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Generalized inverses are extremely effective in many areas of mathematics and engineering. 
The zeroing neural network (ZNN) technique, which is currently recognized as the state-of-the-

art approach for calculating the time-varying Moore-Penrose matrix inverse, is investigated in 
this study as a solution to the problem of calculating the time-varying minimum rank outer 
inverse (TV-MROI) with prescribed range and/or TV-MROI with prescribed kernel. As a result, 
four novel ZNN models are introduced for computing the TV-MROI, and their efficiency is 
examined. Numerical tests examine and validate the effectiveness of the introduced ZNN models 
for calculating TV-MROI with prescribed range and/or prescribed kernel.

1. Introduction and preliminaries

The real-time solution for generalized inverses [1,2], that arises very often in game theory [3], robotics [4–6], nonlinear systems 
[7,8], and other scientific and technical disciplines [9–11], has drawn a lot of curiosity in recent years. In particular, applications in 
engineering involve overseeing of attitude and orbit control systems using torque and force actuators [12], keeping track of humanoid 
robot motions [13], overseeing an aircraft’s fault-tolerant control mode [14], as well as signal source tracking [15], navigation [16]

and wireless communications [17].

The representation and computation of several generalized inverses are tightly related in the following four Penrose equations:

(𝑖) 𝐴𝑋𝐴 =𝐴, (𝑖𝑖) 𝑋𝐴𝑋 =𝑋, (𝑖𝑖𝑖) (𝐴𝑋)∗ =𝐴𝑋, (𝑖𝑣) (𝑋𝐴)∗ =𝑋𝐴.

The notations 𝐴†, 𝐴∗ and ra(𝐴) will represent the pseudoinverse, conjugate-transpose and rank of a matrix 𝐴, respectively, while 
the set of 𝑚 × 𝑛 matrices in the field of complex numbers ℂ will be denoted as ℂ𝑚×𝑛. The symbol 𝐴{𝜌} is stated for the set of all 
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matrices that satisfy equations defined by 𝜌 ⊆ {1, 2, 3, 4}. A 𝜌-inverse of 𝐴, marked with 𝐴(𝜌), is any matrix from 𝐴{𝜌}. Notice that 
𝐴{1, 2, 3, 4} = {𝐴†}. The class consisting of outer inverses (or {2}-inverses) is defined for an arbitrary matrix 𝐴 ∈ ℂ𝑚×𝑛 by

𝐴{2} = {𝑋 ∈ℂ𝑛×𝑚| 𝑋𝐴𝑋 =𝑋}. (1.1)

Immediately from the definition, it can be concluded ra(𝐴(2)) ≤ ra(𝐴). Further, it is known that an arbitrary 𝑋 ∈ 𝐴{1, 2} satisfies 
ra(𝑋) = ra(𝐴). The outer inverses are proved to be useful in statistics [18], in defining the iterative themes for tackling nonlinear 
equations [1], in stable approximations of ill-posed problems, and in linear and nonlinear issues implicating rank-deficient general-

ized inverses [19].

According to [20], the minimal rank outer inverse (MROI), 𝑋 ∈ ℂ𝑛×𝑚, can be found by solving the systems of matrix equations 
involved in Proposition 1.1.

Proposition 1.1 (Lemma 1, [20]). Assume 𝐴 ∈ℂ𝑚×𝑛, 𝐵 ∈ℂ𝑛×𝑘 and 𝑄 ∈ℂ𝑙×𝑚. Then it follows

(𝐚) ∃𝑋 ∈ℂ𝑛×𝑚 ∶ 𝑋𝐴𝐵 = 𝐵⟺ ra(𝐴𝐵) = ra(𝐵). (1.2)

(𝐛) ∃𝑋 ∈ℂ𝑛×𝑚 ∶ 𝑄𝐴𝑋 =𝑄⟺ ra(𝑄𝐴) = ra(𝑄). (1.3)

Some additional characterizations of (1.2) and (1.3) are presented in the next Proposition 1.2.

Proposition 1.2 (Theorems 1 and 5, [20]). Assume 𝐴 ∈ℂ𝑚×𝑛, 𝐵 ∈ℂ𝑛×𝑘, 𝑄 ∈ℂ𝑙×𝑚.

(a) For a MROI 𝑋 ∈ℂ𝑛×𝑚 with prescribed range (𝑋) =(𝐵), the subsequent statements are mutually equivalent:

(i) 𝑋𝐴𝐵 = 𝐵 and ra(𝑋) = ra(𝐵);
(ii) 𝑋 =𝐵𝐵†𝑋 and 𝑋𝐴𝐵 =𝐵;

(iii) 𝑋𝐴𝑋 =𝑋, 𝑋 =𝐵𝐵†𝑋 and 𝑋𝐴𝐵 = 𝐵.

(b) For a MROI 𝑋 ∈ℂ𝑛×𝑚 with prescribed kernel  (𝑋) = (𝑄), the subsequent statements are mutually equivalent:

(i) 𝑄𝐴𝑋 =𝑄 and ra(𝑋) = ra(𝑄);
(ii) 𝑋 =𝑋𝑄†𝐶 and 𝑄𝐴𝑋 =𝑄;

(iii) 𝑋𝐴𝑋 =𝑋, 𝑋 =𝑋𝑄†𝑄 and 𝑄𝐴𝑋 =𝑄.

The rank of a rectangular matrix 𝐴 is the maximal number of linearly independent rows or columns in 𝐴. It can be found using 
techniques like Gaussian elimination to reduce the matrix to its reduced row-echelon form (RREF). The number of nonzero rows in 
the RREF is equal to the rank of the matrix. Difficulties in computing the rank of a constant matrix and three methods for computing 
the matrix rank are presented in [21].

Matrices considered in the actual paper are time-varying matrices with respect to the variable 𝑡 representing the time. The normal 
rank of a matrix 𝐴(𝑡) will be denoted by nr(𝐴) and it is defined as the number of non-zero rows in its normal form. If ra(𝐴) is the rank 
of a constant matrix 𝐴 then the normal rank of a time-varying matrix 𝐴(𝑡) in considered time interval 𝑡 ∈ [0, 𝑡𝑓 ) is equal to

nr(𝐴(𝑡)) = max
𝑡∈[0,𝑡𝑓 )

ra(𝐴(𝑡)).

In this research, the problems of finding time-varying MROI (TV-MROI) with prescribed range (PR) and/or TV-MROI with pre-

scribed kernel (PK) are considered. In line with Proposition 1.1 and without loss of generality, we assume the time-varying matrices 
𝐴(𝑡) ∈ ℂ𝑚×𝑛, 𝐵(𝑡) ∈ℂ𝑛×𝑘 and 𝑄(𝑡) ∈ ℂ𝑙×𝑚 and unknown matrix 𝑋(𝑡) ∈ℂ𝑛×𝑚, where 𝑡 ∈ [0, 𝑡𝑓 ) ⊆ [0, +∞) denotes the time. Therefore, the 
next Proposition 1.3 is the subject of our research.

Proposition 1.3. Assume the time-varying matrices 𝐵(𝑡) ∈ ℂ𝑛×𝑘, 𝐴(𝑡) ∈ℂ𝑚×𝑛 and 𝑄(𝑡) ∈ ℂ𝑙×𝑚. Then it follows:

(𝐚) ∃𝑋(𝑡) ∈ℂ𝑛×𝑚 ∶ 𝐵(𝑡) =𝑋(𝑡)𝐴(𝑡)𝐵(𝑡)⟺ nr(𝐴(𝑡)𝐵(𝑡)) = nr(𝐵(𝑡)). (1.4)

(𝐛) ∃𝑋(𝑡) ∈ℂ𝑛×𝑚 ∶𝑄(𝑡) =𝑄(𝑡)𝐴(𝑡)𝑋(𝑡)⟺ nr(𝑄(𝑡)𝐴(𝑡)) = nr(𝑄(𝑡)). (1.5)

Additionally, several of the basic symbols used in the paper are noteworthy. The identity 𝑔 × 𝑔 matrix will be referred to as 𝐼𝑔
whereas the zero 𝑔×𝑔 and 𝑚 ×𝑛 matrices will be referred to as 𝟎𝑔 and 𝟎𝑚×𝑛, respectively, and the all-ones 𝑔×𝑔 and 𝑚 ×𝑛 matrices will 
be referred to as 𝟏𝑔 and 𝟏𝑚×𝑛, respectively. Moreover, the vectorization operator will be denoted as vec(⋅), the Kronecker product will 
be denoted as ⊗, the Hadamard product will be denoted as ⊙, and the time-derivative by ( ̇). Last, ()T will denote transposition, 𝚤 will 
denote the pure imaginary unit satisfying 𝚤2 = −1, ‖⋅‖F will denote the matrix Frobenius norm and 𝛽 ≥ 0 is the Tikhonov regularization 
parameter. It is important to mention that the Tikhonov regularization parameter is frequently used to address singularity issues.

In order to deal with time-varying tasks in real time, the zeroing neural network (ZNN) technique is introduced by Zhang et al. 
2

in [22]. ZNNs are a particular kind of recurrent neural networks which excel in parallel processing and their next acceptations were 
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dynamic models for calculating the time-varying Moore-Penrose inverse in the real and complex domains [23–26]. They are used to 
solve problems involving generalized inversion [27–31], linear and quadratic programming [32,33], systems of nonlinear equations 
[34–36], and linear matrix equations (LMEs) [37–39], among other issues. Further, the ZNN technique will be used to address the 
TV-MROI with PR and/or with PK problems. Two main processes are normally involved in the construction of a ZNN model. The 
function of error matrix equation (EME) 𝐸(𝑡) must first be defined. Second, the following ZNN dynamical system must be employed:

�̇�(𝑡) = −𝜆𝐸(𝑡). (1.6)

On top of that, one can change the model’s convergence rate by adjusting the parameter 𝜆 ∈ℝ+. Any ZNN model will converge more 
quickly with a bigger value of 𝜆 [40–42]. The ZNN’s architecture is based on setting each element of 𝐸(𝑡) to 0, which is true as 
𝑡 →∞. This is accomplished using the continuous-time learning regulation that arises from the establishment of EME in (1.6). As a 
consequence, EME can be considered a tool for monitoring ZNN model learning.

Based on the ZNN design in (1.6), four novel ZNN models are introduced for computing the TV-MROI with PR and with PR. 
Particularly, two ZNN models, one for a specific solution and another for a random one, are proposed for computing TV-MROI with 
PR, and another two ZNN models, one for a specific solution and another for a random one, are proposed for computing TV-MROI 
with PK. For investigating the performance of the models, six numerical examples are presented. The findings show that all models 
address the underlying problem with outstanding and effective performance.

The following is the paper’s main highlights:

(1) The TV-MROI with PR and/or with PK problems are addressed for the first time through the ZNN approach.

(2) With the purpose of computing the TV-MROI with PR and/or PK, four novel ZNN models are introduced.

(3) A theoretical investigation is performed on the models to validate them.

(4) To support the theoretical notions, numerical experiments are conducted.

The remainder of the paper is structured as follows. The ZNN designs for computing TV-MROI with PR and/or PK are presented in 
sections 2 and 3, respectively. The theoretical analysis of both the models is presented in sections 2 and 3. Computational complexity 
is examined in Section 4. Numerical experiments are presented in Section 5. Lastly, final thoughts and comments are provided in 
Section 6.

2. ZNN designs for computing TV-MROI with PR

Two ZNN models are described in this section for computing TV-MROI with PR, one for a specific solution and another for a 
random one. Additionally, we consider that 𝐴(𝑡) ∈ ℂ𝑚×𝑛 and 𝐵(𝑡) ∈ℂ𝑛×𝑘 are differentiable time-varying matrices.

According to Propositions 1.2 and 1.3, the following equation group must be solved in order to obtain a TV-MROI with PR:{
𝐵(𝑡)𝐵†(𝑡)𝑋(𝑡) =𝑋(𝑡),
𝑋(𝑡)𝐴(𝑡)𝐵(𝑡) =𝐵(𝑡). (2.1)

Notice that the TV-MROI with PR in (2.1) is the unknown 𝑋(𝑡) ∈ℂ𝑛×𝑚.

2.1. ZNN model for computing a specific solution of the TV-MROI with PR

Considering the minimal-norm least-square solution 𝑋(𝑡) = 𝐵(𝑡)(𝐴(𝑡)𝐵(𝑡))† to the matrix equation 𝑋(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡) and utilizing 
the identity

(𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡)(𝐴(𝑡)𝐵(𝑡))† = (𝐴(𝑡)𝐵(𝑡))∗

arising from the property 𝐴∗𝐴𝐴† =𝐴∗ [1,2], we set the unknown matrix 𝑌 (𝑡) = (𝐴(𝑡)𝐵(𝑡))† ∈ℂ𝑘×𝑚 so that (2.1) can be converted as{
(𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡)𝑌 (𝑡) = (𝐴(𝑡)𝐵(𝑡))∗,
𝑋(𝑡) = 𝐵(𝑡)𝑌 (𝑡). (2.2)

It is important to mention that (2.2) always computes the specific solution of the TV-MROI with PR problem in (2.1) that is based on 
the pseudoinverse of the product 𝐴(𝑡)𝐵(𝑡).

Theorem 2.1. If the rank equality nr(𝐴(𝑡)𝐵(𝑡)) = nr(𝐵(𝑡)) holds, then the solution 𝑋(𝑡) to (2.2) satisfies (2.1).

Proof. Using known results about the solvability and general solutions of linear matrix equations from [1,2], we conclude that the 
first equation in (2.2) is solvable with respect to 𝑌 (𝑡) and its general solution is given by

𝑌 (𝑡) = (𝐴(𝑡)𝐵(𝑡))† +𝑍(𝑡) − (𝐴(𝑡)𝐵(𝑡))†𝐴(𝑡)𝐵(𝑡)𝑍(𝑡),

for arbitrary 𝑍(𝑡). The assumption nr(𝐴(𝑡)𝐵(𝑡)) = nr(𝐵(𝑡)) implies

𝐵(𝑡) (𝐴(𝑡)𝐵(𝑡))†𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡)
3

and further
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𝑋(𝑡) =𝐵(𝑡)𝑌 (𝑡) =𝐵(𝑡) (𝐴(𝑡)𝐵(𝑡))† ∈𝐴(𝑡){2,3}.

As a result

𝐵(𝑡)𝐵†(𝑡)𝑋(𝑡) = 𝐵(𝑡)𝐵†(𝑡)𝐵(𝑡) (𝐴(𝑡)𝐵(𝑡))† = 𝐵(𝑡) (𝐴(𝑡)𝐵(𝑡))† ,

which confirms that 𝑋(𝑡) from (2.2) satisfies the first equation in (2.1). □

As a result, we set the following group of EMEs (GEMEs):

{
𝐸1(𝑡) = (𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡)𝑌 (𝑡) − (𝐴(𝑡)𝐵(𝑡))∗,
𝐸2(𝑡) =𝑋(𝑡) −𝐵(𝑡)𝑌 (𝑡).

(2.3)

The first time derivatives of involved EMEs are equal to

{
�̇�1(𝑡) =

(
𝐷∗(𝑡)𝐴(𝑡)𝐵(𝑡) + (𝐴(𝑡)𝐵(𝑡))∗𝐷(𝑡)

)
𝑌 (𝑡) −𝐷∗(𝑡) + (𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡)�̇� (𝑡),

�̇�2(𝑡) = �̇�(𝑡) − �̇�(𝑡)𝑌 (𝑡) −𝐵(𝑡)�̇� (𝑡),
(2.4)

where 𝐷(𝑡) =𝐴(𝑡)�̇�(𝑡) + �̇�(𝑡)𝐵(𝑡). The next result is achieved by replacing �̇�1(𝑡) and �̇�2(𝑡) of (2.4) with �̇�(𝑡) into (1.6):

{
(𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡)�̇� (𝑡) = −𝜆𝐸1(𝑡) −

(
𝐷∗(𝑡)𝐴(𝑡)𝐵(𝑡) + (𝐴(𝑡)𝐵(𝑡))∗𝐷(𝑡)

)
𝑌 (𝑡) +𝐷∗(𝑡),

�̇�(𝑡) −𝐵(𝑡)�̇� (𝑡) = −𝜆𝐸2(𝑡) + �̇�(𝑡)𝑌 (𝑡).
(2.5)

To simplify the dynamics of (2.5), the vectorization and Kronecker product are utilized:

⎧⎪⎨⎪⎩
(
𝐼𝑚 ⊗ ((𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡))

)
vec(�̇� (𝑡)) = vec

(
− 𝜆𝐸1(𝑡) −

(
𝐷∗(𝑡)𝐴(𝑡)𝐵(𝑡)

+(𝐴(𝑡)𝐵(𝑡))∗𝐷(𝑡)
)
𝑌 (𝑡) +𝐷∗(𝑡)

)
,

vec(�̇�(𝑡)) − (𝐼𝑚 ⊗𝐵(𝑡))vec(�̇� (𝑡)) = vec
(
− 𝜆𝐸2(𝑡) + �̇�(𝑡)𝑌 (𝑡)

)
.

(2.6)

Then, setting

𝑃 (𝑡) =
[
𝐼𝑚 ⊗ ((𝐴(𝑡)𝐵(𝑡))∗𝐴(𝑡)𝐵(𝑡)) 𝟎𝑘𝑚×𝑚𝑛

−𝐼𝑚 ⊗𝐵(𝑡) 𝐼𝑚𝑛

]
,

𝐏𝑅(𝑡) =
{
𝑃 (𝑡), nr(𝐵(𝑡)) = min{𝑛, 𝑘} and nr(𝐴(𝑡)) = min{𝑛,𝑚}
𝑃 (𝑡) + 𝛽𝐼𝑚(𝑘+𝑛), nr(𝐵(𝑡)) <min{𝑛, 𝑘} or nr(𝐴(𝑡)) <min{𝑛,𝑚}

𝑝(𝑡) =vec
(
− 𝜆𝐸1(𝑡) −

(
𝐷∗(𝑡)𝐴(𝑡)𝐵(𝑡) + (𝐴(𝑡)𝐵(𝑡))∗𝐷(𝑡)

)
𝑌 (𝑡) +𝐷∗(𝑡)

)
,

𝐩𝑅(𝑡) =
[

𝑝(𝑡)
vec

(
− 𝜆𝐸2(𝑡) + �̇�(𝑡)𝑌 (𝑡)

)] , 𝐮𝑅(𝑡) =
[
vec(𝑌 (𝑡))
vec(𝑋(𝑡))

]
, �̇�𝑅(𝑡) =

[
vec(�̇� (𝑡))
vec(�̇�(𝑡))

]
,

(2.7)

(2.6) can be converted into

𝐏𝑅(𝑡)�̇�𝑅(𝑡) = 𝐩𝑅(𝑡), (2.8)

where 𝐏𝑅(𝑡) ∈ ℂ𝑚(𝑘+𝑛)×𝑚(𝑘+𝑛) is a nonsingular mass matrix and �̇�𝑅(𝑡), 𝐮𝑅(𝑡), 𝐩𝑅(𝑡) ∈ ℂ𝑚(𝑘+𝑛). The ZNN model of (2.8), referred to as 
ZNNPR1 for convenience, can compute a specific solution of the TV-MROI with PR. Theorem 2.2 certifies global convergence with 
the exponential speed of the ZNNPR1 model (2.8) to the theoretical solution (TS).

Theorem 2.2. Let 𝐵(𝑡) ∈ ℂ𝑛×𝑘 and 𝐴(𝑡) ∈ ℂ𝑚×𝑛 be differentiable time-varying matrices. The dynamical system (2.8) converges exponentially 
and globally to the theoretical solution 𝐮∗

𝑅
(𝑡) starting from arbitrary initial value 𝐮𝑅(0). Additionally, the TS of TV-MROI with PR (1.4) is 

defined by the last 𝑚𝑛 components of 𝐮∗
𝑅
(𝑡).

Proof. First, the TV-MROI with PR (1.4) is converted into the problem of (2.2). Second, to solve the problem of (2.2), the GEME 
of (2.3) is declared. Then, for zeroing (2.3), the model (2.5) is deployed in line with the ZNN scheme (1.6). From [22, Theorem 1], 
𝐸1(𝑡) and 𝐸2(𝑡) in (2.5) converge exponentially and globally to their TS, 𝑌 ∗(𝑡) and 𝑋∗(𝑡), when 𝑡 →∞, starting from any initial value. 
So, the model (2.5) converges to the TS of the TV-MROI with PR (1.4). Third, the model (2.5) is simplified into the ZNNPR1 model 
(2.8) using the Kronecker product and vectorization. As an alternative version of (2.5), for every initial value 𝐮(0), the ZNNPR1 
model (2.8) converges to the TS 𝐮∗

𝑅
(𝑡) when 𝑡 →∞. In line with (2.7), the TS of TV-MROI with PR in (1.4) is defined by the last 𝑚𝑛
4

components of 𝐮∗
𝑅
(𝑡). Thereafter, the proof is finished. □
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2.2. ZNN model for computing a random solution of the TV-MROI with PR

Considering the identity 𝐵∗(𝑡)𝐵(𝑡)𝐵†(𝑡) = 𝐵∗(𝑡), (2.1) can be converted as below:

⎧⎪⎨⎪⎩
𝐵∗(𝑡)𝐵(𝑡)𝑍(𝑡) = 𝐵∗(𝑡),
𝑋(𝑡) =𝐵(𝑡)𝑍(𝑡)𝑋(𝑡),
𝑋(𝑡)𝐴(𝑡)𝐵(𝑡) = 𝐵(𝑡),

(2.9)

where the first matrix equation holds in the instance of the pseudoinverse of 𝐵(𝑡), i.e. 𝑍(𝑡).
As a result, we set the following GEMEs:

⎧⎪⎨⎪⎩
𝐸1(𝑡) = 𝐵∗(𝑡)𝐵(𝑡)𝑍(𝑡) −𝐵∗(𝑡),
𝐸2(𝑡) =𝑋(𝑡) −𝐵(𝑡)𝑍(𝑡)𝑋(𝑡),
𝐸3(𝑡) =𝑋(𝑡)𝐴(𝑡)𝐵(𝑡) −𝐵(𝑡).

(2.10)

The first time derivatives of involved EMEs are equal to

⎧⎪⎪⎨⎪⎪⎩
�̇�1(𝑡) = (�̇�∗(𝑡)𝐵(𝑡) +𝐵∗(𝑡)�̇�(𝑡))𝑍(𝑡) +𝐵∗(𝑡)𝐵(𝑡)�̇�(𝑡) − �̇�∗(𝑡),

�̇�2(𝑡) = �̇�(𝑡) − �̇�(𝑡)𝑍(𝑡)𝑋(𝑡) −𝐵(𝑡)�̇�(𝑡)𝑋(𝑡) −𝐵(𝑡)𝑍(𝑡)�̇�(𝑡),

�̇�3(𝑡) = �̇�(𝑡)𝐴(𝑡)𝐵(𝑡) +𝑋(𝑡)�̇�(𝑡)𝐵(𝑡) +𝑋(𝑡)𝐴(𝑡)�̇�(𝑡) − �̇�(𝑡).

(2.11)

The result that follows is achieved by replacing �̇�1(𝑡), �̇�2(𝑡) and �̇�3(𝑡) of (2.11) with �̇�(𝑡) into (1.6):

⎧⎪⎨⎪⎩
𝐵∗(𝑡)𝐵(𝑡)�̇�(𝑡) = −𝜆𝐸1(𝑡) − (�̇�∗(𝑡)𝐵(𝑡) +𝐵∗(𝑡)�̇�(𝑡))𝑍(𝑡) + �̇�∗(𝑡),
�̇�(𝑡) −𝐵(𝑡)�̇�(𝑡)𝑋(𝑡) −𝐵(𝑡)𝑍(𝑡)�̇�(𝑡) = −𝜆𝐸2(𝑡) + �̇�(𝑡)𝑍(𝑡)𝑋(𝑡),
�̇�(𝑡)𝐴(𝑡)𝐵(𝑡) = −𝜆𝐸3(𝑡) −𝑋(𝑡)�̇�(𝑡)𝐵(𝑡) −𝑋(𝑡)𝐴(𝑡)�̇�(𝑡) + �̇�(𝑡).

(2.12)

To simplify the dynamics of (2.12), the vectorization and Kronecker product are utilized:

⎧⎪⎨⎪⎩
(
𝐼𝑛 ⊗ (𝐵∗(𝑡)𝐵(𝑡))

)
vec(�̇�(𝑡)) = vec

(
− 𝜆𝐸1(𝑡) − (𝐵∗(𝑡)�̇�(𝑡) + �̇�∗(𝑡)𝐵(𝑡))𝑍(𝑡) + �̇�∗(𝑡)

)
,(

𝐼𝑚𝑛 − (𝐼𝑚 ⊗ (𝐵(𝑡)𝑍(𝑡)))
)
vec(�̇�(𝑡)) −

(
𝑋∗(𝑡)⊗𝐵(𝑡)

)
vec(�̇�(𝑡)) = vec

(
− 𝜆𝐸2(𝑡) + �̇�(𝑡)𝑍(𝑡)𝑋(𝑡)

)
,

((𝐴(𝑡)𝐵(𝑡))∗ ⊗𝐼𝑛)vec(�̇�(𝑡)) = vec
(
− 𝜆𝐸3(𝑡) −𝑋(𝑡)𝐴(𝑡)�̇�(𝑡) −𝑋(𝑡)�̇�(𝑡)𝐵(𝑡) + �̇�(𝑡)

) (2.13)

Then, setting

𝑊 (𝑡) =
⎡⎢⎢⎣
𝐼𝑛 ⊗ (𝐵∗(𝑡)𝐵(𝑡)) 𝟎𝑘𝑛×𝑚𝑛
−𝑋∗(𝑡)⊗𝐵(𝑡) 𝐼𝑚𝑛 − (𝐼𝑚 ⊗ (𝐵(𝑡)𝑍(𝑡)))

𝟎𝑘𝑛 (𝐴(𝑡)𝐵(𝑡))∗ ⊗𝐼𝑛

⎤⎥⎥⎦ ,
𝐖𝑅(𝑡) =

{
𝑊 ∗(𝑡)𝑊 (𝑡), nr(𝐵(𝑡)) = min{𝑛, 𝑘} and nr(𝐴(𝑡)) = min{𝑛,𝑚}
𝑊 ∗(𝑡)𝑊 (𝑡) + 𝛽𝐼𝑛(𝑘+𝑚), nr(𝐵(𝑡)) <min{𝑛, 𝑘} or nr(𝐴(𝑡)) <min{𝑛,𝑚}

𝑤(𝑡) =
⎡⎢⎢⎣
vec

(
− 𝜆𝐸1(𝑡) − (𝐵∗(𝑡)�̇�(𝑡) + �̇�∗(𝑡)𝐵(𝑡))𝑍(𝑡) + �̇�∗(𝑡)

)
vec

(
− 𝜆𝐸2(𝑡) + �̇�(𝑡)𝑍(𝑡)𝑋(𝑡)

)
vec

(
− 𝜆𝐸3(𝑡) −𝑋(𝑡)𝐴(𝑡)�̇�(𝑡) −𝑋(𝑡)�̇�(𝑡)𝐵(𝑡) + �̇�(𝑡)

) ⎤⎥⎥⎦ ,
𝐰𝑅(𝑡) =𝑊 ∗(𝑡)𝑤(𝑡), 𝐯𝑅(𝑡) =

[
vec(𝑍(𝑡))
vec(𝑋(𝑡))

]
, �̇�𝑅(𝑡) =

[
vec(�̇�(𝑡))
vec(�̇�(𝑡))

]
,

(2.14)

(2.13) can be converted as follows:

𝐖𝑅(𝑡)�̇�𝑅(𝑡) =𝑊 ∗
𝑅
(𝑡)𝐰𝑅(𝑡), (2.15)

where 𝐖𝑅(𝑡) ∈ℂ𝑛(𝑘+𝑚)×𝑛(𝑘+𝑚) is a state-dependent nonsingular mass matrix, 𝑊 (𝑡) ∈ℂ𝑛(2𝑘+𝑚)×𝑛(𝑘+𝑚), 𝑤(𝑡) ∈ℂ𝑛(2𝑘+𝑚), 𝐰𝑅(𝑡) ∈ℂ𝑛(𝑘+𝑚) and 
�̇�𝑅(𝑡), 𝐯𝑅(𝑡) ∈ ℂ𝑛(𝑘+𝑚). The direct ZNN model of (2.15), referred to as ZNNPR2 for convenience, can compute a random solution of the 
TV-MROI with PR. Theorem 2.3 certifies universal convergence with exponential speed of the ZNNPR2 model (2.15) to the TS.

Theorem 2.3. Let 𝐵(𝑡) ∈ ℂ𝑛×𝑘 and 𝐴(𝑡) ∈ ℂ𝑚×𝑛 be differentiable time-varying matrices. The dynamical system (2.15) converges exponentially 
and globally to the TS, 𝐯∗

𝑅
(𝑡) of TV-MROI with PR (1.4), starting from arbitrary initial value 𝐯𝑅(0). Additionally, the TS of TV-MROI with 

PR (1.4) is the last 𝑚𝑛 elements of 𝐯∗
𝑅
(𝑡).

Proof. First, the TV-MROI with PR (1.4) is converted into the problem of (2.2). Second, to solve the problem of (2.2), the GEME of 
(2.3) is declared. Then, for zeroing (2.10), the model (2.12) is deployed in line with the ZNN theme (1.6). From [22, Theorem 1], 
5

𝐸1(𝑡) and 𝐸2(𝑡) in (2.12) converge exponentially and globally to their TS, 𝑍∗(𝑡) and 𝑋∗(𝑡), when 𝑡 →∞, starting from any initial value. 
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So, the model (2.12) converges to the TS of the TV-MROI with PR (1.4). Third, the model (2.12) is simplified into the ZNNPR1 model 
(2.15) using the Kronecker product and vectorization. As an alternative version of (2.12), for every initial value 𝐯(0), the ZNNPR2 
model (2.15) converges to the TS 𝐯∗

𝑅
(𝑡) when 𝑡 →∞. In line with (2.14), the TS of TV-MROI with PR in (1.4) is the last 𝑚𝑛 elements 

of 𝐯∗
𝑅
(𝑡). Thereafter, the proof is finished. □

3. ZNN designs for computing TV-MROI with PK

Two ZNN models for computing TV-MROI with PK are described in this section, one for a specific solution and another for a 
random one. Additionally, we consider that 𝐴(𝑡) ∈ ℂ𝑚×𝑛 and 𝑄(𝑡) ∈ℂ𝑙×𝑚 are differentiable time-varying matrices.

According to Propositions 1.2 and 1.3, the following equation group must be satisfied in order to have a TV-MROI with PK:{
𝑋(𝑡) =𝑋(𝑡)𝑄†(𝑡)𝑄(𝑡),
𝑄(𝑡)𝐴(𝑡)𝑋(𝑡) =𝑄(𝑡), (3.1)

where 𝑋(𝑡) ∈ℂ𝑛×𝑚 is the unknown TV-MROI with PK.

3.1. ZNN model for computing a specific solution of the TV-MROI with PK

Considering the minimal-norm least-square solution (𝑄(𝑡)𝐴(𝑡))†𝑄(𝑡) =𝑋(𝑡) and the equation (𝑄(𝑡)𝐴(𝑡))∗ = (𝑄(𝑡)𝐴(𝑡))†𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡)
which holds, we set the unknown 𝑌 (𝑡) = (𝑄(𝑡)𝐴(𝑡))† ∈ℂ𝑛×𝑙 so that (3.1) can be converted as{

𝑌 (𝑡)𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ = (𝑄(𝑡)𝐴(𝑡))∗,
𝑋(𝑡) = 𝑌 (𝑡)𝑄(𝑡), (3.2)

where the first matrix equation holds in the case (𝑄(𝑡)𝐴(𝑡))† = 𝑌 (𝑡). It is significant to mention that (3.2) always computes the specific 
TV-MROI with PR in (3.1) that is based on the pseudoinverse of the product 𝑄(𝑡)𝐴(𝑡). Details are given in Theorem 3.1.

Theorem 3.1. If the rank equality nr(𝑄(𝑡)𝐴(𝑡)) = nr(𝐴(𝑡)) holds, then the solution to (3.2) satisfies (3.1).

Proof. Following dual principles from Theorem 2.1, it is derived

𝑋(𝑡) = (𝑄(𝑡)𝐴(𝑡))†𝑄(𝑡) ∈𝐴(𝑡){2,4}.

Therefore,

𝑋(𝑡)𝑄†(𝑡)𝑄(𝑡) = (𝑄(𝑡)𝐴(𝑡))†𝑄(𝑡)𝑄†(𝑡)𝑄(𝑡) = (𝑄(𝑡)𝐴(𝑡))†𝑄(𝑡),

which confirms that 𝑋(𝑡) from (3.2) satisfies the first equation in (3.1). □

Following the obtained theoretical results from Theorem 3.1, we set the following GEMEs:{
𝐸1(𝑡) = 𝑌 (𝑡)𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ − (𝑄(𝑡)𝐴(𝑡))∗,
𝐸2(𝑡) =𝑋(𝑡) − 𝑌 (𝑡)𝑄(𝑡),

(3.3)

whose first time derivatives are equal to{
�̇�1(𝑡) = 𝑌 (𝑡)

(
𝐷(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ +𝑄(𝑡)𝐴(𝑡)𝐷∗(𝑡)

)
+ �̇� (𝑡)𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ −𝐷∗(𝑡),

�̇�2(𝑡) = �̇�(𝑡) − 𝑌 (𝑡)�̇�(𝑡) − �̇� (𝑡)𝑄(𝑡),
(3.4)

where 𝐷(𝑡) =𝑄(𝑡)�̇�(𝑡) + �̇�(𝑡)𝐴(𝑡). The next result is achieved by replacing �̇�1(𝑡) and �̇�2(𝑡) of (3.4) with �̇�(𝑡) into (1.6):{
�̇� (𝑡)𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ = −𝜆𝐸1(𝑡) − 𝑌 (𝑡)

(
𝐷(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ +𝑄(𝑡)𝐴(𝑡)𝐷∗(𝑡)

)
+𝐷∗(𝑡),

�̇�(𝑡) − �̇� (𝑡)𝑄(𝑡) = 𝑌 (𝑡)�̇�(𝑡) − 𝜆𝐸2(𝑡).
(3.5)

To simplify the dynamics of (3.5), the vectorization and Kronecker product are utilized:

⎧⎪⎨
(
(𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡))∗)⊗𝐼𝑛

)
vec(�̇� (𝑡)) = vec

(
− 𝜆𝐸1(𝑡) − 𝑌 (𝑡)

(
𝐷(𝑡)(𝑄(𝑡)𝐴(𝑡))∗

+𝑄(𝑡)𝐴(𝑡)𝐷∗(𝑡)
)
+𝐷∗(𝑡)

)
,( ) (3.6)
6

⎪⎩ vec(�̇�(𝑡)) − (𝑄∗(𝑡)⊗𝐼𝑛)vec(�̇� (𝑡)) = vec − 𝜆𝐸2(𝑡) + 𝑌 (𝑡)�̇�(𝑡) .
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Then, setting

𝑃𝐾 (𝑡) =
[
(𝑄(𝑡)𝐴(𝑡)(𝑄(𝑡)𝐴(𝑡))∗)⊗𝐼𝑛 𝟎𝑙𝑛×𝑚𝑛

−𝑄∗(𝑡)⊗𝐼𝑛 𝐼𝑚𝑛

]
,

𝑝(𝑡) =vec
(
− 𝜆𝐸1(𝑡) − 𝑌 (𝑡)

(
𝐷(𝑡)(𝑄(𝑡)𝐴(𝑡))∗ +𝑄(𝑡)𝐴(𝑡)𝐷∗(𝑡)

)
+𝐷∗(𝑡)

)
,

𝐏𝐾 (𝑡) =
{
𝑃𝐾 (𝑡), nr(𝑄(𝑡)) = min{𝑙,𝑚} and nr(𝐴(𝑡)) = min{𝑛,𝑚}
𝑃𝐾 (𝑡) + 𝛽𝐼𝑛(𝑙+𝑚), nr(𝑄(𝑡)) <min{𝑙,𝑚} or nr(𝐴(𝑡)) <min{𝑛,𝑚}

𝐮𝐾 (𝑡) =
[
vec(𝑌 (𝑡))
vec(𝑋(𝑡))

]
, 𝐩𝐾 (𝑡) =

[
𝑝(𝑡)

vec
(
− 𝜆𝐸2(𝑡) + 𝑌 (𝑡)�̇�(𝑡)

)] , �̇�𝐾 (𝑡) =
[
vec(�̇� (𝑡))
vec(�̇�(𝑡))

]
,

(3.7)

(3.6) can be converted as follows:

𝐏𝐾 (𝑡)�̇�𝐾 (𝑡) = 𝐩𝐾 (𝑡), (3.8)

where 𝐏𝐾 (𝑡) ∈ ℂ𝑛(𝑙+𝑚)×𝑛(𝑙+𝑚) is a nonsingular mass matrix and �̇�𝐾 (𝑡), 𝐮𝐾 (𝑡), 𝐩𝐾 (𝑡) ∈ ℂ𝑛(𝑙+𝑚). The implicit ZNN model (3.8), referred to 
as ZNNPK1 for convenience, can compute a specific TV-MROI with PK. Theorem 3.2 certifies global convergence with exponential 
speed of the ZNNPK1 model (3.8) to the TS.

Theorem 3.2. Let 𝑄(𝑡) ∈ ℂ𝑙×𝑚 and 𝐴(𝑡) ∈ ℂ𝑚×𝑛 be differentiable time-varying matrices. The dynamical system (3.8) converges exponentially 
and globally to the theoretical solution 𝑢∗(𝑡) starting from arbitrary initial value 𝐮𝐾 (0). Additionally, the TS of TV-MROI with PK (1.5) is 
defined by the last 𝑚𝑛 components of 𝐮∗

𝐾
(𝑡).

Proof. First, the TV-MROI with PK (1.5) is converted into the problem of (3.2). Second, to solve the problem of (3.2), the GEME of 
(3.3) is declared. Then, for zeroing (3.3), the model (3.5) is deployed in line with the ZNN theme (1.6). From [22, Theorem 1], 𝐸1(𝑡)
and 𝐸2(𝑡) in (3.5) converge exponentially and globally to their TS, 𝑌 ∗(𝑡) and 𝑋∗(𝑡), when 𝑡 →∞, starting from any initial value. So, 
the model (3.5) converges to the TS of the TV-MROI with PK (1.5). Third, the model (3.5) is simplified into the ZNNPK1 model (3.8)

using the Kronecker product and vectorization. As an alternative version of (3.5), for every initial value 𝐮(0), the ZNNPK1 model 
(3.8) converges to the TS 𝐮∗

𝐾
(𝑡) when 𝑡 →∞. In line with (3.7), the TS of TV-MROI with PK in (1.5) is the last 𝑚𝑛 components of 

𝐮∗
𝐾
(𝑡). Thereafter, the proof is finished. □

3.2. ZNN model for computing a random solution of the TV-MROI with PK

Considering the identity 𝑄†(𝑡)𝑄(𝑡)𝑄∗(𝑡) =𝑄∗(𝑡), (3.1) can be converted as below:

⎧⎪⎨⎪⎩
𝑄∗(𝑡) =𝑍(𝑡)𝑄(𝑡)𝑄∗(𝑡),
𝑋(𝑡)𝑍(𝑡)𝑄(𝑡) =𝑋(𝑡),
𝑄(𝑡)𝐴(𝑡)𝑋(𝑡) =𝑄(𝑡).

(3.9)

As a result, we set the following GEME:

⎧⎪⎨⎪⎩
𝐸1(𝑡) =𝑍(𝑡)𝑄(𝑡)𝑄∗(𝑡) −𝑄∗(𝑡),
𝐸2(𝑡) =𝑋(𝑡) −𝑋(𝑡)𝑍(𝑡)𝑄(𝑡),
𝐸3(𝑡) =𝑄(𝑡)𝐴(𝑡)𝑋(𝑡) −𝑄(𝑡),

(3.10)

where its first time derivatives are

⎧⎪⎨⎪⎩
�̇�1(𝑡) = 𝑍(𝑡)�̇�(𝑡)𝑄∗(𝑡) + �̇�(𝑡)𝑄(𝑡)𝑄∗(𝑡) +𝑍(𝑡)𝑄(𝑡)�̇�∗(𝑡) − �̇�∗(𝑡),
�̇�2(𝑡) = �̇�(𝑡) − �̇�(𝑡)𝑍(𝑡)𝑄(𝑡) −𝑋(𝑡)�̇�(𝑡)𝑄(𝑡) −𝑋(𝑡)𝑍(𝑡)�̇�(𝑡),
�̇�3(𝑡) = �̇�(𝑡)𝐴(𝑡)𝑋(𝑡) +𝑄(𝑡)𝐴(𝑡)�̇�(𝑡) +𝑄(𝑡)�̇�(𝑡)𝑋(𝑡) − �̇�(𝑡).

(3.11)

The next result is achieved by replacing �̇�1(𝑡), �̇�2(𝑡) and �̇�3(𝑡) of (3.11) with �̇�(𝑡) into (1.6):

⎧⎪⎨⎪⎩
�̇�(𝑡)𝑄(𝑡)𝑄∗(𝑡) = −𝜆𝐸1(𝑡) −𝑍(𝑡)�̇�(𝑡)𝑄∗(𝑡) −𝑍(𝑡)𝑄(𝑡)�̇�∗(𝑡) + �̇�∗(𝑡),
�̇�(𝑡) − �̇�(𝑡)𝑍(𝑡)𝑄(𝑡) −𝑋(𝑡)�̇�(𝑡)𝑄(𝑡) = −𝜆𝐸2(𝑡) +𝑋(𝑡)𝑍(𝑡)�̇�(𝑡),
𝑄(𝑡)𝐴(𝑡)�̇�(𝑡) = −𝜆𝐸3(𝑡) − �̇�(𝑡)𝐴(𝑡)𝑋(𝑡) −𝑄(𝑡)�̇�(𝑡)𝑋(𝑡) + �̇�(𝑡).

(3.12)

To simplify the dynamics of (3.12), the vectorization and Kronecker product are utilized:

⎧⎪⎨
(
(𝑄(𝑡)𝑄∗(𝑡))⊗𝐼𝑚

)
vec(�̇�(𝑡)) = vec

(
− 𝜆𝐸1(𝑡) −𝑍(𝑡)�̇�(𝑡)𝑄∗(𝑡) −𝑍(𝑡)𝑄(𝑡)�̇�∗(𝑡) + �̇�∗(𝑡)

)
,(

𝐼𝑚𝑛 − (𝑍(𝑡)𝑄(𝑡))∗ ⊗𝐼𝑛
)
vec(�̇�(𝑡)) −

(
𝑄∗(𝑡)⊗𝑋(𝑡)

)
vec(�̇�(𝑡)) = vec

(
− 𝜆𝐸2(𝑡) +𝑋(𝑡)𝑍(𝑡)�̇�(𝑡)

)
, (3.13)
7

⎪⎩ (
𝐼𝑚 ⊗ (𝑄(𝑡)𝐴(𝑡))

)
vec(�̇�(𝑡)) = vec

(
− 𝜆𝐸3(𝑡) − �̇�(𝑡)𝐴(𝑡)𝑋(𝑡) −𝑄(𝑡)�̇�(𝑡)𝑋(𝑡) + �̇�(𝑡)

)
.
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Then, setting

𝑊 (𝑡) =
⎡⎢⎢⎣
(𝑄(𝑡)𝑄∗(𝑡))⊗𝐼𝑚 𝟎𝑙𝑚,𝑚𝑛
𝑄∗(𝑡)⊗𝑋(𝑡) 𝐼𝑚𝑛 − (𝑍(𝑡)𝑄(𝑡))∗ ⊗𝐼𝑛

𝟎𝑙𝑚 𝐼𝑚 ⊗ (𝑄(𝑡)𝐴(𝑡))

⎤⎥⎥⎦ ,
𝐖𝐾 (𝑡) =

{
𝑊 ∗(𝑡)𝑊 (𝑡), nr(𝑄(𝑡)) = min{𝑚, 𝑙} and nr(𝐴(𝑡)) = min{𝑛,𝑚}
𝑊 ∗(𝑡)𝑊 (𝑡) + 𝛽𝐼𝑚(𝑙+𝑛), nr(𝑄(𝑡)) <min{𝑚, 𝑙} or nr(𝐴(𝑡)) <min{𝑛,𝑚}

𝑤(𝑡) =
⎡⎢⎢⎣
vec

(
− 𝜆𝐸1(𝑡) −𝑍(𝑡)𝑄(𝑡)�̇�∗(𝑡) −𝑍(𝑡)�̇�(𝑡)𝑄∗(𝑡) + �̇�∗(𝑡)

)
vec

(
− 𝜆𝐸2(𝑡) +𝑋(𝑡)𝑍(𝑡)�̇�(𝑡)

)
vec

(
− 𝜆𝐸3(𝑡) −𝑄(𝑡)�̇�(𝑡)𝑋(𝑡) − �̇�(𝑡)𝐴(𝑡)𝑋(𝑡) + �̇�(𝑡)

) ⎤⎥⎥⎦ ,
𝐰𝐾 (𝑡) =𝑊 ∗(𝑡)𝑤(𝑡), 𝐯𝐾 (𝑡) =

[
vec(𝑍(𝑡))
vec(𝑋(𝑡))

]
, �̇�𝐾 (𝑡) =

[
vec(�̇�(𝑡))
vec(�̇�(𝑡))

]
,

(3.14)

(3.13) can be converted as follows:

𝐖𝐾 (𝑡)�̇�𝐾 (𝑡) = 𝐯𝐾 (𝑡), (3.15)

where 𝐖𝐾 (𝑡) ∈ ℂ𝑚(𝑙+𝑛)×𝑚(𝑙+𝑛) is a state-dependent nonsingular mass matrix, 𝑊 (𝑡) ∈ ℂ𝑚(2𝑙+𝑛)×𝑚(𝑙+𝑛), 𝑤(𝑡) ∈ ℂ𝑚(2𝑙+𝑛), 𝐰𝐾 (𝑡) ∈ ℂ𝑚(𝑙+𝑛) and 
�̇�𝐾 (𝑡), 𝐯𝐾 (𝑡) ∈ℂ𝑚(𝑙+𝑛). The direct ZNN model of (3.15), referred to as ZNNPK2 for convenience, can compute a random solution of the 
TV-MROI with PK. Theorem 3.3 certifies universal convergence with exponential speed of the ZNNPK2 model (3.15) to the TS.

Theorem 3.3. Let 𝑄(𝑡) ∈ ℂ𝑙×𝑚 and 𝐴(𝑡) ∈ ℂ𝑚×𝑛 be differentiable time-varying matrices. The dynamical system (3.15) converges exponentially 
and globally to the TS, 𝑣∗(𝑡) of TV-MROI with PK (1.5), starting from arbitrary initial value 𝐯𝐾 (0). Additionally, the TS of TV-MROI with 
PK (1.5) is defined by the last 𝑚𝑛 components of 𝐯∗

𝐾
(𝑡).

Proof. First, the TV-MROI with PK (1.5) is converted into the problem of (3.2). Second, to solve the problem of (3.2), the GEME 
of the form (3.3) is declared. Then, for zeroing (3.10), the model (3.12) is deployed in line with the ZNN theme (1.6). From [22, 
Theorem 1], 𝐸1(𝑡) and 𝐸2(𝑡) in (3.12) converge exponentially and globally to their TS, 𝑍∗(𝑡) and 𝑋∗(𝑡), when 𝑡 →∞, starting from 
any initial value. So, the model (3.12) converges to the TS of the TV-MROI with PK (1.5). Third, the model (3.12) is simplified into 
the ZNNPK1 model (3.15) using the Kronecker product and vectorization. As an alternative version of (3.12), for every initial value 
𝐯(0), the ZNNPK2 model (3.15) converges to the TS 𝐯∗

𝐾
(𝑡) when 𝑡 →∞. In line with (3.14), the TS of TV-MROI with PK in (1.5) is the 

last 𝑚𝑛 components of 𝐯∗
𝐾
(𝑡). Thereafter, the proof is finished. □

4. ZNN models computational complexity

The complexity of creating and addressing (2.8), (2.15), (3.8) and (3.15) adds total computational complexity to the ZNNPR1, 
ZNNPR2, ZNNPK1 and ZNNPK2 models, respectively. Particularly, the computational complexity of creating (2.8) is ((𝑚(𝑘 + 𝑛))2)
operations because at every iteration we conduct (𝑚(𝑘 + 𝑛))2 multiplications and 𝑚(𝑘 + 𝑛) addition/subtraction operations. For the 
same reasons, creating (2.15), (3.8) and (3.15) requires ((𝑛(𝑘 +𝑚))2), (𝑛(𝑙+𝑚))2) and ((𝑚(𝑙+ 𝑛))2) operations, respectively, which 
add to their computational complexity.

On top of that, the implicit MATLAB solver ode15s is used to address at each step the linear system of equations. The complexity 
of addressing (2.8) increases to ((𝑚(𝑘 + 𝑛))3 since it involves an (𝑚(𝑘 + 𝑛)) × (𝑚(𝑘 + 𝑛)) matrix. In the same manner, the complexity of 
addressing (2.15), (3.8) and (3.15) with an implicit solver increases to ((𝑛(𝑘 +𝑚))3), ((𝑛(𝑙+𝑚))3) and ((𝑚(𝑙+𝑛))3), respectively. So, 
the ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2 models’ total computational complexity is ((𝑚(𝑘 + 𝑛))3, ((𝑛(𝑘 +𝑚))3), ((𝑛(𝑙 +𝑚))3)
and ((𝑚(𝑙 + 𝑛))3), respectively.

5. Numerical experiments

This section investigates the performance of the ZNNPR1 (2.8), ZNNPR2 (2.15), ZNNPK1 (3.8) and ZNNPK2 (3.15) models in 
six numerical examples (NEs). Particularly, three NEs involve computing the TV-MROI with PR in (1.4), and three NEs involve 
computing the TV-MROI with PK in (1.5). The initial values, i.e. IC1, in all NEs have been set to 𝐮𝑅(0) = 𝟎𝑚(𝑘+𝑛), 𝐯𝑅(0) = 𝟎𝑛(𝑘+𝑚), 
𝐮𝐾 (0) = 𝟎𝑛(𝑙+𝑚) and 𝐯𝐾 (0) = 𝟎𝑚(𝑙+𝑛). Notice that a second set of initial values, i.e. IC2, have also been used in NEs 5.1 and 5.2, which 
are 𝐮𝑅(0) = 𝟏𝑚(𝑘+𝑛), 𝐯𝑅(0) = 𝟏𝑛(𝑘+𝑚), 𝐮𝐾 (0) = 𝟏𝑛(𝑙+𝑚) and 𝐯𝐾 (0) = 𝟏𝑚(𝑙+𝑛). For the calculations in all NEs, the ode45 solver of MATLAB is 
utilized with the time-interval [0, 10] under the default relative error tolerance (i.e. 10−5), while the regularization parameters have 
been set to 𝛽 = 10−8. Additionally, the ZNN parameter has been set to 𝜆 = 10 in all NEs. However, the ZNN parameter has been set to 
𝜆 = 10 and 𝜆 = 100 in NEs 5.3 and 5.4. It is important to mention that the additional errors considered to measure and compare the 
performance of the models are the following:

(MP-ii) : ‖𝑋(𝑡)𝐴(𝑡)𝑋(𝑡) −𝑋(𝑡)‖𝐹 for all four models,

(PR-i) : ‖𝑋(𝑡)𝐴(𝑡)𝐵(𝑡) −𝐵(𝑡)‖𝐹 for the ZNNPR1 and ZNNPR2 models,
8

(PR-ii) : ‖‖‖𝑋(𝑡) −𝐵(𝑡)𝐵†(𝑡)𝑋(𝑡)‖‖‖𝐹 for the ZNNPR1 and ZNNPR2 models,
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(PK-i) : ‖𝑄(𝑡) −𝑄(𝑡)𝐴(𝑡)𝑋(𝑡)‖𝐹 for the ZNNPK1 and ZNNPK2 models,

(PK-ii) : ‖‖‖𝑋(𝑡) −𝑋(𝑡)𝑄†(𝑡)𝑄(𝑡)‖‖‖𝐹 for the ZNNPK1 and ZNNPK2 models.

For convenience purposes, we have set 𝛼(𝑡) = sin(𝑡) and 𝛾(𝑡) = cos(𝑡). Finally, the specific TS (STS) depicted in the figures of this section 
corresponds to 𝑋(𝑡) = 𝐵(𝑡)(𝐴(𝑡)𝐵(𝑡))† in the case of the TV-MROI with PR, and 𝑋(𝑡) = (𝑄(𝑡)𝐴(𝑡))†𝑄(𝑡) in the case of the TV-MROI with 
PK.

5.1. Numerical example 1

Consider the following matrices:

𝐾1(𝑡) =

⎡⎢⎢⎢⎢⎣
6 − 𝛾(𝜋𝑡) 5 − 𝛾(𝜋𝑡) 12
−3 − 𝛾(𝜋𝑡) −8 − 𝛾(𝜋𝑡) −3
1 − 𝛾(𝜋𝑡) 2 − 𝛾(𝜋𝑡) 5
1 − 𝛾(𝜋𝑡) 2 − 𝛾(𝜋𝑡) 5

⎤⎥⎥⎥⎥⎦
,

𝐾2(𝑡) =[1 + 𝛼(𝑡),4 + 2𝛼(𝑡),3 + 𝛾(𝑡)]T ⊙ 𝟏3×2.

In this example, we set the input matrices 𝐴(𝑡) = 𝐾1(𝑡) + 2𝐾1(𝑡)𝚤 ∈ ℂ4×3 with nr(𝐴(𝑡)) = 3 and 𝐵(𝑡) = 𝐾2(𝑡) + 1∕2𝐾2(𝑡)𝚤 ∈ ℂ3×2 with 
nr(𝐵(𝑡)) = 1 to calculate the TV-MROI with PR. As a result, nr(𝐴(𝑡)𝐵(𝑡)) = nr(𝐵(𝑡)) = 1 and the TV-MROI is 𝑋(𝑡) ∈ℂ3×4 with nr(𝑋(𝑡)) = 1. 
The outcomes of the ZNNPR1 and ZNNPR2 models are shown in Figs. 1 and 3.

5.2. Numerical example 2

Consider the matrix 𝐾1(𝑡) of NE 5.1 and the following matrices:

𝐿1(𝑡) =𝐾T
1 (𝑡),

𝐿2(𝑡) =[𝛼(𝑡) + 1,2 + 2𝛼(𝑡),4 + 𝛾(𝑡)]⊙ 𝟏2.

In this example, we set the input matrices 𝐴(𝑡) = 𝐿1(𝑡) + 2𝐿1(𝑡)𝚤 ∈ ℂ3×4 with nr(𝐴(𝑡)) = 3 and 𝑄(𝑡) = 𝐿2(𝑡) + 1∕2𝐿2(𝑡)𝚤 ∈ ℂ2×3 with 
nr(𝑄(𝑡)) = 1 to calculate the TV-MROI with PK. As a result, nr(𝑄(𝑡)𝐴(𝑡)) = nr(𝑄(𝑡)) = 1 and the TV-MROI is 𝑋(𝑡) ∈ℂ4×3 with nr(𝑋(𝑡)) = 1. 
The outcomes of the ZNNPK1 and ZNNPK2 models are shown in Figs. 1 and 3.

5.3. Numerical example 3

Consider the following matrices:

𝐾1(𝑡) =

⎡⎢⎢⎢⎢⎣
6 − 𝛾(𝜋𝑡) 5 − 𝛾(𝜋𝑡) 12 1 5
−3 − 𝛾(𝜋𝑡) −8 − 𝛾(𝜋𝑡) −3 0 5
1 − 𝛾(𝜋𝑡) 2 − 𝛾(𝜋𝑡) 5 1 7
1 − 𝛾(𝜋𝑡) 2 − 𝛾(𝜋𝑡) 5 1 9

⎤⎥⎥⎥⎥⎦
,

𝐾2(𝑡) =[2𝐾1(∶,1)(𝑡),5𝐾1(∶,2)(𝑡),4𝐾1(∶,3)(𝑡),3𝐾1(∶,2)(𝑡),6𝐾1(∶,1)(𝑡)]T.

In this example, we set the input matrices 𝐴(𝑡) = 𝐾1(𝑡) + 2𝐾1(𝑡)𝚤 ∈ ℂ4×5 with nr(𝐴(𝑡)) = 4 and 𝐵(𝑡) = 𝐾2(𝑡) + 1∕2𝐾2(𝑡)𝚤 ∈ ℂ5×4 with 
nr(𝐵(𝑡)) = 3 to calculate the TV-MROI with PR. As a result, nr(𝐴(𝑡)𝐵(𝑡)) = nr(𝐵(𝑡)) = 3 and the TV-MROI is 𝑋(𝑡) ∈ℂ5×4 with nr(𝑋(𝑡)) = 3. 
The outcomes of the ZNNPR1 and ZNNPR2 models are shown in Figs. 2 and 3.

5.4. Numerical example 4

Consider the matrix 𝐾1(𝑡) of NE 5.3 and the following matrices:

𝐿1(𝑡) =𝐾T
1 (𝑡),

𝐿2(𝑡) =[(2𝐿1(1,∶)(𝑡))T, (3𝐿1(2,∶)(𝑡))T, (4𝐿1(3,∶)(𝑡))T, (5𝐿1(2,∶)(𝑡))T, (6𝐿1(1,∶)(𝑡))T].

In this example, we set the input matrices 𝐴(𝑡) = 𝐿1(𝑡) + 2𝐿1(𝑡)𝚤 ∈ ℂ5×4 with nr(𝐴(𝑡)) = 4 and 𝑄(𝑡) = 𝐿2(𝑡) + 1∕2𝐿2(𝑡)𝚤 ∈ ℂ4×5 with 
nr(𝑄(𝑡)) = 3 to calculate the TV-MROI with PK. As a result, nr(𝑄(𝑡)𝐴(𝑡)) = nr(𝑄(𝑡)) = 3 and the TV-MROI is 𝑋(𝑡) ∈ℂ4×5 with nr(𝑋(𝑡)) = 3. 
9

The outcomes of the ZNNPK1 and ZNNPK2 models are shown in Figs. 2 and 3.
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Fig. 1. Errors of the ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2 models in NEs 5.1 and 5.2.

5.5. Numerical example 5

Consider the following matrices:

𝐾1(𝑡) =

⎡⎢⎢⎢⎢⎣
3 + 𝛾(𝑡) 1 + 𝛼(𝑡)∕2 … 1+ 𝛼(𝑡)∕6

1 + 𝛼(𝑡)∕2 3 + 𝛾(𝑡) … 1 + 𝛼(𝑡)∕5
⋮ ⋮ ⋱ ⋮

1 + 𝛼(𝑡)∕10 1 + 𝛼(𝑡)∕9 … 3+ 𝛾(𝑡)

⎤⎥⎥⎥⎥⎦
,

𝐾2(𝑡) =[1 + 𝛼(𝑡),6 + 𝛾(𝑡),5 + 2𝛼(𝑡),2 + 2𝛾(𝑡), 4 + 𝛼(𝑡),3 + 𝛾(𝑡)]T ⊙ 𝟏6×3.

In this example, we set the input matrices 𝐴(𝑡) = 𝐾1(𝑡) + 2𝐾1(𝑡)𝚤 ∈ ℂ10×6 with nr(𝐴(𝑡)) = 6 and 𝐵(𝑡) = 𝐾2(𝑡) + 1∕2𝐾2(𝑡)𝚤 ∈ ℂ6×3 with 
nr(𝐵(𝑡)) = 1 to calculate the TV-MROI with PR. As a result, nr(𝐴(𝑡)𝐵(𝑡)) = nr(𝐵(𝑡)) = 1 and the TV-MROI is 𝑋(𝑡) ∈ℂ5×4 with nr(𝑋(𝑡)) = 1. 
10

The outcomes of the ZNNPR1 and ZNNPR2 models are shown in Fig. 4.
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Fig. 2. Errors of the ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2 models in NEs 5.3 and 5.4.

5.6. Numerical example 6

Consider the matrix 𝐾1(𝑡) of NE 5.5 and the following matrices:

𝐿1(𝑡)=𝐾T
1 (𝑡),

𝐿2(𝑡)=[𝛼(𝑡)+1,2+𝛾(𝑡),3+2𝛼(𝑡),4+2𝛾(𝑡),5+𝛼(𝑡),6+𝛾(𝑡)]⊙𝟏3 .

In this example, we set the input matrices 𝐴(𝑡) = 𝐿1(𝑡) + 2𝐿1(𝑡)𝚤 ∈ ℂ6×10 with nr(𝐴(𝑡)) = 6 and 𝑄(𝑡) = 𝐿2(𝑡) + 1∕2𝐿2(𝑡)𝚤 ∈ ℂ3×6 with 
nr(𝑄(𝑡)) = 1 to calculate the TV-MROI with PK. As a result, nr(𝑄(𝑡)𝐴(𝑡)) = nr(𝑄(𝑡)) = 1 and the TV-MROI is 𝑋(𝑡) ∈ℂ10×6 with nr(𝑋(𝑡)) =
11

1. The outcomes of the ZNNPK1 and ZNNPK2 models are shown in Fig. 4.
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Fig. 3. Trajectories of the real and imaginary parts of 𝑋(𝑡) with PR and PK in NEs 5.1-5.4.

5.7. Discussion and analysis of numerical examples

The capability of the ZNNPR1 and ZNNPR2 models for computing the TV-MROI with PR is examined through NEs 5.1, 5.3 and 
5.5, while the capability of the ZNNPK1 and ZNNPK2 models for computing the TV-MROI with PK is examined thru NEs 5.2, 5.4 and 
5.6.

In the cases of NEs 5.1 and 5.2, two different initial conditions (i.e. IC1 and IC2) have been used. Particularly, Figs. 1a and 1e show 
the GEMEs convergence in NE 5.1 under IC1 and IC2, respectively, and Figs. 1i and 1m show the GEMEs convergence in NE 5.2 under 
IC1 and IC2, respectively. We observe, there in, that the convergence begins at 𝑡 = 0 with high errors and ends prior to 𝑡 = 2 with 
errors in the range [10−7, 10−1]. Figs. 1b and 1f show the (MP-ii) convergence in NE 5.1 under IC1 and IC2, respectively, and Figs. 1j 
and 1n show the (MP-ii) convergence in NE 5.2 under IC1 and IC2, respectively. In Fig. 1b, the convergence speeds of the ZNNPR1 
and ZNNPR2 under IC1 are identical despite the ZNNPR2 model having a smaller total error. In Fig. 1f, the convergence speed of the 
ZNNPR1 is higher than the ZNNPR2, and it also generates a smaller total error is lower than the ZNNPR2. In Fig. 1j, the convergence 
speeds of the ZNNPK1 and ZNNPK2 under IC1 are identical despite the ZNNPK2 model having a smaller total error. In Fig. 1n, the 
convergence speed of the ZNNPK1 is higher than the ZNNPK2, and it also has a smaller total error than the ZNNPK2. Figs. 1c and 1g

show the (PR-i) convergence in NE 5.1 under IC1 and IC2, respectively, and Figs. 1k and 1o show the (PK-i) convergence in NE 5.2

under IC1 and IC2, respectively. There in, we can see that the initial conditions do not affect the convergence speed of the models, 
but affect the total error. That is, ZNNPR2 and ZNNPK2, respectively, have a smaller total error than the ZNNPR1 and ZNNPK1 
under IC1, whereas ZNNPR1 and ZNNPK1, respectively, have a smaller total error than the ZNNPR2 and ZNNPK2 under IC1. Notice 
that Figs. 1d and 1h, which show the (PR-ii) convergence in NE 5.1 under IC1 and IC2, respectively, and Figs. 1l and 1p, which 
show the (PK-ii) convergence in NE 5.2 under IC1 and IC2, respectively, demonstrate the similar error trend. Figs. 3a and 3b show 
the real part trajectories of the solution 𝑋(𝑡), STS and 𝐴†(𝑡) in NE 5.1 under IC1 and IC2, respectively, while Figs. 3e and 3f show 
their imaginary part trajectories. Notably, the ZNNPR1 solution matches the STS, while STS has different trajectories from 𝐴†(𝑡). In 
addition, the ZNNPR2 solution is different than the STS and 𝐴†(𝑡). Figs. 3c and 3d show the real part trajectories of the solution 𝑋(𝑡), 
STS and 𝐴†(𝑡) in NE 5.2 under IC1 and IC2, respectively, while Figs. 3g and 3h show their imaginary part trajectories. Notably, the 
12

ZNNPK1 solution matches the STS, while STS has different trajectories from 𝐴†(𝑡). In addition, the ZNNPK2 solution is different than 
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Fig. 4. Errors of the ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2 models, and trajectories of the real and imaginary parts of 𝑋(𝑡) with PR and PK in NEs 5.5 and 5.6.

the STS and 𝐴†(𝑡). It is important to notice that the initial conditions have an impact on the solutions of ZNNPR2 and ZNNPK2 but 
not ZNNPR1 and ZNNPK1, which always match the STS. In other words, for various initial conditions, the ZNNPR2 generates various 
solutions to the TV-MROI with PR and the ZNNPK2 generates various solutions to the TV-MROI with PK.

Two 𝜆 values (10 and 100) have been used in NEs 5.3 and 5.4. Particularly, Figs. 2a and 2e show the GEMEs convergence in NE 
5.3 under 𝜆 = 10 and 𝜆 = 100, respectively, and Figs. 2i and 2m show the GEMEs convergence in NE 5.4 under 𝜆 = 10 and 𝜆 = 100, 
respectively. In the case of 𝜆 = 10, we see that the convergence begins at 𝑡 = 0 with high errors and ends prior to 𝑡 = 2 with errors 
in the range [10−9, 10−1]. In the case of 𝜆 = 100, we can see that the convergence starts at 𝑡 = 0 with high errors and ends prior 
to 𝑡 = 0.2 with errors in the range [10−9, 10−1]. Figs. 2b and 2f show the (MP-ii) convergence in NE 5.3 under 𝜆 = 10 and 𝜆 = 100, 
respectively, and Figs. 2j and 2n show the (MP-ii) convergence in NE 5.4 under 𝜆 = 10 and 𝜆 = 100, respectively. In Figs. 2b and 2f, 
the convergence speeds of the ZNNPR1 and ZNNPR2 are almost identical despite the ZNNPR2 model having a smaller total error, 
and in Figs. 2j and 2n, the convergence speeds of the ZNNPK1 and ZNNPK2 are almost identical despite the ZNNPR2 model having a 
smaller total error. Notice that Figs. 2c and 2g (which show the (PR-i) convergence in NE 5.3 under 𝜆 = 10 and 𝜆 = 100, respectively), 
and Figs. 2k and 2o (which show the (PK-i) convergence in NE 5.4 under 𝜆 = 10 and 𝜆 = 100, respectively), demonstrate the similar 
error trend. Figs. 2d and 2h show the (PR-ii) convergence in NE 5.3 under 𝜆 = 10 and 𝜆 = 100, respectively, and Figs. 2l and 2p show 
the (PK-ii) convergence in NE 5.4 under 𝜆 = 10 and 𝜆 = 100, respectively. In Figs. 2d and 2h, the ZNNPR2 is already converged and 
has much smaller total error than the ZNNPR1, and in Figs. 2l and 2p, the ZNNPK2 converges and has much smaller total error than 
the ZNNPK1. Notice that when the value of 𝜆 is 100 as opposed to 10, the overall error is reduced much more. Fig. 3i shows the 
real part trajectories of the solution 𝑋(𝑡), STS and 𝐴†(𝑡) in NE 5.3 under 𝜆 = 10, while Fig. 3j shows their imaginary part trajectories. 
Notably, the ZNNPR1 solution matches the STS, while STS has different trajectories from 𝐴†(𝑡). In addition, the ZNNPR2 solution 
is different than the STS and 𝐴†(𝑡). Fig. 3k shows the real part trajectories of the solution 𝑋(𝑡), STS and 𝐴†(𝑡) in NE 5.4 under 
𝜆 = 10, while Fig. 3l shows their imaginary part trajectories. Notably, the ZNNPK1 solution matches the STS, while STS has different 
trajectories from 𝐴†(𝑡). In addition, the ZNNPK2 solution is different than the STS.

In the cases of NEs 5.5 and 5.6, input matrices with relatively large dimensions have been used. Particularly, Figs. 4a and 4e
13

show the GEMEs convergence in NEs 5.5 and 5.6, respectively. There we can see that the convergence begins at 𝑡 = 0 with high 
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errors and ends prior to 𝑡 = 2 with errors in the range [10−8, 10−1]. Figs. 4b and 4f show the (MP-ii) convergence in NEs 5.5 and 5.6, 
respectively, Fig. 4c shows the (PR-i) convergence in NE 5.5, and Fig. 4g shows the (PK-i) convergence in NE 5.6. We find that both 
the convergence speeds and the total error of the ZNNPR1 and ZNNPR2 are identical, as are the convergence speeds and total error 
of the ZNNPK1 and ZNNPK2. Further, Fig. 4d shows the (PR-ii) convergence in NE 5.5, and Fig. 4h shows the (PK-ii) convergence 
in NE 5.6. In Fig. 4d, the ZNNPR2 is already converged but ZNNPR1 has smaller total error, and In Fig. 4h, the ZNNPK2 is already 
converged but ZNNPK1 has smaller total error. Fig. 4i shows the real part trajectories of the solution 𝑋(𝑡), STS and 𝐴†(𝑡) in NE 
5.5, while Fig. 4j shows their imaginary part trajectories. Notably, the ZNNPR1 solution matches the STS, while STS has different 
trajectories from 𝐴†(𝑡). In addition, the ZNNPR2 solution is different than the STS and 𝐴†(𝑡). Fig. 4k shows the real part trajectories 
of the solution 𝑋(𝑡), STS and 𝐴†(𝑡) in NE 5.6, while Fig. 4l shows their imaginary part trajectories. Notably, the ZNNPK1 solution 
matches the STS, while STS has different trajectories from 𝐴†(𝑡). In addition, the ZNNPK2 solution is different than the STS.

The NEs performed in this section lead to the following conclusions.

- The ZNNPR1, ZNNPR2, ZNNPK1, and ZNNPK2 models converge to the zero matrix quickly after starting from an initial condition 
that is not ideal.

- The initial conditions do not have an impact on the solutions ZNNPR1 and ZNNPK1, which always match the STS.

- The initial conditions have an impact on the solutions of ZNNPR2 and ZNNPK2. That is, for various initial conditions, the ZNNPR2 
generates various solutions to the TV-MROI with PR and the ZNNPK2 generates various solutions to the TV-MROI with PK.

- The value of 𝜆 regulates the GEME convergence ending period 𝑡.
- The 𝑋(𝑡) solutions trajectories, as well as the (MP-ii), (PR-i) and (PK-i) convergence, act in the same manner because of the GEMEs’ 
convergence features.

- In the case of (PR-ii), the ZNNPR1 and ZNNPK1 models outperform the ZNNPR2 and ZNNPK2 models, respectively. However, 
according to Section 4 findings, the ZNNPR2 and ZNNPK2 models have lower computational complexity than the ZNNPR1 and 
ZNNPK1 models, respectively.

- The ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2 models can handle input matrices with relatively large dimensions.

In essence, the TV-MROI with PR is calculated with outstanding performance by the ZNNPR1 and ZNNPR2 models, and the TV-MROI 
with PK is calculated with effective performance by the ZNNPK1 and ZNNPK2 models.

6. Conclusion

This paper presented four ZNN models (i.e. ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2) for calculating the TV-MROI with PR 
and with PK. Particularly, the ZNNPR1 and ZNNPR2 models calculate the TV-MROI with PR and the ZNNPK1 and ZNNPK2 models 
the TV-MROI with PK. For investigating the performance of the models, six NEs were presented. With the exception of one error 
measurement, where the ZNNPR1 and ZNNPK1 models outperform the ZNNPR2 and ZNNPK2 models, the performance of the 
ZNNPR1 and ZNNPR2 models, as well as the ZNNPK1 and ZNNPK2 models, is almost identical. However, the ZNNPR2 and ZNNPK2 
models have lower computational complexity than the ZNNPR1 and ZNNPK1 models, respectively. To conclude, the findings show 
that all models generate the TS with outstanding and effective performance.

The list below includes some possible research topics.

1. The ZNNPR1, ZNNPR2, ZNNPK1 and ZNNPK2 models could be enhanced using ZNN designs with terminal convergence.

2. As algebra relies heavily on generalized inverses, future works can explore particular varieties of generalized inverses, including 
the time-varying {1,3} and {1,4}-inverses.

3. ZNN designs built on a nature-inspired metaheuristic optimization technique, such those shown in [43,44], could be used to 
improve the models described in this paper.
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References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd edition, CMS Books in Mathematics, Springer, New York, NY, 2003.

[2] G. Wang, Y. Wei, S. Qiao, P. Lin, Y. Chen, Generalized Inverses, Theory and Computations, vol. 53, Springer, Singapore, 2018.

[3] Y. Yuan, Z. Wang, L. Guo, Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensations: the noncooperative case, 
IEEE Trans. Syst. Man Cybern. Syst. 48 (2018) 1885–1896, https://doi .org /10 .1109 /tsmc .2017 .2704278.

[4] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin, K. Peng, Adaptive neural control for robotic manipulators with output constraints and uncertainties, IEEE Trans. Neural 
Netw. Learn. Syst. 29 (2018) 5554–5564, https://doi .org /10 .1109 /tnnls .2018 .2803827.

[5] Y. Shi, W. Zhao, S. Li, B. Li, X. Sun, Novel discrete-time recurrent neural network for robot manipulator: a direct discretization technical route, IEEE Trans. 
Neural Netw. Learn. Syst. 34 (6) (2023) 2781–2790, https://doi .org /10 .1109 /TNNLS .2021 .3108050.

[6] Y. Shi, J. Wang, S. Li, B. Li, X. Sun, Tracking control of cable-driven planar robot based on discrete-time recurrent neural network with immediate discretization 
method, IEEE Trans. Ind. Inform. 19 (6) (2023) 7414–7423, https://doi .org /10 .1109 /TII .2022 .3210255.
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