a result of applying
this algorithm, a hierarchy of concepts is formed, which corresponds to a clear clustering.
At the same time, the concepts themselves are based on the probabilities of the values taken
by the features. This makes it difficult to interpret the results and describe the concepts
themselves in contrast to FCA, wherein only a part of the features can be used for a logical
description. However, in general, these two algorithms give similar results in terms of the
quality of the concepts they reveal.

To work with data described by a large number of features, it is proposed to supple-
ment the algorithms with a search for a support set of features. The search for a support set
is the basis of test theory. In our work, the search for a support set (support set) is carried
out using a greedy algorithm that allows you to quickly find an approximate solution, the
accuracy of which (in terms of the objective function of minimizing the number of features)
is sufficient from a practical point of view. This approach successfully complements the
FCA and COBWEB algorithms and allows them to be used to analyze data described by a
large number of features and interpret the result.

An interesting topic for the further research is development of an algorithm for
automatic selection of the set of the most informative logical concepts, which together cover
the data examples.
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