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Abstract
Several new expressions are proved for them-weak group inverse. An effective algorithm for
computing m-weak group inverse in terms of the QR decomposition is proposed. Applying
the m-weak group inverse, we present the uniquely determined solution to the restricted
minimization problem in the Frobenius norm:min ‖Am+1X−AmB‖F provided thatR(X) ⊆
R(Ak), where m ∈ N, B ∈ C

n×q , A ∈ C
n×n and ind(A) = k.

Keywords Core-EP inverse · Drazin inverse · Constrained matrix optimization problem

Mathematics Subject Classification 15A09 · 15A24 · 65F05

1 Introduction

Standardly, for A ∈ C
m×n , whereCm×n is the set ofm×n complexmatrices, let rank(A), A∗,

N (A) and R(A), respectively, be its rank, conjugate-transpose, null space and range space.
As usual, Cm×n

r = {
A ∈ C

m×n | rank(A) = r
}
. The symbol PU represents the orthogonal

projector onto a subspace U .
We firstly introduce a few of significant generalized inverses. For A ∈ C

m×n , the Moore-
Penrose inverse of A is the unique matrix X = A† ∈ C

n×m satisfying (see [3])

X AX = X , AX A = A, (AX)∗ = AX , (X A)∗ = X A.

Recall that, for A ∈ C
m×n , the set of all outer inverses (or also called {2}-inverses) is

defined by A{2} = {X ∈ C
n×m | X AX = X}, and the set of all outer inverses of rank s is
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denoted by A{2}s . For a subspace T ofCn with dimension p ≤ rank(A) and a subspace S of
C
m with dimensionm− p, an outer inverse X of A ∈ C

m×n with the range spaceR(X) = T
and null space N (X) = S is unique (if it exists) and it is denoted by A(2)

T ,S [3].
For A ∈ C

n×n and k = ind(A), where ind(A) represents the index of A (i.e. the smallest
nonnegative integer k such that rank(Ak) = rank(Ak+1)), there exists its Drazin inverse [3],
i.e. the unique X = AD ∈ C

n×n such that

X AX = X , Ak+1X = Ak, AX = X A.

In the special case ind(A) = 1, AD becomes the group inverse A# of A.
Let A ∈ C

n×n and k = ind(A). The core-EP inverse of A is the unique matrix X = A †© ∈
C
n×n which satisfies [17]

X AX = X , R(Ak) = R(X) = R(A∗).

A helpful expression was presented in [8] for calculating the core-EP inverse as

A †© = ADAk(Ak)† = Ak
(
Ak+1

)†
.

If ind(A) = 1, A #© = A †© = A#AA† is the core inverse of A [1]. Many significant results
related to the core-EP inverse can be seen in [2, 5, 10, 12, 14, 18, 32].

The notion of the group inverse was extended modifying or omitting equations which
are used in its definition. In addition to the theoretical significance, the group inverse is
very important in applications such as in Markov chains, solving differential and difference
equations [3, 4].

The weak group inverse (or WGI) is a kind of generalization of the group inverse given
in [24]. In particular, the WGI of A ∈ C

n×n is expressed as

Aw© = (A †©)2A

and it is the unique solution to the system of matrix equations

AX = A †©A, AX2 = X .

When ind(A) = 1, the WGI reduces to the group inverse. More results about the WGI can
be found in [7, 11, 16, 25, 31, 33].

Them-weak group inverse (orm-WGI) was defined in [34] as an extension of the concept
of the WGI. For m ∈ N, the m-WGI of A ∈ C

n×n is defined by

Aw©m = (A †©)m+1Am

and it presents the unique matrix X which represents the solution of matrix equations

AX = (A †©)m Am, AX2 = X .

In the case m = 1, the m-WGI becomes the WGI. When m = 2, notice that the m-WGI is
equal to the generalized group (or GG) inverse defined in [6] by

Aw©2 = (A †©)3A2.

If ind(A) ≤ m, the m-WGI reduced to the Drazin inverse. Some properties of the m-WGI
were presented in [9, 15].

Let A ∈ C
n×n and ind(A) = k. For b ∈ R(Ak), it is know that x = ADb represents the

unique Drazin inverse solution to the constrained linear system [4]

Ax = b, x ∈ R(Ak).
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Especially, when ind(A) = 1 and b ∈ R(A), x = A#b(= A #©b) is the unique solution to
Ax = b. In the case b ∈ C

n , i.e. omitting the hypothesis b ∈ R(A), it was proved that
x = A #©b presents the unique solution to the restricted matrix minimization problem in the
Frobenius norm [27]:

min ‖Ax − b‖F subjectto x ∈ R(A).

Extending this problem for complexmatriceswith index one considered in [27] to complex
matrices with arbitrary index, one can see that x = A †©b is uniquely determined solution to
the general constrained matrix minimization problem in the Euclidean norm [13]

min ‖Ax − b‖2 subjectto x ∈ R(Ak), (1.1)

where b ∈ C
n , A ∈ C

n×n and ind(A) = k. Notice that the condition b ∈ R(Ak), given in
[4], is omitted.

The matrix minimization problem in the Frobenius norm [26]

min ‖A2X − AB‖F subjectto R(X) ⊆ R(Ak), (1.2)

where B ∈ C
n×q , A ∈ C

n×n and ind(A) = k, was solved applying the WGI and X = Aw©B
is the unique solution to (1.2). Recall that, by rank(A2) ≤ rank(A), the restricted equation
A2X = AB provided thatR(X) ⊆ R(Ak), is not always consistent, which is the reason why
the least square solution of it is investigated.

Motivated by previous researches about solvability of mentioned optimization problems,
our main goal is to study the most general minimization problem which will extend and
recover the known results. Precisely, our aim is to solve the constrained optimization problem
in the Frobenius norm:

min ‖Am+1X − AmB‖F subjectto R(X) ⊆ R(Ak), (1.3)

wherem ∈ N, B ∈ C
n×q , A ∈ C

n×n and ind(A) = k. The detailed explanation of our results
follows.

(1) We prove that the problem (1.3) possesses a unique solution and it is provided by the m-
WGI. Notice that the problem proposed in [26], namely the problem (1.2), is a particular
case of our optimization problem form = 1. So, we recover awider class ofminimization
problems.

(2) Some special cases of the problem (1.3) are considered and solved.
(3) New formulae for computing the m-WGI are presented using the full-rank factorization

of Ak .
(4) More expressions of them-WGI are established applying a matrix V such that the kernel

of V ∗ is equal to the range space of Ak .
(5) The algorithm for verification of theoretical results is developed and implemented.

The organization of our sections follows. In Sect. 2, new expressions for the m-WGI are
proposed. Section3 involves investigations related to the solvability of the minimization
problem (1.3) and its particular cases. Numerical examples are given in Sect. 4. Final section
presents some concluding observations.
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2 Representations of them-weak group inverse

Let us assume B ∈ C
n×q , A ∈ C

n×n with ind(A) = k throughout this section. Firstly, we
state the known decomposition of A presented in [23] and the corresponding representation
for the m-weak group inverse proposed in [9].

Lemma 2.1 [23] If rank(Ak) = t , then

A = U

[
A1 A2

0 A3

]
U∗, (2.1)

for a unitary U ∈ C
n×n, a nonsingular upper-triangular A1 ∈ C

t×t and a nilpotent A3 ∈
C

(n−t)×(n−t) of index k. Further, it follows, for m ∈ N, [9]:

Aw©m = U

⎡

⎣ A−1
1 A−(m+1)

1

m−1∑

j=0
A j
1A2A

m−1− j
3

0 0

⎤

⎦U∗. (2.2)

Theorem 2.1 gives representations of the m-weak group inverse based on the full-rank
decomposition of Ak .

Theorem 2.1 For m ∈ N and a full-rank decomposition Ak = EF, it follows thatE∗Am+1E
is nonsingular and

Aw©m = E(E∗Am+1E)−1E∗Am (2.3)

= A(2)
R(E),N (E∗Am ). (2.4)

Proof Assume that A is expressed by (2.1). Then

Ak =
(
U

[
Ak
1
0

])([
It A−k

1

k−1∑

i=0
Ak−i−1
1 A2Ai

3

]
U∗

)
:= PQ

is another full-rank factorization of Ak . Since Ak = EF is a full-rank decomposition of Ak ,
then FE is nonsingular. For G = QE , from

t = rank(Ak) = rank(A2k) = rank(PGF) ≤ rank(G) ≤ t,

we deduce that G is nonsingular. Notice that Z := G(FE)−1 is nonsingular and

E = EFE(FE)−1 = PQE(FE)−1 = PG(FE)−1 = PZ = U

[
Ak
1Z
0

]
.

Since

E∗Am+1E = [
Z∗(Ak

1)
∗ 0

]
U∗U

⎡

⎢
⎣
Am+1
1

m−1∑

j=0
A j+1
1 A2A

m−1− j
3 + A2Am

3

0 Am+1
3

⎤

⎥
⎦U∗U

[
Ak
1Z
0

]

= [
Z∗(Ak

1)
∗ 0

] [ Am+k+1
1 Z

0

]

= Z∗(Ak
1)

∗Am+k+1
1 Z ,
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it follows that E∗Am+1E is nonsingular. Using

E∗Am = [
Z∗(Ak

1)
∗ 0

]
U∗U

⎡

⎣ Am
1

m−1∑

j=0
A j
1A2A

m−1− j
3

0 Am
3

⎤

⎦U∗

=
[

Z∗(Ak
1)

∗Am
1 Z∗(Ak

1)
∗ m−1∑

j=0
A j
1A2A

m−1− j
3

]

U∗,

we obtain

E(E∗Am+1E)−1E∗Am = U

[
Ak
1Z
0

]
(Z∗(Ak

1)
∗Am+k+1

1 Z)−1E∗Am

= U

[
Ak
1Z
0

]
(Ak

1Z)−1A−(m+1)
1 (Z∗(Ak

1)
∗)−1

×
[

Z∗(Ak
1)

∗Am
1 Z∗(Ak

1)
∗ m−1∑

j=0
A j
1A2A

m−1− j
3

]

U∗

= U

⎡

⎣ A−1
1 A−(m+1)

1

m−1∑

j=0
A j
1A2A

m−1− j
3

0 0

⎤

⎦U∗

= Aw©m .

The representation E (E∗Am AE)−1 E∗Am is another form of (2.3). Finally, (2.4) fol-
lows from the full-rank representation of outer inverses A(2)

R(B),N (C) with prescribed range

space and kernel given by the Urquhart representation [22] in the form B(CAB)†C and its
extensions given in [20]. �	
Remark 2.1 The representation (2.3) verified in Theorem 2.1 extends the representation

Aw© = E
(
E∗A2E

)−1
E∗A

of the WG inverse given in [26, Theorem 5]. More precisely, the representation of the WG
inverse given in [26, Theorem 5] is the particular case m = 1 of Theorem 2.1.

Form ≥ k, the following formulae for theDrazin inverse are consequences ofTheorem2.1.

Corollary 2.1 For m ≥ k and a full-rank decomposition Ak = EF, it follows

AD = E(E∗Am+1E)−1E∗Am

= A(2)
R(E),N (E∗Am ).

In Corollary 2.2, we derive a full-rank factorization of Ak in terms of its specific QR
decomposition. Then the statements in Corollary 2.2 follow from Theorem 2.1.

Corollary 2.2 Assume that the matrix A ∈ C
n×n
r satisfies ind(A) = k. Suppose that Ak

satisfies rank(Ak) = s and the QR factorization of Ak is of the form

Ak = Q∗RP∗, (2.5)

where P is appropriate n × n permutation matrix, Q ∈ C
n×n is partitioned as

Q = [
Q1 Q2

]
(2.6)
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and Q1 ∈ C
s×n fulfils Q−1

1 = Q∗
1, and R ∈ C

n×n
s is upper trapezoidal. Let R be partitioned

as

R =
[
R11 R12

O O

]
=
[
R1

O

]
, (2.7)

where R1 ∈ C
s×s is nonsingular.

The subsequent claim are valid:

(a) Q1Am+1Q∗
1 is invertible;

(b) Aw©m = Q∗
1(Q1Am+1Q∗

1)
−1Q1Am = A(2)

R(Q∗
1),N (Q1Am )

;

(c) Aw©m ∈ A{2}s .
Proof Since Ak = Q∗

1(R1P∗) is the full-rank decomposition of Ak , the proof follows from
Theorem 2.1. �	

Algorithm 2.1 is aimed to computing Aw©m and based on Corollary 2.2.

Algorithm 2.1 Computing Aw©m using the QR decomposition of Ak .
(Algorithm QRm-WGI)
Require: The n × n matrix A.
1: Compute k = ind(A).
2: Choose an integer m < k.
3: Compute the QR decomposition (2.5) of Ak , where Q and R are of the form (2.6) and

(2.7), respectively.
4: Solve Q1Am+1Q∗

1X = Q1Am .
5: Return Aw©m = Q∗

1X .

Since the formula for Aw©m given in Theorem 2.1 depends only on E from the full-rank
decomposition Ak = EF , we present one more expression for Aw©m . Notice that Theorem 2.2
is a generalization of [26, Theorem 6].

Theorem 2.2 Let S ∈ C
n×n such thatR(S) = R(Ak). For m ∈ N, the m-weak group inverse

is defined by

Aw©m = S(S∗Am+1S)†S∗Am

= A(2)
R(S),N (S∗Am ).

Proof Suppose that Ak = EF and S = S1S2, respectively, are full-rank decompositions of
Ak and S. The hypothesisR(S) = R(Ak) implies that S1 = EZ , for some invertible Z . So,
S = E(ZS2) is a full-rank factorization of S. By Theorem 2.1, E∗Am+1E is nonsingular
and

S∗Am+1S = (E(ZS2))
∗Am+1E(ZS2) = (S∗

2 Z
∗E∗Am+1E)ZS2

is a full-rank factorization of S∗Am+1S. Now,

S(S∗Am+1S)†S∗Am = E(ZS2)((S
∗
2 Z

∗E∗Am+1E)ZS2)
†S∗

2 Z
∗E∗Am

= E(ZS2)(ZS2)
∗((ZS2)(ZS2)∗)−1

× ((S∗
2 Z

∗E∗Am+1E)∗(S∗
2 Z

∗E∗Am+1E))−1(S∗
2 Z

∗E∗Am+1E)∗

× S∗
2 Z

∗E∗Am+1E(E∗Am+1E)−1E∗Am

= E(E∗Am+1E)−1E∗Am .
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The rest is clear by Theorem 2.1. �	
As a consequence of Theorem 2.2, we obtain the next expressions for the Drazin inverse.

Corollary 2.3 Let S ∈ C
n×n such that R(S) = R(Ak). For m ≥ k, it follows

AD = S(S∗Am+1S)†S∗Am

= A(2)
R(S),N (S∗Am ).

Applying the formula for the core-EP inverse proposed in [13, Theorem 2.3], we get a
novel expression of the m-WGI.

Theorem 2.3 For m ∈ N and a matrix V such that N (V ∗) = R(Ak) (or AkV ∗ = 0), the
matrix Ak(Ak)∗A + VV ∗ is nonsingular and

Aw©m =
(
Ak(Ak)∗A + VV ∗)−1

Ak(Ak)∗(AD)m Ak(Ak)†Am

=
(
Ak(Ak)∗A + VV ∗)−1

Ak(Ak)∗Ak(Ak+m)†Am .

Proof Using A †© = ADAk(Ak)†, we can check that (A †©)m = (AD)m Ak(Ak)†. By [13,
Theorem 2.3], it follows that Ak(Ak)∗A + VV ∗ is nonsingular and A †© = (Ak(Ak)∗A +
VV ∗)−1Ak(Ak)∗. Thus,

Aw©m = (A †©)m+1Am =
(
Ak(Ak)∗A + VV ∗)−1

Ak(Ak)∗(AD)m Ak(Ak)†Am .

The second equality is clear by Ak(Ak)† = PR(Ak ) = PR(Ak+m ) = Ak+m(Ak+m)†. �	
Based on [13, Theorem 2.4], we have one more representation for Aw©m .

Theorem 2.4 Form ∈ N and amatrix V such thatN (V ∗) = R(Ak), the matrix Ak+1+VV ∗
is nonsingular and

Aw©m =
(
Ak + (AD)m+1Ak(Ak)†AmVV ∗) (Ak+1 + VV ∗)−1

=
(
Ak + Ak(Ak+m+1)†AmVV ∗) (Ak+1 + VV ∗)−1

.

(2.8)

Proof According to [13, Theorem 2.4], note that Ak+1 + VV ∗ is nonsingular. Hence,

Aw©m (Ak+1 + VV ∗) = (A †©)m+1Am(Ak+1 + VV ∗)
= (AD)m+1Ak(Ak)†Am(Ak+1 + VV ∗)
= (AD)m+1Ak+m+1 + (AD)m+1Ak(Ak)†AmVV ∗

= Ak + (AD)m+1Ak(Ak)†AmVV ∗

yields the validity of (2.8). �	
Notice that, the formulae for Aw©m proved in Theorem 2.3 and Theorem 2.4, are satisfied

for arbitrary l ≥ k instead of k.
Especially, for m = 1 in Theorem 2.3 and Theorem 2.4, we get new expressions for the

weak group inverse.
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Corollary 2.4 For a matrix V such that N (V ∗) = R(Ak), we have

Aw© =
(
Ak(Ak)∗A + VV ∗)−1

Ak(Ak)∗Ak(Ak+1)†A

=
(
Ak + Ak(Ak+2)†A

) (
Ak+1 + VV ∗)−1

.

Theorem 2.3 and Theorem 2.4 also implies representations for the Drazin inverse when
m = k.

Corollary 2.5 For a matrix V such that N (V ∗) = R(Ak), the matrices Ak(Ak)∗A + VV ∗
and Ak+1 + VV ∗ are nonsingular and

Aw©m =
(
Ak(Ak)∗A + VV ∗)−1

Ak(Ak)∗Ak(A2k)†Ak

=
(
Ak + Ak(A2k+1)†AkV V ∗) (Ak+1 + VV ∗)−1

.

3 Solving (1.3) in terms of them-weak group inverse

Using them-weak group inverse, we determine the unique solution to the constrained matrix
minimization problem (1.3).

Theorem 3.1 For m ∈ N, the optimization problem (1.3) has the unique solution of the form

X = Aw©m B.

Proof (a) Consider m < ind(A). The condition R(X) ⊆ R(Ak) gives X = AkY for some
Y ∈ C

n×q . Suppose that A is given by (2.1) as well as

U∗B =
[
B1

B2

]
, U∗Y =

[
Y1
Y2

]
, B1, Y1 ∈ C

t×m .

Notice that X is a solution to the problem (1.3) if and only if Y is a solution to

min ‖Am+k+1Y − AmB‖2F .

Using

Ak = U

⎡

⎣ Ak
1

k−1∑

i=0
Ak−i−1
1 A2Ai

3

0 0

⎤

⎦U∗ and Am = U

⎡

⎣ Am
1

m−1∑

j=0
A j
1A2A

m−1− j
3

0 Am
3

⎤

⎦U∗,

we obtain

Am+k+1Y = U

⎡

⎢
⎣
Am+1
1

m−1∑

j=0
A j+1
1 A2A

m−1− j
3 + A2Am

3

0 Am+1
3

⎤

⎥
⎦U∗AkY

= U

⎡

⎣ Am+k+1
1

k−1∑

i=0
Am+k−i
1 A2Ai

3

0 0

⎤

⎦
[
Y1
Y2

]

= U

⎡

⎣ Am+k+1
1 Y1 +

k−1∑

i=0
Am+k−i
1 A2Ai

3Y2

0

⎤

⎦
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and

AmB = U

⎡

⎣ Am
1

m−1∑

j=0
A j
1A2A

m−1− j
3

0 Am
3

⎤

⎦
[
B1

B2

]

= U

⎡

⎣ Am
1 B1 +

m−1∑

j=0
A j
1A2A

m−1− j
3 B2

Am
3 B2

⎤

⎦ .

Thus,

‖Am+k+1Y − AmB‖2F =

=
∥∥∥∥∥∥

⎡

⎣ Am+k+1
1 Y1 +

k−1∑

i=0
Am+k−i
1 A2Ai

3Y2 − Am
1 B1 −

m−1∑

j=0
A j
1A2A

m−1− j
3 B2

−Am
3 B2

⎤

⎦

∥∥∥∥∥∥

2

F

=
∥∥∥∥∥∥
Am+k+1
1 Y1 +

k−1∑

i=0

Am+k−i
1 A2A

i
3Y2 − Am

1 B1 −
m−1∑

j=0

A j
1A2A

m−1− j
3 B2

∥∥∥∥∥∥

2

F

+ ‖Am
3 B2‖2F ,

which implies

min
Y

‖Am+k+1Y − AmB‖2F = ‖Am
3 B2‖2F

for arbitrary Y2 ∈ C
(n−t)×q and

Y1 = −A−(m+k+1)
1

⎛

⎝
k−1∑

i=0

Am+k−i
1 A2A

i
3Y2 − Am

1 B1 −
m−1∑

j=0

A j
1A2A

m−1− j
3 B2

⎞

⎠ .

The formula (2.2) yields

Aw©m B = U

⎡

⎣ A−1
1 B1 + A−(m+1)

1

m−1∑

j=0
A j
1A2A

m−1− j
3 B2

0

⎤

⎦ .

Therefore,

X = AkY = U

⎡

⎣ Ak
1Y1 +

k−1∑

i=0
Ak−i−1
1 A2Ai

3Y2

0

⎤

⎦

= U

⎡

⎢
⎣

−A−(m+1)
1

(
k−1∑

i=0
Am+k−i
1 A2Ai

3Y2 − Am
1 B1 −

m−1∑

j=0
A j
1 A2A

m−1− j
3 B2

)

+
k−1∑

i=0
Ak−i−1
1 A2Ai

3Y2

0

⎤

⎥
⎦

= U

⎡

⎢
⎣

A−1
1 B1 + A−(m+1)

1

m−1∑

j=0
A j
1 A2A

m−1− j
3 B2

0

⎤

⎥
⎦

= Aw©m B

presents uniquely determined solution to the problem (1.3).
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(b) In the casem ≥ ind(A) the proof follows from [19, Theorem 2.1], which claims that in
the case k = ind(A) the Drazin inverse solution ADB is the unique solution to the restricted
equation

AX = B, R(X) ⊆ R(Ak), R(B) ⊆ R(Ak).

It is sufficient to observe X = AkY , Y ∈ C
n×n and B = AkD, D ∈ C

n×n . �	
Remark that [26, Theorem 1] is a special case of Theorem 3.1 for m = 1.
In the case B = In in Theorem 3.1, Aw©m is uniquely determined solution to the next

minimization problem.

Corollary 3.1 For m < ind(A), the optimization problem

min ‖Am+1X − Am‖F subject to R(X) ⊆ R(Ak)

has the unique solution of the form

X = Aw©m .

The following result is a consequence of Theorem 3.1.

Corollary 3.2 For m < ind(A) and b ∈ C
n, the optimization problem

min ‖Am+1x − Amb‖2 subject to x ∈ R(Ak)

has the unique solution of the form

x = Aw©m b.

The result of Corollary 3.2 can be extended to known results about the Drazin inverse
solution for choices m ≥ k = ind(A).

Proposition 3.1 [29, Theorem 3.1] For A ∈ C
n×n of index ind(A) = k, the Drazin inverse

solution ADb is the unique solution of Ak+1x = Akb, x ∈ R(Ak).

4 Numerical examples

The QR decomposition required in Algorithm 2.1 and used in subsequent examples is gen-
erated adopting the results from [28, Theorem 3.3.11] and [21]. A practical implementation
is developed using the function QRDecomposition from Wolfram Mathematica [30].

The following notation will be useful in numerical tests. The identity (resp. zero) � × �

matrix will be denoted by I� (resp. 0�). Denote byD
p
� (v), p ≥ 1, the �×�matrix with its pth

leading diagonal parallel filled by the entries of the vector v ∈ C
�−p , and 0 in all other entries.

Next, consider the simpler notation Dp
� = Dp

� (1), p ≥ 1, where 1 = {1, . . . , 1} ∈ C
�−p .

Suitable test examples are matrices with a comparatively great index relative to their
dimensions. That is why the class of test matrices of the form

{(
I� C1I�
0� C2D1

�(v)

)
, � > 0

}
, C1,C2 ∈ C (4.1)

was tested in performed numerical experiments.
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Example 4.1 The test matrices in this example are derived using � = 4 and C1 = C2 = 1
from the test set (4.1). Our intention is to perform numerical experiments on integer matrices
using exact computation.

Consider the matrix

A =
(
I4 I4
04 D1

4

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since {rank(A), rank(A2), rank(A3), rank(A4), rank(A5)} = {7, 6, 5, 4, 4}, it follows k =
ind(A) = 4.
(a) In the first part of this example, we calculate the Drazin inverse, the core-EP inverse and
m-WGI inverses according to their definitions. The Drazin inverse of A is computed using

AD = Ak
(
A2k+1

)†
Ak = A4 (A9)† A4 =

(
I4 I4 + N[3]

4
04 04

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the core-EP inverse of A is

A †© = Ak
(
Ak+1

)† =
(
I4 04
04 04

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The WGI (or 1-WGI) inverse of A is given by

Aw© = (A †©)2A =
(
I4 I4
04 04

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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the 2-WGI (or GG) inverse of A is equal to

Aw©2 = (A †©)3A2 =
(
I4 I4 + N[1]

4
04 04

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the 3-WGI inverse of A is

Aw©3 = (A †©)4A3 =
(
I4 I4 + N[2]

4
04 04

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Additionally, Aw©m = AD is checked for each m ≥ ind(A).
(b) In the general case, the matrix

A =
(
I� I�
0� D1

�

)
, � ≥ 2

is of index ind(A) = �. The Drazin inverse and the core-EP inverse of A are equal to

AD =
(
I� I� + N[�−1]

�

0� 0�

)
, A †© = Ak

(
Ak+1

)† =
(
I� 0�

0� 0�

)
.

Further calculation gives

Aw©m = (A †©)m+1Am =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
I� I� + N[m−1]

�

0� 0�

)

, m = 1, . . . , ind(A) − 1,

AD =
(
I� I� + N[�−1]

�

0� 0�

)

, m ≥ ind(A).

(c) In this part of the example, we generate the class of m-WGI inverses accord-
ing to statements in Corollary 2.2. Since ind(A) = 4, is a full-rank factorization
of A4 is required. The QR factorization A4 = Q∗RPT is defined by the command
{Q,R,P}=QRDecomposition[MatrixPower[A,4]] whose output is the ordered
triple

{Q, R, P} =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

1 0 0 0 1 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1

⎞

⎟⎟
⎠ , I8

⎫
⎪⎪⎬

⎪⎪⎭
.
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The following equalities are verified to check Corollary 2.2:

Q∗(QAm+1Q∗)−1QAm = A(2)
R(Q∗),N (QAm ) =

{
(A †©)m+1Am, m = 1, . . . , ind(A) − 1,

AD, m ≥ ind(A)
= Aw©m .

(d) Consider the matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 2 0 1
2 1 2 2 1
0 1 0 1 1
1 0 2 1 0
1 1 1 1 0
2 1 2 2 1
0 1 0 1 1
1 0 2 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with intention to verify Theorem 3.1. The solution to the least-squares problem
min

{‖A2X − AB‖F , R(X) ⊆ R(A4)
}
is given by

Aw©B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 2 3 1 1
4 2 4 4 2
0 2 0 2 2
2 0 4 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

the solution to min
{‖A3X − A2B‖F , R(X) ⊆ R(A4)

}
is equal to

Aw©2 B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 3 5 3 2
4 3 4 5 3
1 2 2 3 2
2 0 4 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the solution to min
{‖A4X − A3B‖F , R(X) ⊆ R(A4)

}
is

Aw©3B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

5 4 5 4 3
5 3 6 6 3
1 2 2 3 2
2 0 4 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Finally, the solution to the constrained matrix equation Am+1X − AmB, R(X) ⊆ R(A4),
for each m ≥ ind(A) = 4 is

Aw©m B = ADB =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6 4 7 5 3
5 3 6 6 3
1 2 2 3 2
2 0 4 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Example 4.2 The test in this example is the real matrix

A =
(
I4 0.280768 ∗ I4
04 D1

4({0.45315, 0.67382, 0.417927})
)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0.280768 0. 0. 0.
0 1 0 0 0. 0.280768 0. 0.
0 0 1 0 0. 0. 0.280768 0.
0 0 0 1 0. 0. 0. 0.280768
0 0 0 0 0 0.45315 0 0
0 0 0 0 0 0 0.67382 0
0 0 0 0 0 0 0 0.417927
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Our goal is to perform numerical experiments on real matrices in the floating point arithmetic.
The index of A is equal to ind(A) = 4 because of {rank(A), rank(A2), rank(A3), rank(A4),

rank(A5)} = {7, 6, 5, 4, 4}.
(a) In the first part of this example we compute the Drazin inverse, the core-EP inverse and
m-WGI inverses according to their definitions. The Drazin inverse of A is equal to

AD = A4
(
A9
)†

A4

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. −3.2266 ∗ 10−16 −1.7000 ∗ 10−16 −6.9389 ∗ 10−18

1.4181 ∗ 10−16 1. −9.0206 ∗ 10−17 −2.8103 ∗ 10−16

−1.4268 ∗ 10−16 −2.8449 ∗ 10−16 1. 4.1633 ∗ 10−17

−2.0036 ∗ 10−16 1.7347 ∗ 10−17 −3.8164 ∗ 10−16 1.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.

0.280768 0.12723 0.0857301 0.0358289
3.9817 ∗ 10−17 0.280768 0.189187 0.0790663

−4.0060 ∗ 10−16 −9.8030 ∗ 10−17 0.280768 0.11734
−5.6255 ∗ 10−17 −2.0621 ∗ 10−17 −1.2105 ∗ 10−16 0.280768

0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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and the core-EP inverse of A is equal to

A †© = Ak
(
Ak+1

)†

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. −4.9567 ∗ 10−16 −2.03396 ∗ 10−16 2.8796 ∗ 10−16 0. 0. 0. 0.

−2.1771 ∗ 10−16 1. −2.4633 ∗ 10−16 −3.4694 ∗ 10−16 0. 0. 0. 0.

−1.24033 ∗ 10−16 −2.6801 ∗ 10−16 1. −1.5959 ∗ 10−16 0. 0. 0. 0.

−4.3368 ∗ 10−17 −6.5919 ∗ 10−17 −2.1858 ∗ 10−16 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≈
(
I4 04

04 04

)

.

the WGI (or 1-WGI) inverse of A is given by

Aw© = (A †©)2A

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. −9.9139 ∗ 10−16 −4.0679 ∗ 10−16 5.7593 ∗ 10−16

−4.35416 ∗ 10−16 1. −4.9266 ∗ 10−16 −6.9389 ∗ 10−16

−2.4807 ∗ 10−16 −5.3603 ∗ 10−16 1. −3.1919 ∗ 10−16

−8.6736 ∗ 10−17 −1.3184 ∗ 10−16 −4.3715 ∗ 10−16 1.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0.280768 −2.7835 ∗ 10−16 −1.1421 ∗ 10−16 1.6170 ∗ 10−16

−1.2225 ∗ 10−16 0.280768 −1.3832 ∗ 10−16 −1.9482 ∗ 10−16

−6.9649 ∗ 10−17 −1.5050 ∗ 10−16 0.280768 −8.9618 ∗ 10−17

−2.4353 ∗ 10−17 −3.7016 ∗ 10−17 −1.2274 ∗ 10−16 0.280768

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≈
(
I4 0.280768 ∗ N[1]

4
04 04

)
.
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The 2-WGI inverse (or GG) of A is equal to

Aw©2 = (A †©)3A2

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. −1.4871 ∗ 10−15 −6.1019 ∗ 10−16 8.6389 ∗ 10−16

−6.5312 ∗ 10−16 1. −7.3899 ∗ 10−16 −1.0408 ∗ 10−15

−3.7210 ∗ 10−16 −8.0404 ∗ 10−16 1. −4.7878 ∗ 10−16

−1.3010 ∗ 10−16 −1.9776 ∗ 10−16 −6.5573 ∗ 10−16 1.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0.280768 0.12723 −4.5266 ∗ 10−16 1.7095 ∗ 10−16

−1.8338 ∗ 10−16 0.280768 0.189187 −3.789 ∗ 10−16

−1.0447 ∗ 10−16 −2.7309 ∗ 10−16 0.280768 0.11734

−3.6529 ∗ 10−17 −7.2077 ∗ 10−17 −2.2152 ∗ 10−16 0.280768

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and the 3-WGI inverse of A is

Aw©3 = (A †©)4A3

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. −1.9828 ∗ 10−15 −8.1359 ∗ 10−16 1.1519 ∗ 10−15

−8.7083 ∗ 10−16 1. −9.8532 ∗ 10−16 −1.3878 ∗ 10−15

−4.9613 ∗ 10−16 −1.0721 ∗ 10−15 1. −6.3838 ∗ 10−16

−1.7347 ∗ 10−16 −2.6368 ∗ 10−16 −8.7430 ∗ 10−16 1.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0.280768 0.12723 0.0857301 7.11658505897139 ∗ 10−17

−2.4450 ∗ 10−16 0.280768 0.189187 0.0790663

−1.3930 ∗ 10−16 −3.6412 ∗ 10−16 0.280768 0.11734

−4.8705 ∗ 10−17 −9.6103 ∗ 10−17 −3.1023 ∗ 10−16 0.280768

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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For each m ≥ ind(A), it is verified that

Aw©m =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. −2.4785 ∗ 10−15 −1.0170 ∗ 10−15 1.4398 ∗ 10−15

−1.0886 ∗ 10−156 1. −1.2317 ∗ 10−15 −1.7347 ∗ 10−15

−6.2016 ∗ 10−16 −1.3401 ∗ 10−15 1. −7.97973 ∗ 10−16

−2.1684 ∗ 10−16 −3.2960 ∗ 10−16 −1.0929 ∗ 10−15 1.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.

0.280768 0.12723 0.0857301 0.0358289
−3.0563 ∗ 10−16 0.280768 0.189187 0.0790663
−1.7412 ∗ 10−16 −4.5515 ∗ 10−16 0.280768 0.11734
−6.0882 ∗ 10−17 −1.20123 ∗ 10−16 −3.8779 ∗ 10−16 0.280768

0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Frobenius norm of Aw©m − AD for m ≥ ind(A) is equal to ‖Aw©m − AD‖F = 3.79579 ∗
10−15.
(b) In the second part we compute the class ofm-WGI inverses according to Corollary 2.1 and
Corollary 2.2. The result of {Q,R,P}=QRDecomposition[MatrixPower[A,4]] is
the ordered triple

{Q, R, P} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I8,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. 0. 0. 0. 0.280768 0.12723 0.0857301 0.0358289
0. 1. 0. 0. 0. 0.280768 0.189187 0.0790663
0. 0. 1. 0. 0. 0. 0.280768 0.11734
0. 0. 0. 1. 0. 0. 0. 0.280768
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, I8

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The skinny parts of Q and R are equal to

Q1 =

⎛

⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟
⎠ , R1 =

⎛

⎜⎜
⎝

1. 0. 0. 0. 0.280768 0.12723 0.0857301 0.0358289
0. 1. 0. 0. 0. 0.280768 0.189187 0.0790663
0. 0. 1. 0. 0. 0. 0.280768 0.11734
0. 0. 0. 1. 0. 0. 0. 0.280768

⎞

⎟⎟
⎠ .

According to Corollary 2.2, our further interest is the matrix

Q∗
1(Q1A

4Q∗
1)

−1Q1A
3 = A(2)

R(Q∗
1),N (Q1A3)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. 0. 0. 0. 0.280768 0.12723 0.0857301 0.
0. 1. 0. 0. 0. 0.280768 0.189187 0.0790663
0. 0. 1. 0. 0. 0. 0.280768 0.11734
0. 0. 0. 1. 0. 0. 0. 0.280768
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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which approximates Aw©3 , since ‖Aw©3 − Q∗
1(Q1A4Q∗

1)
−1Q1A3‖F = 3.59685 ∗ 10−15. It is

a confirmation of Corollary 2.2.
The next verification of the statement in Corollary 2.2 is the matrix

Q∗
1(Q1A

3Q∗
1)

−1Q1A
2 = A(2)

R(Q∗
1),N (Q1A2)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. 0. 0. 0. 0.280768 0.12723 0. 0.
0. 1. 0. 0. 0. 0.280768 0.189187 0.
0. 0. 1. 0. 0. 0. 0.280768 0.11734
0. 0. 0. 1. 0. 0. 0. 0.280768
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which satisfies ‖Aw©2 − Q∗
1(Q1A3Q∗

1)
−1Q1A2‖F = 2.6825 ∗ 10−15. Finally,

Q∗
1(Q1A

2Q∗
1)

−1Q1A = A(2)
R(Q∗

1),N (Q1A)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1. 0. 0. 0. 0.280768 0. 0. 0.
0. 1. 0. 0. 0. 0.280768 0. 0.
0. 0. 1. 0. 0. 0. 0.280768 0.
0. 0. 0. 1. 0. 0. 0. 0.280768
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

approximates Aw©, since ‖Aw© − Q∗
1(Q1A2Q∗

1)
−1Q1A‖F = 1.73739 ∗ 10−15.

Example 4.3 Our intention in this example is to perform numerical experiments on thematrix

A =
(
I3 ι ∗ I3
03 (1 + ι) ∗ D1

3

)
=

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ι 0 0
0 1 0 0 ι 0
0 0 1 0 0 ι

0 0 0 0 1 + ι 0
0 0 0 0 0 1 + ι

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

with complex entries involving the imaginaryunit ι. Rank identities {rank(A), rank(A2), rank(A3), rank(A
{5, 4, 3, 3} confirm k = ind(A) = 3.
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(a) Exact calculation gives

AD = A3 (A7)† A3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ι −1 + ι −2
0 1 0 0 ι −1 + ι

0 0 1 0 0 ι

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

A †© = A3 (A4)† =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

=
(
I3 03
03 03

)
,

Aw© = (A †©)2A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ι 0 0
0 1 0 0 ι 0
0 0 1 0 0 ι

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

=
(
I3 ι ∗ N[1]

3
03 03

)
,

Aw©2 = (A †©)3A2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ι −1 + ι 0
0 1 0 0 ι −1 + ι

0 0 1 0 0 ι

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

Aw©m = (A †©)m+1Am = AD, m ≥ 3 = ind(A).

(b) The output ofMathematica command of
{Q,R,P}=QRDecomposition[MatrixPower[A,3]] is the ordered triple

{Q, R, P} =
⎧
⎨

⎩

⎛

⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎠ ,

⎛

⎝
1 0 0 i −1 + i −2
0 1 0 0 i −1 + i
0 0 1 0 0 i

⎞

⎠ , I6

⎫
⎬

⎭

which defines the QR decomposition (2.5). Further calculation gives

Q∗(QA3Q∗)−1QA2 = A(2)
R(Q∗),N (QA2)

= Aw©2

and

Q∗(QA2Q∗)−1QA = A(2)
R(Q∗),N (QA) = Aw©,

which is consistent with Corollary 2.2.

5 Conclusion

The m-weak group inverse (m-WGI) was introduced in [34] as an extension of the concept
of the weak group inverse (WGI). Some properties of the m-WGI were presented in [9, 15,

123



   13 Page 20 of 21 D. Mosić et al.

26, 34]. In this paper, we introduce several additional representations for the m-weak group
inverse in terms of full rank factorizations of rank-invariant matrix powers Ak , k ≥ ind(A).
An effective computational procedure for computing m-weak group inverse in terms of the
QR decomposition of the matrix Ak , k = ind(A) is presented. Our second motivation is
the constrained matrix minimization problem considered in [26] and solved in terms of the
WGI. Applying the m-weak group inverse, we present the uniquely determined solution to
the restricted optimization problem in the Frobenius norm: min ‖Am+1X− AmB‖F provided
that R(X) ⊆ R(Ak), where m ∈ N, B ∈ C

n×q , A ∈ C
n×n and ind(A) = k. Some well-

known results related to the WGI and the Drazin inverse are special cases of the considered
minimization problem.
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