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Preface

Linear algebra (Latin: linealis, belonging to a line) is a mathematical discipline that deals with
vectors and matrices, and in particular with vector space and linear transformations. Linear
algebra is the center of mathematics and applied mathematics. Abstract algebra is created by
omitting the axioms of the vector space. Functional analysis studies an infinite no-dimensional
version of the theory of vector spaces. Unlike other parts of mathematics, where new and never-
before-seen problems often appear, in linear algebra this is not a frequent occurrence. Its value
lies in its applicability, ranging from engineering, analytical geometry, mathematical physics,
abstract algebra, as well as applications in economics, programming and computing. The use of
matrices in quantum mechanics, special relativity, and statistics has helped expand the subject
of linear algebra beyond pure mathematics. The development of computers has led to more
research into efficient algorithms for Gaussian elimination and matrix decomposition, and linear
algebra has become an essential tool for modeling and simulations. In image reconstruction,
each image is viewed as a matrix and image blur is modeled with specific matrix equations.
Graph theory can hardly be imagined without matrices and linear algebra.

The concept of generalized inverse matrix is an extension of the concept of the inverse ma-
trix applicable even to square singular matrices and rectangular matrices. Many definitions of
generalized inverses are presented so far, and all of which reduce to the usual inverse when the
matrix is square and nonsingular. Generalized inverses are included an extensive variety of math-
ematical fields, for example, matrix theory and operator theory. Generalized inverses are very
powerful tools in many branches of mathematics, technics and engineering. The most frequent
application of generalized inverses is in finding solution of many matrix equations and systems
of linear equations. There are a lot of other mathematical and technical disciplines in which
generalized inverses play an important role. Some of them are: estimation theory (regression),
computing polar decomposition, electrical circuits (networks) theory, automatic control theory,
filtering, difference equations, robotics, pattern recognition, image restoration. Since 1955, thou-
sands of papers have been published discussing various theoretical and computational aspects
of generalized inverses and their applications.

The Moore-Penrose inverse (or pseudoinverse) is useful in all kinds of least squares problems.
The Drazin inverse is applicable mainly in population modelling, Markov chains, and singular
systems of linear differential equations.

The broadest definition for a generalized inverse of a matrix says that it is a matrix which:
- exists for a larger class of matrices than the ordinary inverse does (for example, for rectangular
and/or singular matrices);
- has some properties of the ordinary inverse;
- for a given square nonsingular matrix it reduces to the ordinary inverse.

Different types of generalized inverses have been introduced with the purpose of defining
a generalized inverse which will have as many properties as the ordinary matrix inverse. The
first such inverse, named by the scientists who worked on this topic, is the Moore-Penrose
inverse, or pseudoinverse. Nowadays, the theory of generalized inverses recognizes many types
of generalized inverses different than the Moore-Penrose inverse. Main of them are: the Drazin
inverse, the group inverse, the weighted Moore-Penrose inverse, {i, j, k}-inverses, the Bott-Duffin
inverse etc.

Also, a number of monographs has been written [10, 27, 8, 12, 160, 145, 163]. Ben Israel
in his survey paper [7] observed about 2000 articles and 15 books on generalized inverses of
matrices and linear operators. Now, it is difficult to give even an approximate number of
articles devoted to generalized inverses. It is justifiably to say that the theory of generalized
inverses extensively grows and becomes an important part of mathematics as well as important
part of many applicable scientific areas, such as computer science, electrical engineering, etc.
For more information of he history of generalized inverses the reader is referred to two survey
papers [7] and [6]. Global overview of various applications of generalized inverses can be found
in [7].
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Real interest in the study generalized inverses appeared after the publications of Penrose’s
paper [122]. In the word of Nashed, that paper represents the renaissance in the development
of theory of generalized inverses and it may be said that as a mathematical area generalized
inversion was inaugurated in 1955 by Penrose [122]. The generalized inversion is listed in the
2010 Mathematics Subject Classification under 15A09: Matrix inversion, generalized inverses
and 65F20: overdetermined systems, pseudoinverses.

Since the publication of [122], generalized inverse become a permanent, distinguished an ac-
tive area in mathematics. Many types of generalized inverses have various applications such as
linear estimation, differential and difference equations, Markov chains, graphics, cryptography,
coding theory, robotics, incomplete data recovery, sociology, demography and many other fields.
A special case of the Drazin inverse, called Group inverse, has found application in characteriz-
ing the sensitivity of the stationary probabilities to perturbations in the underlying transition
probabilities. Finally, the group inverse has recently proven to be fundamental in the analysis
of Google’s PageRank search engine. Generalized inverses play an important role in finding
solutions of many stochastic models, in particular Markov chains in discrete or continuous time
and Markov renewal processes [52]. The Drazin inverse has been successfully and extensively
applied in different fields of science; for example, in finding closed form solutions of singular
differential equations with matrix coefficients, in solving difference equations, in Markov chains,
multibody system dynamics as well as in finding solutions of various iterative methods. The
Moore-Penrose inverse has found a wide range of applications in many areas of science and
became a useful in finding least squares solutions of linear systems, in optimization problems, in
data analysis, in finding the solution of linear integral equations, etc. Global overview of various
applications of generalized inverses can be found in [7].

Usually, an optimization method is an iterative method for finding the minimum or max-
imum of some optimization problem. Namely, given an initial point x0, an iterative sequence
xk is generated by a given iterative rule, such that the sequence xk converges to the optimal
solution of the problem. A typical behavior of an algorithm which is regarded as acceptable is
that the iterates xk move steadily towards the neighborhood of a local optimizer x, and then
rapidly converge to the point x.

The optimization theory represents a very important mathematical discipline and finds
great application, not only in the theory of applied mathematics, but also in many practical
disciplines such as: production, aviation, management, sociology, genetic etc. Moreover, the
process of evolution reveals that follows optimization.

Nonlinear optimization and approximation theory are two scientific fields related to general-
ized inverses. It is known that the calculation of the generalized inverse matrix is often involved
in finding solutions for some optimization and approximation models. On the other hand, the
calculation of the inverse and pseudoinverse matrix can be defined based on certain optimization
models. Although the optimization theory is a part of everyday life for a very long time, this
science has faced an important development in the last five decades. The subject is involved
in the process of finding optimal solution of problems which are defined mathematically, i.e.,
given a practical problem, the ”best” solution to the problem can be found from lots of schemes
by means of scientific methods and tools. It involves the study of optimality conditions of the
problems, the construction of model problems, the determination of algorithmic method of so-
lution, the establishment of convergence theory of the algorithms, and numerical experiments
with typical problems and real life problems.

The term “good algorithm” assumes the following properties:

• Robustness, since it should perform well on a wide variety of problems in their class, for
all reasonable choices of the initial variables.

• Efficiency, since it should not require too much computer time or storage.

• Accuracy, since it should be able to identify a solution with precision, without being
overly sensitive to errors in the data, or to the arithmetic rounding errors that occur
when the algorithm is implemented on a computer.

Nonlinear optimization and approximation theory are two scientific areas related to gener-
alized inverses. All these goals are usually conflict, so, tradeoffs between the different types of
good properties is a central issue in numerical optimization.

This monograph is aimed to mathematics and engineering graduate students and researchers
in the areas of numerical linear algebra, optimization, dynamical systems, control systems, signal
processing. It can also be used as a text or reference for many graduate courses or as a reference
for many courses in postgraduate levels in computer science, mathematics or in technical facul-
ties. The reader should be familiar with basic linear algebra, matrix theory, mathematical and
functional analysis. Knowledge in Mahematica programming package is desirable. We believe
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that the book should be of use for many researchers, students in applied mathematics, statistics,
engineering, and many other scientific disciplines.

The global organization of the monograph’s chapters and sections is as follows.

Chapter 1 introduces basic notions, notations and results from the matrix theory, gener-
alized inverses and nonlinear optimization. This chapter starts from basic notions in matrix
theory. Introduction to generalized inverses and basic properties of main generalized inverses
are analysed in Sections 1.2 and 1.3. Main facts on idempotent matrices and projectors are re-
stated in Section 1.4. Least squares and minimal norm properties of the Moore-Penrose inverse
are surveyed in Section 1.5. Minimal properties of Drazin inverse and outer inverses are surveyed
in Section 1.6. Last section in this chapter shortly restates relationships between optimization
theory and generalized inverses.

A brief overview of composite generalized inverses is presented in the second chapter. In-
volved sections restate main properties, representations and characterizations of proper combi-
nations of the Moore-Penrose inverse and outer inverses with prescribed range and null space.
First section is aimed to survey of composite outer inverses involving the Moore-Penrose in-
verse. This class involves very important generalized inverses, such as the core and core-EP
invese, DMP and MPD inverse. Then Section 2.2 presents overview of remaining composed
generalized inverses, such as the CMP inverse, dual core-EP inverse, weak group inverse, the
*-CEPMP, W-weighted Drazin inverse, and W-weighted core-EP inverse. Subsequent sections
describe OMP, MPO and MPOMP inverses as proper combinations of outer generalized inverses
with the Moore-Penrose inverse.

Chapter 3 is aimed to least squares properties of generalized inverses. Section 3.1 investi-
gates least squares solutions and best approximate solutions of main generalized inverses. Main
part of this research are minimal properties of the Moore-Penrose inverse. Section 3.2 investi-
gates analogous properties of the Drazin inverse. Least-square properties of outer inverses are
considered in Section 3.3. Finally, least-square properties of composition of outer inverses with
main generalized inverses (the Moore-Penrose and the Drazin inverse) are considered in Section
3.4. This section shows that each kind of generalized inverses is related to appropriate matrix
equation and/or linear system.

Solvability of approximation problems]Solvability of matrix approximation problems is the
topic of Chapter 4. Solvability of approximation problems based on core-EP inverse are consid-
ered in section 4.1 and 4.2. Core-EP inverse solution with least-squares solutions is considered
in Section 4.3.

Various generalizations of composite inverses are presented in Chapter 5. Characterizations
of g-core-EP inverse are given in Section 5.1. Precisely, an extension of the core-EP inverse
(termed as the g-core-EP inverse) for a rectangular matrix in terms of the Moore-Penrose inverse
of a corresponding matrix and the outer inverse. Applications of g-core-EP inversesApplications
of g-core-EP and *g-core-EP inverses are given in Section 5.3. Generalizations of OMP, OMP
and MPOMP inverses are defined in Section 5.5. Section 5.7 investigates extensions of the
generalized CEP inverse, while extensions of dual generalized CEP inverses are considered in
Section 5.8. Algorithms and examples of presented generalizations are involved in Section 5.9.
Some applications of the proposed Φ-GCEP and Φ-*GCEP inverses in finding solutions to several
linear vector equations are presented in Section 5.10.

Outer-star and star-outer matrices are objective of Chapter 6. Particularly, Section 6.1
investigates characterizations of outer-star matrices, and Section 6.2 considers representations
of outer-star matrices. Further, representations of Drazin-star matrices are presented in Section
6.3 and roup-star and star-group matrices in Section 6.4. Applications of outer-star and star-
outer matrices are given in Section 6.5.

Minimal rank properties of outer inverses are considered in Chapter 7. Subsequent sections
consider minimal rank outer inverses with prescribed range, prescribed null space and both
prescribed range and null space.
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Chapter 1

Introduction

Main intention in this monograph is solving unconstrained and constrained matrix approxima-
tion and optimization problems using generalized inverses. The investigation of outer generalized
inverses which are defined as proper composition of the Moore-Penrose inverse and some par-
ticular outer inverses, such as the Drazin inverse or the group inverse has attracted a great
popularity in last years.

Computation of the Moore–Penrose inverse of a matrix is mainly done via the calculation
of either a full-rank decomposition or the singular value decomposition (SVD). Further, the
SVD is based on singular values. On the other hand, representations and computation of the
Drazin inverse are related to the matrix index and the Jordan canonical form. In addition,
predefined range and/or null space of outer generalized inverses is important requirement in
their definition. Finally, inner inverses (and particularly the Moore-Penrose inverse) are usable
in solving systems of linear equations and matrix equations. Because of that, it is important to
introduce these notions before detailed introduction of various generalized inverses.

1.1 Basic notions from matrix theory

It is necessary to mention several common and usual notations. Let R and C denote the set of
real and complex numbers respectively. As usual, Cm×n (resp. Rm×n) and C

m×n
r (resp.) denote

the set of all complex (resp. real) m×n matrices and all complex (real) m×n matrices of rank
r, respectively. It is well known that a matrix A ∈ C

m×n represents a matrix form of a linear
map from C

n to C
m with respect to the standard basis of Cn and C

m. For a given matrix A, by
A∗, R(A), rank(A) and N (A) we denote the conjugate transpose, the range, the rank and the
null space of A ∈ C

m×n. Denote by F the arbitrary field. Although only relevant fields in this
book are R and C, all statements containing F are valid for an arbitrary field. In the similar
manner, Fm×n denotes set of m × n matrices over the field F. Identity matrix of the format
n × n will be denoted by In (or simply I when dimensions are known) where diagonal matrix
whose diagonal entries are d1, d2, . . . , dn will be denoted by diag(d1, d2, . . . , dn). An appropriate
zero matrix will be denoted by O (or simply by 0). Also, |A| denotes the determinant of A.

Definition 1.1.1. (Definition of inner product) Let V be a complex vector space. An inner
product 〈x, y〉 is a function V × V → C which satisfies the following properties:
(a) 〈αx, y〉 = α〈x, y〉 (linearity);
(b) 〈x, y〉 = 〈y, x〉 (Hermitian symmetry);
(c) 〈x, x〉 ≥ 0, 〈x, x〉 if and only if x = 0 (positivity);
for all x, y, z ∈ V and α ∈ C.

The standard inner product in C
n is defined by

〈x, y〉 = y∗x =
n∑

i=1

xiyi,

for arbitrary vectors x = (xi), y = (yi) ∈ C
n. If 〈x, y〉 is an inner product on C

n, then

‖x‖ :=
√

〈x, x〉
is a norm on C

n. This vector norm possesses the following properties:
(i) ‖a + b‖2 = ‖a‖2 + ‖b‖2 + 2〈a, b〉,
(ii) ‖a‖ = 0 ⇐⇒ a = 0.
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2 CHAPTER 1. INTRODUCTION

The distance between two vectors can be defined by d(a, b) = ‖a − b‖. Main properties of
the distance d are as follows:
(i) d(a, b) ≥ 0, d(a, b) = 0 ⇐⇒ a = b,
(ii) d(a, b) = d(b, a),
(iii) d(a, b) + d(b, c) ≥ d(a, c).
The last three properties above are called the metric (or distance) axioms.

The matrix product (when it exists) satisfies the following:

1◦ (AB)C = A(BC);

2◦ A(B + C) = AB + AC, (B + C)A = BA+ CA;

3◦ α(AB) = (αA)B = A(αB), gde je α ∈ F skalar;

4◦ IA = AI = A, where I jdenotes the identity matrix of appropriate dimensions.

A matrix norm of A ∈ C
m×n is denoted by ‖A‖ and defined as a function C

m×n → R

satisfying
‖A‖ ≥ 0, ‖A‖ = 0 only if A = O,
‖αA‖ = |α|‖A‖,
‖A+B‖ ≤ ‖A‖+ ‖B‖,
for all A,B ∈ C

m×n, α ∈ C.
If, in addition, ‖AB‖ ≤ ‖A‖‖B‖, then ‖‖ is a multiplicative norm.

Next we give definitions for the notions which are usually related to a given matrix and
which are frequently used further in the text.

Definition 1.1.2. A square matrix A ∈ C
n×n (A ∈ R

n×n) is

(a) Hermitian (self-adjoint) if A∗ = A (AT = A),

(b) normal, if A∗A = AA∗ (ATA = AAT),

(c) lower-triangular, if aij = 0 for i > j,

(d) upper-triangular, if aij = 0 for i < j,

(e) positive semi-definite, if �(x∗Ax) ≥ 0 for all x ∈ C
n,

(f) positive definite, if �(x∗Ax) > 0 for all x ∈ C
n \ {0}.

The notion �(z) means the real part of a complex number z.

By tr(A) = a11 + · · ·+ ann is denoted the trace of a square matrix A ∈ C
n×n.

Let En denote the set of all n-component vectors with entries over E. Assume that there
exists r linearly independent vectors in a subspace W of En, while any set of r + 1 vectors
is linearly dependent. Then the dimensionality of W is said to be r, and it is denoted by
dim (W ) = r. The maximal number of linearly independent columns of a matrix A is called
rank of A and it is denoted by rank(A).

Definition 1.1.3. Let AC
m×n be the set of complex matrices of type m×n over complex numbers

C and N+ = {0, 1, 2, . . .} the set of natural numbers. Rank of a matrix A is the mapping

rank : Cm×n → N+

defined by

(i) rank(0) = 0, where 0 is the zero (null) matrix;

(ii) rank(A) = r, if there is a minor of order r of matrix A that is different from zero, and
all minors of order k, where r + 1 ≤ k ≤ min{m, n}, if they exist, are equal to zero.

Based on Definition 1.1.3 of matrix rank, for the matrix A of type m × n, it immediately
follows that

0 ≤ rank(A) ≤ min{m,n}.
Definition 1.1.4. Each minor Mr �= 0 of order r of a given matrix A for which rank(A) = r
is called a basis or basis minor of that matrix. The types and columns of the matrix A in
whose intersections there are elements of the basic minor Mr are called the basic types and basic
columns of the matrix A (ie, basic types and basic columns).

The importance of basic rows and basic columns in relation to other rows and columns of a
given matrix is described by the following result on the basic minor.

For a given matrix A važi:
(i) basic rows (basic columns) of the matrix A are linearly independent;
(ii) rows (columns) of the matrix A that are not basic, if any, are a linear combination of the
basic rows (basic columns).

11



1.1. BASIC NOTIONS FROM MATRIX THEORY 3

Definition 1.1.5. Let A ∈ C
m×n. A real or complex scalar λ which satisfies the following

equation
Ax = λx, i.e., (A− λI)x = 0,

is the eigenvalue of A, and x is the eigenvector of A corresponding to λ.

Definition 1.1.6. For any matrix A ∈ C
m×n, the null space N (A) is defined as the inverse

image of the zero vector 0, i.e.

N (A) = {x ∈ C
n | Ax = 0}.

Also define the range R(A) as the set of all images

R(A) = {y ∈ C
m | y = Ax for some x ∈ C

n}.
The dimension of range R(A) is called rank of the matrix A and denoted by rank(A). The

column rank of A is the dimension of the column space of A, while the row rank of A is the
dimension of the row space of A. The column rank and the row rank are always equal.

Proposition 1.1.1. Let A ∈ C
m×p, B ∈ C

m×q. The matrix rank possesses the following prop-
erties:
(i) If U and V are nonsingular, then rank(UAV ) = rank(A).
(ii) rank(A+B) ≤ rank(A) + rank(B).

Matrix index is another important characteristics of matrices.

Proposition 1.1.2. For every A ∈ C
n×n there exists an integer k such that rank(Ak+1) =

rank(Ak).

Definition 1.1.7. Let A ∈ C
n×n. Smallest integer k such that holds rank(Ak+1) = rank(Ak)

is called the index of A and it is denoted by ind(A) = k.

Note that ind(A) = 0 if A is regular and otherwise ind(A) ≥ 1. The notion of the matrix index
plays an important role in studying generalized inverses.

The eigenvalues and eigenvectors of a matrix are crucial notions in matrix theory. For
example, they represent a tool which enables to inquire the structure and main characteristics
of a matrix. For example, the eigenvalues can be used as a test for regularity of a matrix. In
addition, if a given square matrix of complex numbers is self-adjoint, then there exist a basis
of C

m and a basis of C
n, consisting of distinct eigenvectors of A, with respect to which the

matrix A can be represented as a diagonal matrix. Since not every matrix has enough distinct
eigenvectors to enable its nice decomposition, the following generalization of the eigenvalue is
useful in order to resolve this problem.

Definition 1.1.8. Let A ∈ C
n×n and λ is an eigenvalue of A. A vector x is called generalized

eigenvector of A of a grade p corresponding to λ, or λ-vector of A of a grade p if it satisfies the
equation

(A− λI)px = 0.

Proposition 1.1.3. (Full rank factorization)
(a) Each m× n matrix A of rank r can be written in the form A = PQ, where P ∈ C

m×r
r and

Q ∈ C
r×n
r are matrices of rank r.

(b) The matrix A can be represented as a sum of r matrices of rank 1.

Proposition 1.1.4. (LU and Cholesky factorization)
For every square square matrix A ∈ C

n×n there exists a lower triangular matrix L and an upper
triangular matrix U such that lii = 1 for all i = 1, 2, . . . , n. This factorization is known as
the LU factorization. Moreover, if A is Hermitian and positive definite, then U = L∗, and the
unduced factorization A = LL∗ is called the Cholesky factorization.

The LU decomposition of the square matrix A consists in its representation as a product of
two matrices A = LU, where the matrix L is lower-triangular with units on the main diagonal,
and the matrix U is upper-triangular. If such a decomposition is known, it can be used to solve
the system of linear equations Ax = b. Namely, then it is valid

Ax = (LU)x = L(Ux) = b.

From here it can be seen that by solving the system

Ly = b

12
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and then the system

Ux = y

it is possible to get a solution to the starting system.

Relying on the LU decomposition, it will be possible to calculate it and the inverse of the
matrix. Let e1, . . . , en columns be the only čne matrices In of dimension n × n. Then the ith
column of ai inverse A−1 is obtained by solving the system

Ly = ei

and then the system

Uai = y.

For each matrix, there is a basis composed of generalized eigenvectors in relation to which
the matrix can be represented in the Jordan form. The Jordan decomposition is stated in the
following statement.

Proposition 1.1.5. (Žordanova dekompozicija) Let {λ1, λ2, . . . , λp} be different eigenvalues of
the square matrix A ∈ C

n×n. Then A is similar to the diagonal matrix J with Jordan blocks on
its diagonal, i.e., there exists a nonsingular matrix P such that

A = PJP−1 = P

⎡
⎢⎢⎢⎣

Jk1(λ1) 0 . . . 0
0 Jk2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jk(λp)

⎤
⎥⎥⎥⎦P−1,

where the Jordan bloks Jki
(λi) are defined as

Jki
(λi) =

⎡
⎢⎢⎢⎢⎢⎣

λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . λi 1
0 0 . . . 0 λi

⎤
⎥⎥⎥⎥⎥⎦ .

The Jordan matrix J is defined uniquely up to the rearrangement of its diagonal blocks.

Note that the characteristic polynomial k × k of the Jordan block is equal to (x − λi)
ki .

This means that each Jordan block Jki
(λi) has its own value λi.

Let A ∈ C
m×n be the given matrix. Then, let the vectors u ∈ C

m, v ∈ C
n and a real

number σ ≥ 0 be such that

Av = σu, A∗u = σv. (1.1)

Then σ is called the singular value of A. In addition, the vectors u and v are called the left and
right singular vectors of the matrix A, respectively.

Based on (1.1), it follows

A∗Av = σ2v, AA∗u = σ2u,

which implies that the real number σ2 is an eigenvalue of A∗A and AA∗.

Proposition 1.1.6. Let A ∈ C
m×n be a matrix of rank r and let {λ1, λ2, . . . , λr} be the nonzero

eigenvalues of the matrix AA∗ (ie A∗A). There are exactly r = rank(A) nonzero singular values
of the matrix A, which are denoted by σi(A), i = 1, . . . , r, and which are equal to

σi(A) =
√
λi, i = 1, . . . , r.

In short, the singular values of the matrix A are defined by

σi(A) = λi(AA∗) = λi(A
∗A).

Singular values fulfill basic properties

σi(A) = σi(A
T) = σi(A

∗) = σi(A).

For all unitary matrices U ∈ C
m×m and U ∈ C

n×n it is fulfilled

σi(A) = σi(UAV ).

13



1.2. INTRODUCTION TO GENERALIZED INVERSES 5

Proposition 1.1.7. (Singular Value Decomposition) Let A ∈ C
m×n
r be an arbitrary m × n

matrix of rank r. Then there exist unitary matrices U ∈ C
m×m and V ∈ C

n×n such that A can
be represented in the form

A = U

[
Σ O
O O

]
V ∗, (1.2)

where Σ is dilagonal matrix

Σ =

⎡
⎢⎣

σ1

. . .

σr

⎤
⎥⎦ = diag(σ1, σ2, . . . , σr), σi =

√
λi

and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are nonzero eigenvalues of A∗A.

Let us denote by Ur the submatrix consisting of the first r columns of the matrix U and
by Vr submatrix consisting of the first r types of the matrix V . Then (1.2) can be written in a
more efficient form

A = UrΣVr.

Proposition 1.1.8. Let the matrix A ∈ C
m×n
r of rank r be given. Then there exist unitary

matrices Q ∈ C
m×m and P ∈ C

n×n such that A = Q∗RP ∗ such that R is the matrix of the form

R =

[
R11 O
O O

]
=

[
R1

O

]
∈ C

m×n, R11 ∈ C
k×k
k ,

and O denotes corresponding zero block.

In the case where A is of full column rank (r = n ≤ m), the following statement about QR
factorization holds.

Proposition 1.1.9. Let the matrix A ∈ C
m×r
r of rank r be given. Then there exist unitary

matrices Q ∈ C
m×m so that holds A = Q∗R where R is the shape matrix

R =

[
R1

O

]
,

where R1 ∈ C
n×n is upper-trapezoidal matrix of the form

R1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n
0 r12 · · · r1n
...

...
. . .

...
0 0 · · · rnn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

1.2 Introduction to generalized inverses

For the beginning, we restate facts related to the inverse of a given square matrix.

Definition 1.2.1. The inverse of a given matrix square regular matrix A ∈ C
n×n A is a square

matrix A−1 satisfying the following equalities:

AA−1 = I, A−1A = I.

Proposition 1.2.1. A square matrix A ∈ C
n×n has a unique inverse if and only if det(A) �= 0,

in which case A is nonsingular (regular) matrix.

In order to distinguish between generalized inverses, the inverse of a matrix defined with
Definition 1.2.1 will be called the ordinary (or usual) inverse.

As previously mentioned, the main idea of defining generalized inverses originates from the
need to solve the problem of finding a solution of the following linear system

Ax = b, (1.3)

where A ∈ C
m×n and b ∈ C

m. In the case when the matrix A from the system (1.3) is
nonsingular, the vector

x = A−1b,

provides a solution of the system (1.3).

The most important properties of the ordinary inverse are summarized in the following
proposition

14



6 CHAPTER 1. INTRODUCTION

Proposition 1.2.2. Let A ∈ C
n×n be a given nonsingular matrix, then it holds:

(a) (A−1)−1 = A;
(b) (A∗)−1 =

(
A−1

)∗
;

(c) (AB)−1 = B−1A−1;
(d) A vector x is an eigenvector of A corresponding to the eigenvalue λ �= 0 if and only if x is
an eigenvector of A−1 corresponding to the eigenvalue λ−1.
(e) A vector x is a λ-vector of A of grade p if and only if x is a λ−1-vector of A−1 of grade p.

According to adoptive notation, N (A), R(A), rank(A) and A∗ denote the null space, the
range (column space), the rank and the conjugate transpose, respectively, of A ∈ C

m×n, where
C

m×n is the set of m × n complex matrices. Further, Cm×n
r =

{
X| X ∈ C

m×n, rank(X) = r
}
.

For two complementary subspaces N and M of Cm×1, PN,M represents a projector onto N along
M . The orthogonal projector onto N is denoted by PN .

The idea for introducing the definition of generalized inverses of matrices arisen from the
necessity of finding a solution of a given system of linear equations (SoLE). This problem appears
in many scientific and practical disciplines, such as: statistics, operational research, physics,
economy, electrical engineering, and many others. Generalized inverses provide a simple way
for obtaining a solution of the so called ill-conditioned linear problems. Explicitly, generalized
inverses of matrices has appeared bit later in 1920 in the paper [92] of the scientist Moore.
However, his work was not continued in the next 30 years, first of all because of the way the
work was presented and the ambiguous notation. The research on this topic was initiated
by the scientist Bjerhammar in 1951. The real evolution in the development of this area has
started with the paper [121] published by Penrose in 1955. The general reciprocal, originated by
Bjerhammar and rediscovered by Penrose in [122, 121] is known as the Moore-Penrose inverse
and reached enormous popularity.

For arbitrary A ∈ C
m×n, there exists the Moore-Penrose (or shortly MP) inverse of A

(denoted by A†), that is, the unique matrix X ∈ C
n×m which satisfies the Penrose equations

[121]
(1) AXA = A, (2) XAX = X,

(3) (AX)∗ = AX, (4) (XA)∗ = XA.
(1.4)

The symbol A{ρ} is stated for the set of all matrices that satisfy equations involved in ρ ⊆
{1, 2, 3, 4}. A ρ-inverse of A, marked with A(ρ), is any matrix from A{ρ}. Notice thatA{1, 2, 3, 4} =
{A†}. If A is a square regular matrix, then its inverse matrix A−1 trivially satisfies the system
(1.9), i.e., A† = A−1.

The significance of the Moore-Penrose inverse is confirmed by many theoretical studies and
applied to research areas such as singular matrix problems, ill-posed problems, optimization
problems, statistics, robotics, digital image restoration [23, 24, 48], physics [3], data encryption
[50], in finding the the Moore-Penrose solution of the portfolio optimization problem [72], in
finding exact Moore-Penrose inverse solutions to fuzzy linear systems [91], in sampling theory
related with the problem of signal reconstruction [1], or in kinematic synthesis of the constant
transmission ratio spatial linkage [120].

Penrose and later many researches have used this generalized inverse for problems such
as solving systems of linear and matrix equations as well as in finding a new type of spectral
decomposition. Our important interest in this paper arises from the Penrose’s paper [122],
published in 1956 and known as best approximation solutions of linear matrix equations, which
means that ‖Ax − b‖ ≥ ‖AA†b − b‖ and ‖A†b‖ < ‖x‖ for all x �= A†b and Ax = b, for any
A ∈ C

m×n and b ∈ C
m. This very well known result exploits the generalized inverse of a matrix

to find the best approximate solution x to the matrix equation Ax = b, where A is rectangular
and non-square or square and singular.

An inner inverse (or {1}-inverse) of A is a matrix X ∈ C
n×m such that AXA = A holds. A

particular inner inverse is denoted by A(1). The set of all inner inverses of A will be denoted by
A{1}. An outer inverse (or {2}-inverse) of A is a matrix X ∈ C

n×m which satisfies the equation
XAX = X. A particular outer inverse is denoted by A(2).

The outer inverses of A with determined null space and range attracted attention of many
authors because of their uniqueness. Let A ∈ C

m×n be of rank r, let T be a subspace of Cn of
dimension s ≤ r, and let S be a subspace of Cm of dimension m − s. The outer inverse of A
with the range T and the null-space S (denoted by A

(2)
T,S) is a matrix X ∈ C

n×m such that

XAX = X, R(X) = T, N (X) = S.

Recall that A has the outer inverse X satisfying R(X) = T and N (X) = S if and only if

AT ⊕S = C
m, and in this case X := A

(2)
T,S is unique. The notation A ∈ C

m×n
T,S will indicate that

A ∈ C
m×n and A

(2)
T,S exists. Notice that

A† = A
(2)
R(A∗),N (A∗).
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Further abstraction leads to A{I}T,∗ = {X ∈ A{I}| R(X) = T} (resp. A{I}∗,S = {X ∈
A{I}| N (X) = S}) that comprises {I}-inverses of A with known only range T (resp. only
kernel S). Finally, A{I}T,S denotes the set of {I}-inverses of A possessing range T and kernel
S.

The outer inverses have many applications in statistics [45, 126], in the iterative themes for
tackling nonlinear equations [8], in stable approximations of ill-posed problems and in linear and
nonlinear issues implicating rank-deficient generalized inverses [118]. Many interesting results
were considered outer inverses [9, 20, 140, 172, 176, 175].

Consider that A ∈ C
m×n, B ∈ C

n×k and C ∈ C
l×m. An outer inverse of A with prescribed

range R(B) (denoted by A
(2)
R(B),∗) is a solution to the following constrained equation:

XAX = X, R(X) = R(B). (1.5)

The class of outer inverses with the predefined range R(B) is denoted by A{2}R(B),∗. Further,

an outer inverse of A with prescribed kernel N (C) (denoted by A
(2)

∗,N (C)) is a solution to the
following constrained equation:

XAX = X, N (X) = N (C). (1.6)

The symbol A{2}∗,N (C) will be stand for the class of outer inverses with the predefined kernel
N (C). Last, an outer inverse of A with prescribed range R(B) and kernel N (C) (denoted by

A
(2)
R(B),N (C)) is the unique solution of the following constrained equation:

XAX = X, R(X) = R(B), N (X) = N (C). (1.7)

The key characterizations, representations and computational procedures for outer inverses with
prescribed range and/or kernel were discovered in [14, 161, 172, 179, 182] and other research
articles cited in these references. More details can be found in the monographs [8, 156, 166]. Full
rank representations of outer inverses are given in [129, 130]. Characterizations, representations
and computational procedures based on appropriate matrix equations and ranks of involved
matrices are proposed in [132, 133, 134]. Iterative computational algorithms were developed in
[26, 28, 54, 83, 142].

For A ∈ C
n×n, there exists the Drazin inverse of A (denoted by AD), i.e., the unique matrix

X ∈ C
n×n satisfying

Ak+1X = Ak, XAX = X, AX = XA,

where k = ind(A) is the index of A, i.e., the smallest nonnegative integer k for which the equality
rank(Ak) = rank(Ak+1) holds. In the case ind(A) = 1 the Drazin inverse AD becomes the group
inverse of A (denoted by A#). It is known that

AD = A
(2)

R(Ak),N (Ak)
and A# = A

(2)

R(A),N (A).

1.3 Properties of main generalized inverses

The Kronecker product of two matrices is very important in matrix theory.

Let A=[aij ]i=1,m,j=1,n∈C
m×n be given matrix. By a=vec(A)∈C

mn is denoted the vector
obtained by arranging the elements of A by rows.

Definition 1.3.1. The Kronecker product A⊗B of two matrices A = [aij ] ∈ C
m×n, B ∈ C

p×q

is the mp× nq matrix expressible in partitioned form as

A⊗B =

⎡
⎢⎢⎣

a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . . . . . . . .

am1B am2B . . . amnB

⎤
⎥⎥⎦ .

The properties of the Kronecker product are summarized in the following proposition.

Proposition 1.3.1. Let A,B,E, F be matrices of appropriate dimensions. Then the following
hold:
(a) (A⊗B)(E ⊗ F ) = AE ⊗BF ,
(b) For any q ∈ N it holds (A⊗ I)q = Aq ⊗ I.
(c) If ind(A) = k, then ind(A⊗ I) = k.
(d) If A is a square nonsingular matrix, then the matrix A⊗ I is nonsingular and (A⊗ I)−1 =
A−1 ⊗ I.
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An important application of the Kronecker product is rewriting a matrix equation

AXB = D, (1.8)

as a vector equation of the form

(A⊗BT )vec(X) = vec(D).

For simplicity, further in text, we denote AB = A⊗B.

1.3.1 Matrix equations and {i, j, . . . , k}-inverses

Many problems that usually arise in practice reduce to a problem of the type (1.3), where the
matrix A is singular, and moreover, in many cases it is not even a square matrix. The notion of
generalized inverse of a matrix is defined to overcome the previous problem.

It is well known the fact that the system (1.3), always has at least one solution if and only
if b ∈ R(A). This fact means that b ∈ R(A) if and only if there exists a matrix X such that
x = Xb is a solution of the system. In order to describe such a matrix, there were established
the four so called Penrose equations [122]:

(1) AXA = A (general condition)

(2) XAX = X (reflexive condition)

(3) (AX)∗ = AX (normalized condition)

(4) (XA)∗ = XA (reversed normalized condition).

(1.9)

Proposition 1.3.2. (Penrose 1955) [122] For any matrix A ∈ R
m×n, the system of matrix

equations (1), (2), (3), (4) in (1.9) has the unique solution X ∈ R
n×m. This solution is known

as the Moore-Penrose (M-P) inverse (pseudoinverse) of A and denoted by A†.

If A is a square regular matrix, then its inverse matrix A−1 trivially satisfies the system
(1.9). This means that the Moore-Penrose inverse of a nonsingular matrix is the same as its
ordinary inverse, i.e., A† = A−1. Equations (1.9) are called Penrose equations and they are
used for deriving various classes of generalized inverses. The generalized inverses which satisfy
some of above mentioned equations are useful. For a subset S of the set {1, 2, 3, 4}, the set of all
matrices obeying the equations among (1), . . . , (4) from (1.9) which are defined by S is denoted
by A{S}. Any matrix from A{S} is called S-inverse of A and is denoted by A(S).

In this way we come to the notion of {i, j, . . . , k}-inverses, where i, j, k ∈ S . For example,
for a given matrix A ∈ C

m×n, if there exists a matrix such that it satisfies only the first Penrose
equation, then this matrix is called an {1}-inverse of the matrix A and it is denoted by A(1).
Similarly, if the generalized inverse satisfies the first and the third Penrose equations, it is an
{1, 3}-inverse of A, denoted by A(1,3) while the corresponding set is denoted by A{1, 3}.

For a given subspaces T and S from C
n by PT,S we denote a projector from C

n on T along
S. If S = T⊥, i.e., if S is orthogonal complement of T , then PT is orthogonal projector from C

n

on T . The matrix which corresponds to a linear map which is a projector, is idempotent matrix.
The matrix which corresponds to a linear map which is an orthogonal projector is a Hermitian
idempotent matrix. In the sequel, we restate the main properties of {i, j, . . . , k}-inverses, without
proofs. For more details, see also [8, 156].

Properties and representations of {1}-inverses

Lemma 1.3.1. Let A ∈ C
m×n
r , and let E ∈ C

m×m
m and P ∈ C

n×n
n be matrices satisfying

EAP =

[
Ir K
O O

]
.

Then the n×m matrix

X = P

[
Ir K
O L

]
E (1.10)

is an {1}-inverse (or inner inverse) of A, for any L ∈ C
(n−r)×(m−r)
m .

Lemma 1.3.2. For a given matrix A ∈ C
m×n
r the following statement are valid:

(a) (λA)(1) = λ†A(1), where λ ∈ C and λ† =

{
1
λ
, λ �= 0

0, λ = 0
;

(b) AA(1) is a projection from C
m on R(A), i.e., AA(1) = PR(A),S where S ∈ C

m is such that
R(A) + S = C

m;
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(c) I − A(1)A is a projection from C
n on N (A), i.e., I − A(1)A = PN (A),T where T ∈ C

n is
such that T +N (A) = C

n;

(d) rank(A(1)) ≥ rank(A);

(e) A(1)A = In if and only if r = n;

(f) AA(1) = Im if and only if r = m;

(g) If X ∈ A{1}, then X ∈ A{1, 2} if and only if rank(A) = rank(X);

(h) (A∗A)(1)A∗ ∈ A{1, 2, 3};
(i) A∗(AA∗)(1) ∈ A{1, 2, 4};
(j) A(1,4)AA(1,3) = A†.

The next results establish the extremely important relationship between {i, j, . . . , k}-inverses
and the solutions of a linear matrix equation [8, 156].

Lemma 1.3.3. Let A ∈ C
m×n, B ∈ C

p×q, D ∈ C
m×q. Then the matrix equation

AXB = D

is consistent if and only if it holds

AA(1)DB(1)B = D,

for some A(1), B(1). In this case, the general solution is

X = A(1)DB(1) + Y − A(1)AY BB(1)

for arbitrary Y ∈ C
n×p.

Corollary 1.3.1. Let A ∈ C
m×n and A(1) ∈ A{1}. Then

A{1} = {A(1) + Z − A(1)AZAA(1) | Z ∈ C
n×m}.

Corollary 1.3.2. Let A ∈ C
m×n and b ∈ C

m. Then the system (1.3) is consistent if and only
if for some A(1) it holds

AA(1)b = b,

in which case the general solution of the system (1.3) is

x = A(1)b+ (I −A(1)A)y,

for arbitrary y ∈ C
n.

Lemma 1.3.4. The matrix equations

AX = B, XD = E

have a common solution if and only if each equation separately has a solution, i.e.,

AA(1)B = B, ED(1)D = E, (1.11)

and
AE = BD.

In this case,
X = A(1)B +ED(1) − A(1)AED(1)

is a common solution of both equations, for arbitrary A(1) and D(1).

Lemma 1.3.5. Let the equations given in (1.11) have a common solution X0 ∈ C
m×n. Then

the general solution of these equations is given by

X = X0 + (I − A(1)A)Y (I −DD(1)),

for arbitrary A(1) ∈ A{1}, D(1) ∈ D{1}, Y ∈ C
m×n.

Proposition 1.3.3. Let A ∈ C
m×n, X ∈ C

n×m. Then X ∈ A{1} if and only if, for all
b ∈ R(A), x = Xb is a solution of the system (1.3).

Proposition 1.3.4. The identity AB(AB)(1)A = A holds if and only if rank(AB) = rank(A).
Similarly, B(AB)(1)AB = B is valid if and only if rank(AB) = rank(B).

Proposition 1.3.5. Let A ∈ C
m×n and let A(1) be an arbitrary element of A{1}. Further,

denote by R(A) = L and N (A) = M . Then AA(1) and A(1)A are idempotent and

AA(1) = PL,S , A(1)A = PT,M ,

where S is a subspace of Cm complementary to L, and T is a subspace of Cn complementary to
M .
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Properties and representations of {1, 2}-inverses

It is known that the existence of a {1}-inverse of a matrix A implies the existence of its {1, 2}-
inverse. This fact is verified in Lemma 1.3.6.

Lemma 1.3.6. Let Y,Z ∈ A{1}. Then X = Y AZ ∈ A{1, 2}.

According to Lemma 1.3.6, for any L ∈ C
(n−r)×(m−r), the n×m matrix X defined in (1.10)

belongs to A{1, 2} if and only if X is given in the form (1.10).

Lemma 1.3.7. (Bjerhammar 1958) [?] For a given A and X ∈ A{1}, it follows that X ∈ A{1, 2}
if and only if rank(X) = rank(A).

Lemma 1.3.8. Any two of the following three statements imply the third:

X ∈ A{1},
X ∈ A{2},

rank(X) = rank(A).

Proposition 1.3.6. If A and X are {1, 2}-inverses of each other, then

AX = PR(A),N (X), XA = PR(X),N (A).

Properties and representations of {1, 3}, {1, 4}, {1, 2, 3} and {1, 2, 4}-
inverses

Urquhart in [150] has shown that the existence of a {1}-inverse of every finite complex matrix A
implies the existence of an {1, 2, 3}-inverse and an {1, 2, 4}-inverse of A. This result is restated
in Lemma 1.3.9.

Lemma 1.3.9. (Urquhart 1968) [150]. For every finite complex matrix A,

Y = (A∗A)(1)A∗ ∈ A{1, 2, 3}

and

Z = A∗(AA∗)(1)A ∈ A{1, 2, 4}.

Proposition 1.3.7. The set A{1, 3} consists of all solutions X of the system

AX = AA(1,3),

where A(1,3) is an arbitrary element of A{1, 3}.

Proposition 1.3.8. Let A ∈ C
m×n and A(1,3) ∈ A{1, 3}. Then

A{1, 3} = {A(1,3) + (I − A(1,3)A)Z | Z ∈ C
n×m}.

Proposition 1.3.9. The set A{1, 4} consists of all solutions X of the matrix equation

XA = A(1,4)A,

where A(1,4) is an arbitrary element of A{1, 4}.

Corollary 1.3.3. Let A ∈ C
m×n and A(1,4) ∈ A{1, 4}. Then

A{1, 4} = {A(1,4) + Y (I − AA(1,4)) | Y ∈ C
n×m}.

Generalized inverses give us a powerful tool for finding a solution of a consistent system
of linear equation. Moreover, the generalized inverses are useful for finding an approximate
solution of an inconsistent system of linear equations.
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1.3.2 Basic properties of the Moore-Penrose inverse

The most important result related to the Penrose equations is the statement that there always
exists a unique matrix which satisfies the four Penrose equations. This result was shown by
Penrose [122] in 1955. This matrix is called the Moore-Penrose inverse and denoted by A†.

The concept of a generalized inverses of an arbitrary matrix A ∈ C
m×n is originally due

to Moore, in 1920, (called by him the ”general reciprocal”). His definition was essentially as
follows.

Definition 1.3.2. If A ∈ C
m×n, then the generalized inverse of A is the matrix X ∈ C

n×m

such that
1. AX = PR(A); 2. XA = PR(X). (1.12)

Moore in [92] proved the existence and the uniqueness of the solution of such defined gen-
eralized inverse by proving the following result.

Proposition 1.3.10. For every A ∈ C
m×n there exists a unique matrix X ∈ C

n×m satisfying
(1.12).

Rado proved the equivalence of Moore’s and Penrose’s definitions of the generalized in-
verse, and today this inverse is known as Moore-Penrose pseudoinverse (shortly M-P inverse or
pseudoinverse).

Although {1}-inverses and {1, 3}-inverses provide a solution of a given matrix equation, the
Moore-Penrose inverse most resemble to the ordinary inverse. This statement is justified by its
uniqueness and the properties listed in the following two lemmas. Also, since the Moore-Penrose
inverse is {1}-inverse, we should take into account that the properties from Lemma 1.3.2 are
also valid for the Moore-Penrose inverse.

Proposition 1.3.11. (Penrose 1955) [122] Let A ∈ C
m×n and b ∈ C

m×1. The minimal-norm
least-squares solution of the system Ax = b is given by x∗ = A†b. All other least-squares solutions
are given by

x = A†b+ (In − A†A)z, z ∈ C
n.

Lemma 1.3.10. Let A ∈ C
m×n be an arbitrary matrix. The Moore-Penrose inverse A† pos-

sesses the following properties:

(a) (A†)† = A, (A†)∗ = (A∗)†;

(b) (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;

(c) A†AA∗ = A∗ = A∗AA†;

(d) A† = (A∗A)†A∗ = A∗(AA∗)†;

(e) N (AA†) = N (A†) = N (A∗) = R(A)

(f) R(AA∗) = R(AA(1)) = R(A), rank(AA(1)) = rank(A(1)A) = rank(A);

(g) AA† = PR(A∗),N (A) and A†A = PR(A),N (A∗).

Lemma 1.3.11. Let A ∈ C
m×n be an arbitrary matrix. Then the matrix A can be written in

the form

A ∼
[
A1 O
O O

]
:

[R(A∗)
N (A)

]
→
[ R(A)
N (A∗)

]
, (1.13)

where A1 is invertible. Hence,

A† ∼
[
A−1

1 O
O O

]
:

[ R(A)
N (A∗)

]
→
[R(A∗)
N (A)

]
.

The representation (1.13) of can be easily obtained from the Singular value decomposition
(SVD) of A. More precisely, the SVD decomposition of A assumes that the matrix A1 is a
diagonal matrix whose entries are the singular values of A.

If the vector b in the system (1.3) satisfies b /∈ R(A), then it is necessary to search for an
approximate solution by trying to find a vector x which minimizes the norm of the vector Ax−b.

Definition 1.3.3. Let A ∈ C
m×n and b ∈ C

m. A vector x̂ ∈ C
n which satisfies the minimization

problem
‖Ax̂− b‖2 = min

x∈Cn
‖Ax− b‖2. (1.14)

is called a least-squares solution of the system (1.3).
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The next lemma gives a characterization of all least-squares solutions of the system (1.3).

Lemma 1.3.12. The vector x is a least-squares solution of the system (1.3) if and only if x is
a solution of the normal equation, defined by

A∗Ax = A∗b. (1.15)

The following proposition, restated from [8], shows that ‖Ax−b‖ is minimized by the vector
x = A(1,3)b. This statement establishes very important relation between the set of {1, 3}-inverses
and the least-squares solutions of the system (1.3).

Proposition 1.3.12. Let A ∈ C
m×n, b ∈ C

m. Then ‖Ax − b‖ is smallest when x = A(1,3)b,
where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ C

n×m has the property that, for all b, ‖Ax − b‖ is
smallest when x = Xb, then X ∈ A{1, 3}.

Since A(1,3) inverse of a matrix is not unique, as a consequence, a system of linear equations
has many least-squares solutions in general. However, among all least-squares solutions of a
given system of linear equations, there exists only one such solution of minimum norm.

Definition 1.3.4. Let A ∈ C
m×n and b ∈ C

m. A vector x̂, which satisfies the minimization
problem

‖x̂‖2 = min
x∈Cn

‖x‖2 (1.16)

is called a minimal-norm solution of the system (1.3).

The next proposition, restated from [8], establishes a relation between {1, 4}-inverses and
the minimum-norm solutions of the system (1.3).

Proposition 1.3.13. Let A ∈ C
m×n, b ∈ C

m. If Ax = b has a solution for x, the unique
solution x for which ‖x‖ is smallest is given by x = A(1,4)b, where A(1,4) ∈ A{1, 4}. Conversely,
if X ∈ C

n×m is such that, whenever Ax = b has a solution, x = Xb is the solution of minimal-
norm, then X ∈ A{1, 4}.

Joining the results from Proposition 3.1.1 and Proposition 3.1.2 we are coming to the most
important property of the Moore-Penrose inverse.

Corollary 1.3.4. (Penrose 1955) [122] Let A ∈ C
m×n, b ∈ C

m. Then, among the least-squares
solutions of Ax = b, A†b is the one of minimum-norm. Conversely, if X ∈ C

n×m has the
property that, for all b, Xb is the minimal-norm least-squares solution of Ax = b, then X = A†.

In the essence, Lemma 3.1.1 shows that A†b is the minimal-norm least-squares solution of
the linear system Ax = b. This fact caused a dramatic increase of the interest in the generalized
inverses theory.

Further, the next proposition characterizes the set of all least-squares solutions of a given
system of linear equations.

Proposition 1.3.14. (Nashed 1970, 1976) [119, 118] If A ∈ C
m×n has a closed range R(A),

then the set S of all least-squares solutions of the system Ax = b is given by

S = A†b⊕N (A) = {A†b+ (I − A†A)y| y ∈ C
n},

where N (A) denotes the null space of A.

Some additional properties of A† and A(1) can be found for example in [8, 156].

The Moore-Penrose inverse can be computed using arbitrary {1}-inverse.

Proposition 1.3.15. (Yanai, Takeuchi, Takane 2011) [178] The Moore-Penrose inverse A† can
be expressed by an arbitrary inner inverse, as

A† = ATA
(
ATAATA

)(1)
AT

= AT
(
AAT

)(1)
A
(
ATA

)(1)
AT.

In the following three statements we will give the representation of A† using the SVD
decomposition and the full rank factorization.
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Lemma 1.3.13. Let A ∈ C
m×n be arbitrary matrix. Consider the decomposition A = Q∗RP .

Then the Moore-Penrose inverses of matrices R and A, R† and A† can be represented by

R† =

[
R−1

11 O
O O

]
, A† = P ∗R†Q. (1.17)

The special case of Lemma 1.3.13 is representation of A† by the singular value decomposition
of the matrix A.

Lemma 1.3.14. Let A ∈ C
m×n
r and let A = UΣV ∗ be the singular value decomposition of A

where U ∈ C
m×m and V ∈ C

n×n are unitary matrices and A = diag(σ1, σ2, . . . , σr), σi =
√
λi

and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the nonzero eigenvalues of A∗A. If

A = U

[
diag(σ1, σ2, . . . , σr) O

O O

]
V ∗ = U

[
Σ O
O O

]
V ∗ ∈ C

m×n,

then

A† = V

[
diag(1/σ1, 1/σ2, . . . , 1/σr) O

O O

]
U∗ = V

[
Σ−1 O
O O

]
U∗ ∈ C

n×m.

Moreover, let S1, S2, S3 be arbitrary r × m − r, n − r × r, and m − r × n − r matrices,
respectively. Then an inner inverse of A is given by

A(1) = V

[
diag(1/σ1, 1/σ2, . . . , 1/σr) S1

S2 S3

]
U∗ ∈ C

n×m.

Theorem 1.3.1. Let A ∈ C
m×n
r , let

A = U

[
Σ O
O O

]
V ∗ (1.18)

be the singular value decomposition (SVD decomposition) of A, where U ∈ C
m×m and V ∈ C

n×n

are unitary matrices and Σ = diag(σ1, σ2, . . . , σr), σi =
√
λi and λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are

the nonzero eigenvalues of A∗A. Then σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular value
of A and

‖A‖2 = σ1, ‖A†‖2 =
1

σr
. (1.19)

Proof. From (1.18), we have

A∗A = V

[
Σ2 O
O O

]
V ∗.

Thus the eigenvalues of A∗A are σ2
i = λi(A

∗A), i = 1, 2, . . . , n and

‖A‖22 = ‖A∗A‖2 = |λ1(A
∗A)| = σ2

1 .

So ‖A‖2 = σ1 holds. It is easy to verify that

A† = V

[
Σ−1 O
O O

]
U∗. (1.20)

Hence the non-zero singular values of A† are

1

σr
≥ 1

σr−1
≥ · · · ≥ 1

σ1
> 0.

Thus ‖A†‖2 =
1

σr
holds.

Next lemma shows that the full rank factorization of a matrix A leads to an explicit formula
for its Moore-Penrose inverse A†. This formula is known as the full rank representation of the
Moore-Penrose inverse.

As usual, by A−1
R and A−1

L we denote a right and a left inverse of A, respectively. If a
matrix A is of dimensions m× n and of rank raA = m, then there exists an n×m matrix A−1

R

called the right inverse of A satisfying AA−1
R = Im. If a matrix A is of dimensions m × n and

of rank raA = n, then there exists an n×m matrix A−1
R called the left inverse of A satisfying

A−1
L A = In.

Lemma 1.3.15. (MacDuffe, 1956) [87] Let A ∈ C
m×n
r and A = PQ, P ∈ C

m×r
r , Q ∈ C

r×n
r be

its full rank factorization. Then it holds

A† = Q∗(P ∗AQ∗)−1P ∗ = Q∗(QQ∗)−1(P ∗P )−1P ∗.

In addition, Q is right invertible and P is left invertible:

Q−1
R = Q∗(QQ∗)−1, P−1

L = (P ∗P )−1P ∗.
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1.3.3 Basic properties of the weighted Moore-Penrose inverse

The relationships between the generalized inverses A(1,4), A(1,3), A† and the minimal-norm
solution, least-squares solution and minimum-norm least-squares solution are discussed in the
previous subsection. In these cases, minimization was considered with respect to the usual inner
product 〈x, y〉 = y∗x and the vector norm ‖x‖ = 〈x, x〉1/2. In general, it is possible to study
different weighted norms for the solution x and for the residual Ax − b of the linear system
Ax = b.

Let A ∈ C
m×n and let M ∈ C

m×m and N ∈ C
n×n be Hermitian positive definite matrices.

Weighted inner products in spaces C
m and C

n can be defined by

〈x, y〉M = y∗Mx, 〈x, y〉N = y∗Nx.

According to these scalar products, the weighted norm ‖x‖2M = 〈x, x〉M = x∗Mx can be defined
as usual. Let us recall that the conjugate transpose matrix A∗ satisfies 〈Ax, y〉 = 〈x,A∗y〉 for
every x ∈ C

m and y ∈ C
n. The weighted conjugate transpose matrix A� can be introduced in

the same manner.

Lemma 1.3.16. For every Hermitian positive definite matrices M ∈ C
m×m and N ∈ C

n×n

and an arbitrary matrix A ∈ C
m×n, there exists a unique weighted conjugate transpose matrix

A� = N−1A∗M which satisfies 〈Ax, y〉M = 〈x,A�〉N .

The relations between the weighted generalized inverses and the solutions of linear equations
are given as follows.

Theorem 1.3.2. Let A ∈ C
m×n and N be a Hermitian positive definite matrix of the order n.

Then x = Xb is the minimal-norm solution (with respect to the norm ‖ ‖N ) of the consistent
system of linear equations Ax = b for any b ∈ R(A) if and only if X satisfies

(1) AXA = A (4N) (NXA)∗ = NXA. (1.21)

Every matrix X satisfying (1.21) is called {1, 4N} inverse and denoted by A(1,4N). The set
of all A(1,4N) inverses is denoted by A{1, 4N}.

Theorem 1.3.3. Let A ∈ C
m×n and M be a Hermitian positive defnite matrix of order m.

Then x = Xb is the least-squares (according to the norm ‖ ‖M) solution of the inconsistent
system of linear equations Ax = b for every b /∈ R(A) if and only if X satisfies

(1) AXA = A (3M) (MAX)∗ = MAX. (1.22)

Every matrix X satisfying (1.22) is called {1, 3M} inverse and denoted by A(1,3M). As
usual, the set of all A(1,3M) inverses is denoted by A{1, 3M}.

Theorem 1.3.4. Let A ∈ C
m×n and M,N be Hermitian positive defnite matrices of orders

m and n respectively. Then x = Xb is the weighted minimal-norm (with respect to the norm
‖ ‖N ) least-squares (according to the norm ‖ ‖M ) solution of the inconsistent system of linear
equations Ax=b for every b /∈ R(A) if and only if X satisfies

(1) AXA = A (2) XAX = X

(3M) (MAX)∗ = MAX (4N) (NXA)∗ = NXA.
(1.23)

Moreover, system of matrix equations (1.23) has a unique solution.

A matrix X satisfying (1.23) is called the weighted Moore-Penrose inverse, and it is denoted
byX = A†

MN . The weighted Moore-Penrose inverse A†
MN is the generalization of Moore-Penrose

inverse A†. If M = Im, N = In, then A†
MN = A†. Basic properties of A†

MN are given as follows.

Lemma 1.3.17. Let A ∈ C
m×n and M ∈ C

m×m, N ∈ C
n×n be Hermitian positive definite

matrices. Then the weighted Moore-Penrose inverse possesses the following properties:

(a) (A†
MN)†NM = A,

(b) (A†
MN)∗ = (A∗)†

N−1M−1 ,

(c) A†MN = (A∗MA)†ImNA∗M = N−1A∗(AN−1A∗)†MIn
,

(d) If A = FG is a full rank factorization of A, then
A†

MN = N−1G∗(F ∗MAN−1G∗)−1F ∗M ,

(e) A†
MN = N−1/2(M1/2AN−1/2)†M1/2.
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For more details about the weighted Moore-Penrose inverse see [12, p.118, exercise 30], or
[149, Sect. 3]. For computational methods on generalized inverses see the monograph [167], and
for more on this subject, see [36, 37]. Also, it is also known (see e.g., [8]) that

A†
M,N = N− 1

2

(
M

1
2 AN− 1

2

)†
M

1
2 .

In this case, A†
M,Nb is the M -least squares solution of Ax = b which has the minimal N-norm.

The notion of the weighted Moore-Penrose inverse can be extended in the case when M and
N are positive semidefinite matrices: in this case, the matrix X is such that Xb is a minimal N
semi-norm, M -least squares solution of Ax = b. When N is positive definite, then there exists
a unique solution for X.

Theorem 1.3.5. Let A ∈ C
m×n
r ,M and N be Hermitian positive definite matrices of orders m

and n respectively. Let U ∈ C
m×m and V ∈ C

n×n satisfy

U∗MU = Im, V ∗N−1V = In. (1.24)

Assume that A is decomposed in the form

A = U

[
D O
O O

]
V ∗, (1.25)

where D=diag(μ1, μ2, . . . , μr), μi =
√
λi and λ1 ≥ · · · ≥ λr > 0 are the nonzero eigenvalues of

A�A = (N−1A∗M)A. Then μ1 ≥ μ2 ≥ · · · ≥ μr > 0 are the nonzero (M,N) singular values of
A, and

‖A‖MN = μ1, ‖A†
MN‖NM =

1

μr
. (1.26)

Proof. By using (1.25), it is easy to verify that

A†
MN = N−1V

[
D−1 O
O O

]
U∗M. (1.27)

Hence the non-zero (M,N) singular values of A†
MN are

1

μr
≥ 1

μr−1
≥ · · · ≥ 1

μ1
> 0.

Thus, ‖A†
MN‖NM =

1

μr
.

1.3.4 Definition and basic properties of the Drazin inverse

It is known that the Moore-Penrose inverse is a very good substitution for the ordinary inverse,
when a solution of a given matrix equation is needed. It exists for all matrices, and when the
matrix is nonsingular it reduces to the ordinary inverse. But, unfortunately we can not say that
it satisfies the properties of the ordinary inverse, characterized with the fourth and fifth item
from Lemma 1.2.2. In order to define such inverse, the set of Penrose equations is enlarged with
two additional:

(1p) ApXA = Ap, p = ind(A) (general p condition)

(5) AX = XA (commutativity condition)

Lemma 1.3.18. (Drazin 1958) [34] Let A ∈ C
n×n be arbitrary matrix of index k = ind(A).

Then the following matrix equations

(1k) AkXA = Ak, (2) XAX = X, (5) AX = XA (1.28)

has the unique solution. This solution is called the Drazin inverse of the matrix A and denoted
by AD.

The Drazin inverse in the case p = ind(A) = 1 becomes the group inverse, which is denoted
by A#.

The main properties of the Drazin inverse are summarized in the next lemma.

Lemma 1.3.19. Let A ∈ C
n×n and p = ind(A)

(a) AlXA = Al for all l ≥ p.
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(b) R(Al) = R(Al+1), N (Al) = N (Al+1) and rank(Al) = rank(Al+1), for all l ≥ p. More-
over, p is the smallest integer for which these equalities hold.

(c) The matrix A can be written in following way:

A ∼
[
A1 O
O N

]
:

[R(Ap)
N (Ap)

]
→
[R(Ap)
N (Ap)

]
, (1.29)

where A1 is invertible and N is nilpotent matrix. Then

AD ∼
[
A−1

1 O
O O

]
:

[R(Ap)
N (Ap)

]
→
[R(Ap)
N (Ap)

]
. (1.30)

(d) For each λ �= 0, a vector x is a λ−1-vector of AD of grade s if and only if it is a λ-vector
of A of grade s, and x is a 0-vector of AD if and only if it is a 0-vector of A (without
regard to its grade).

Remark 1.3.1. It is important to mention that the form (1.29) of the matrix A, can be obtained
from the Jordan decomposition of A. From the computational point of view, that means that the
Drazin inverse can be computed using the Jordan decomposition, according to (1.30).

More general conclusion is that the Singular Value Decomposition is the basis for computing
the Moore-Penrose inverse and the Jordan canonical form is appropriate for computing the
Drazin inverse.

An exact way for computing the Drazin inverse AD from the Jordan canonical form of the
matrix A is described in Theorem 1.32.

Theorem 1.3.6. (Campbell 1979) [12] Let A ∈ C
n×n possesses the Jordan canonical form

A = PJP−1 = P

[
C O
O N

]
P−1, (1.31)

where C is regular and N is nilpotent matrix (there exist an integer k such that Nk = O). Then
AD possesses the representation

AD = P−1

[
C−1 O
O O

]
P. (1.32)

The following lemma restates some basic properties of the Drazin inverse from [34].

Lemma 1.3.20. Let A ∈ C
n×n and let k = ind(A). Then the following statements hold:

(a) (A∗)D = (AD)∗,

(b) (An)D = (AD)n for any n = 1, 2, . . .,

(c) ((AD)D)D = AD, (AD)D = A if and only if k = 1,

(d) R(AD) = R(Al) and N (AD) = N (Al) for every l ≥ k,

(e) If λ is an eigenvalue of A then λ† is an eigenvalue of AD.

Additional properties of the Drazin inverse as well as definitions and properties of other
spectral inverses are given, for example, in [8, 156].

Despite the spectral properties, the Drazin inverse in some cases also provides a solution of
a given system of linear equations. Namely for A ∈ C

n×n and b ∈ C
n, as it was shown in [12],

ADb is a solution of the following system

Ax = b, where b ∈ R(Ak), k = ind(A). (1.33)

The solution ADb is known as the Drazin-inverse solution of the system (3.19). Since the
Drazin-inverse provides a solution to the given system in this case, the system (3.19) is termed
as Drazin-consistent system.

The Drazin inverse has many applications in the theory of finite Markov chains as well as
in the study of differential equations and singular linear difference equations [12], cryptography
[73] etc.

Establishing a relation between the Drazin inverse and the solutions of a given system
of linear equations, naturally imposed the idea of exploring minimal properties of the Drazin
inverse. Next we present the results from [171] related to the Drazin-inverse solution.
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Theorem 1.3.7. (Wei, Wu 2001) [171] Let A ∈ R
n×n with p = ind(A). Then ADb is the unique

solution in R(Ap) of the system
Ap+1x = Apb. (1.34)

Theorem 1.3.8. (Wei, Wu 2001) [171] Let A ∈ C
n×n, b ∈ C

n and p = ind(A). The set of all
solutions of the equation (3.10) is given by

x = ADb+N (Ap). (1.35)

Since the linear system (3.10) is analogous to the normal equation, defined by (1.15), we shall
call it the generalized normal equations of (3.19).

Let A = PJP−1 be the Jordan decomposition of the matrix A. We denote ‖x‖P = ‖P−1x‖.
Theorem 1.3.9. (Wei, Wu 2001) [171] Let A ∈ R

n×n with p = ind(A). Then x̂ satisfies

‖b −Ax̂‖P = min
u∈N (A)+R(Ap−1)

‖b− Ax‖P

if and only if x̂ is the solution of the equation

Ap+1x = Apb, x ∈ N (A) +R(Ap−1).

Moreover, the Drazin-inverse solution x = ADb is the unique minimal P -norm solution of the
generalized normal equations (3.10).

Corollary 1.3.5. (Wei, Wu 2001) [171] Let A ∈ C
n×n, p = ind(A) and b ∈ R(A). Then the

the inequality ‖x‖P ≥ ‖ADb‖P holds for all solutions x of the system (3.10), i.e., ADb is the
unique solution of the equation (3.10) of minimum P -norm.

The notion of the weighted Drazin inverse is an analogy to the weighted Moore-Penrose
inverse.

Definition 1.3.5. Let A ∈ C
m×n, W ∈C

n×m. Then the matrix X∈C
m×n satisfying

(a) (AW )p+1XW = (AW )p; (for some nonnegative integer p)

(b) XWAWX = X

(c) AWX = XWA

is called W -weighted Drazin inverse of A, and it is denoted by X = Ad,W .

1.3.5 Basic properties of outer inverses

Construction of outer inverses of prescribed rank

Recall that, for an arbitrary matrix A ∈ C
m×n, the set of all outer inverses (or also called

{2}-inverses) is defined by the following set

A{2} = {X ∈ C
n×m| XAX = X}. (1.36)

The set of all outer inverses of rank s is denoted by A{2}s, while the notation A(2) stands for
an arbitrary outer inverse of A.

Clearly, the rank of an arbitrary outer inverse A(2) satisfies rank(A(2)) ≤ r = rank(A). We
note also that the n×m null matrix is a {2}-inverse of rank equal to 0. Also, any element from
A{1, 2} is a {2}-inverse of A of rank r.

It is possible to generate outer inverses of rank s for an arbitrary integer s between 0 and
r = rank(A). The method is based on full-rank factorization.

LetX0 ∈ A{1, 2} have a full-rank factorization X0 = Y Z. In this case, Y ∈ C
m×r
r , Z ∈ C

r×n
r ,

and the matrix equation (2) yields
Y ZAY Z = Y Z.

Multiplication of the last identity on the left by Y (1) and on the right by Z(1) gives ZAY = Ir.
Let Ys denote the first s columns of Y and let Zs denote the first s rows of Z. Then, both Ys

and Zs are of full rank s, and ZAY = Ir implies

ZsAYs = Is.

Now, let
Xs = YsZs.

Then, rank(Xs) = s and
XsAXs = Xs.

Lemma 1.3.21. Let A ∈ C
m×n
r and 0 < s ≤ r. Then

A{2}s =
{
Y Z | Y ∈ C

n×s, Z ∈ C
s×m, ZAY = Is

}
A{1, 2} =

{
Y Z | Y ∈ C

n×r, Z ∈ C
r×m, ZAY = Ir

}
.

(1.37)
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Definition and basic properties of the A
(2)
T,S-inverse

Definition 1.3.6. Let A ∈ C
m×n
r , T is a subspace of Cn of dimension t ≤ r and S is a subspace

of Cm of dimension m− t, then A has a {2}-inverse X such that R(X) = T and N (X) = S if

and only if AT ⊕ S = C
m, in which case X is unique and it is denoted by A

(2)
T,S.

Lemma 1.3.22. Let A ∈ C
m×n be an arbitrary matrix, T is a subspace of C

n and S is a
subspace of Cm such that A(T )⊕ S = C

m. Then the matrix A can be written in the following
way:

A ∼
[
A1 O
O A2

]
:

[
T

N (A
(2)
T,SA)

]
→
[
AT
S

]
, (1.38)

where A1 is invertible. Moreover,

A
(2)
T,S ∼

[
A−1

1 O
O O

]
:

[
AT
S

]
→
[

T

N (A
(2)
T,SA)

]
.

The outer generalized inverse with prescribed range T and null-space S is a generalized
inverse of special interest in matrix theory. The reason of the importance of this inverse is the
fact that: the Moore-Penrose inverse A†, the weighted Moore-Penrose inverse A†

M,N , the Drazin

inverse AD, the weighted Drazin inverse Ad,W , the group inverse A#, the Bott-Duffin inverse

A
(−1)
(L) and the generalized Bott-Duffin inverse A

(+)
(L) are all {2}-generalized inverses of A with

prescribed range and null space.

Lemma 1.3.23. Let A ∈ C
m×n
r and p = ind(A). Then the following representations are valid:

(a) A† = A
(2)
R(A∗),N (A∗),

(b) A†
M,N = A

(2)

R(N−1A∗M),N (N−1A∗M)
.

Also, the following statements hold in the case m = n:

(c) AD = A
(2)

R(Ak),N (Ak)
, k = ind(A),

(d) A# = A
(2)
R(A),N (A) if and only if k = ind(A) = 1,

(e) Ad,W = A
(2)

R(A(WA)k),N (A(WA)k)
, k = ind(A).

The Urquhart formula was originated [150] and later extended in [156, Theorem 1.3.3] and
[8, Theorem 13, P. 72]. We restate it in Lemma 5.5.1.

Lemma 1.3.24. Urquhart formula.
Let A ∈ C

m×n
r , U ∈ C

n×p, V ∈ C
q×m and X = U(V AU)(1)V , where (V AU)(1) is a fixed but

arbitrary element of (V AU){1}. Then
(a) X ∈ A{1} if and only if rank(V AU) = r;
(b) X ∈ A{2} and R(X) = R(U) if and only if rank(V AU) = rank(U);
(c) X ∈ A{2} and N (X) = N (V ) if and only if rank(V AU) = rank(V ));

(d) X = A
(2)
R(U),N (V ) if and only if rank(V AU) = rank(U) = rank(V );

(e) X = A
(1,2)

R(U),N (V )
if and only if rank(V AU) = rank(U) = rank(V ) = r.

Using a proper combination of the Drazin inverse and the Moore-Penrose inverse, Malik
and Thome [86] presented a new generalized inverse of a square matrix of an arbitrary index,
which is called the DMP inverse and defined as AD,† = ADAA†, for A ∈ C

n×n. Recall that the
DMP inverse of A is the unique solution of the following equations:

XAX = X, XA = ADA, AkX = AkA†, k = ind(A).

Notice that the MPD inverse of A, as the dual DMP inverse, was defined as A†,D = A†AAD [86].
The DMP inverse for a Hilbert space operator was investigated in [106, 180] as generalizations
of the DMP inverse for a square matrix.

Composing the Drazin inverse with the Moore-Penrose inverse, Malik and Thome [86] de-
fined two new generalized inverses of a square matrix of an arbitrary index, which are known as
the DMP inverse and MPD inverse. The DMP inverse of A ∈ C

n×n (denoted by AD,†) is the
unique solution to the following equations:

XAX = X, XA = ADA, AkX = AkA†, k = ind(A). (1.39)

Recall that
AD,† = ADAA†.

The MPD inverse of A, as the dual DMP inverse, was defined in [86] as

A†,D = A†AAD.
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1.4 Idempotent matrices and projectors

Idempotent matrices and projectors are very important notions and appear in numerous prob-
lems concerning various generalized inverses.

Lemma 1.4.1. Let E ∈ C
n×n be idempotent. Then E possesses the following properties:

(a) E∗ and I − E are idempotent.
(b) The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue 1 is equal to rank(E).
(c) rank(E) = tr(E).
(d) E(I −E) = (I − E)E = O.
(e) Ex = x if and only if x ∈ R(E).
(f) E ∈ E{1, 2}.
(g) N (E) = R(I − E).

The transformation denoted by PL,M carries any x ∈ C
n into its projection on L along

M . The transformation PL,M is called the projector on L along M , or, oblique projector. It is
known that the projector is a linear transformation.

Proposition 1.4.1. For every idempotent matrix E ∈ C
n×n, the subspaces R(E) and N (E)

are complementary and satisfy
E = PR(E),N (E).

1.5 Least squares and best approximate solutions

The Moore-Penrose inverse and certain solutions to some of Penrose equations play fundamental
role concerning solutions to the general SoLE

Ax = b, A ∈ C
m×n, b ∈ C

m (1.40)

with respect to unknowns x ∈ C
n. Fundamental result is restated in Theorem 3.1.

Theorem 1.5.1. The linear system (3.1) is solvable if and only if b ∈ R(A). Equivalently,
(3.1) has a solution if and only if AA†b = b.

In this case, a general solution to (3.1) is of the form

x = A†b+ (I − A†A)y, for arbitrary y ∈ C
n. (1.41)

An arbitrary inconsistent SoLE, given by

Ax = b, A ∈ C
m×n, b /∈ R(A) (1.42)

has no solution. Then the problem is to find an x which minimizes the residual Ax− b. Then a
vector u ∈ C

n is called a least squares solution to (3.3) if

‖Au− b‖ ≤ ‖Ax− b‖, ∀x ∈ C
n.

The following proposition, restated from [8], shows that ‖Ax−b‖ is minimized by the vector
x = A(1,3)b. This statement establishes very important relation between the set of {1, 3}-inverses
and the least-squares solutions of the system (3.1).

Proposition 1.5.1. Let A ∈ C
m×n and b ∈ C

m. Then ‖Ax− b‖ is smallest when x = A(1,3)b,
where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ C

n×m has the property that, for all b, ‖Ax − b‖ is
smallest when x = Xb, then X ∈ A{1, 3}.

Since A(1,3) inverse of a matrix is not unique, as a consequence, a SoLE has many least-
squares solutions in general. However, among all least-squares solutions of a given SoLE, there
exists only one such solution of minimum norm.

Definition 1.5.1. Let A ∈ C
m×n and b ∈ C

m. A vector x̂, which satisfies the minimization
problem

‖x̂‖ = min
x∈Cn

‖x‖, subject to Ax = b, (1.43)

is called a minimal-norm solution of the system Ax = b.

The next proposition, restated from [8], establishes a relation between {1, 4}-inverses and
the minimum-norm solutions of the linear system Ax = b.
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Proposition 1.5.2. Let A ∈ C
m×n and b ∈ C

m. If Ax = b is consistent, the unique solution
x for which ‖x‖ is smallest is given by x = A(1,4)b, where A(1,4) ∈ A{1, 4}. Conversely, if
X ∈ C

n×m is such that, whenever Ax = b has a solution, x = Xb is the solution of minimal-
norm, then X ∈ A{1, 4}.

The least-squares solution of minimum norm is known as best approximate solution. Joining
the results from Proposition 3.1.1 and Proposition 3.1.2, we are coming to the most important
property of the Moore-Penrose inverse.

Corollary 1.5.1. (Penrose 1955) [122] Let A ∈ C
m×n and b ∈ C

m. Then, among the least-
squares solutions of Ax = b, the solution A†b is the one of minimum-norm. Conversely, if
X ∈ C

n×m has the property that Xb is the minimal-norm least-squares solution of Ax = b for
all b, then X = A†.

In the essence, Corollary 3.1.1 shows that A†b is the minimal-norm least-squares solution of
the linear system Ax = b. This fact caused a dramatic increase of the interest in the generalized
inverses theory.

Furthermore, the next proposition characterizes the set of all least-squares solutions of a
given SoLE.

Proposition 1.5.3. (Nashed 1970, 1976) [119, 118] For A ∈ C
m×n, the set S of all least-squares

solutions of the system Ax = b is given by

S = A†b⊕N (A) = {A†b+ (I − A†A)y| y ∈ C
n}.

These results are extended in solving the linear matrix equations (LME) AX = B. More
precisely, the Moore-Penrose inverse satisfies the following inequalities [122]:

‖AX −B‖ ≥ ‖AA†B −B‖ (1.44)

for all X, with equality in (3.5) if and only if

X = A†B + (I − A†A)L,

where L is arbitrary matrix of appropriate dimensions. Moreover,

‖A†B + (I −A†A)L‖ ≥ ‖A†B‖, (1.45)

with equality in (3.6) if and only if (I − A†A)L = 0.

Penrose’s inequalities (3.5) and (3.6) has been extended in [85] to the supremum norm and
the Lp norm as well as to the set of {1, 3} inverses. This result is restated here for complex
matrices.

Proposition 1.5.4. Let A ∈ C
m×n and A(1,3) be an {1, 3} inverse of A. Then for all X

‖AX −B‖ ≥ ‖AA(1,3)B −B‖, (1.46)

with equality in (3.7) if and only if

X = A(1,3)B + (I − A(1,3)A)L,

where L is arbitrary. Furthermore, the choice A(1,3) := A† leads to the least squares solution of
minimum norm, equal to A†B:

‖A†B + (I −A†A)L‖ ≥ ‖A†B‖. (1.47)

1.6 Minimal properties of generalized inverses

For A ∈ C
n×n, there exists the Drazin inverse of A (denoted by AD), i.e., the unique matrix

X ∈ C
n×n satisfying

(1k) Ak+1X = Ak, (2) XAX = X, (5) AX = XA,

where k = ind(A) = min{k ≥ 0| rank(Ak) = rank(Ak+1)} is the index of A. In the case
ind(A) = 1, the Drazin inverse AD reduces to the group inverse of A (denoted by A#). For
various applications of the Drazin inverse see [8, 12].

An outer inverse (or {2}-inverse) of A ∈ C
m×n is a matrix X ∈ C

n×m which satisfies the
equation XAX = X. The outer inverses of A with determined null space and range attracted
attention of many authors because of their uniqueness and generality.
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Let A ∈ C
m×n be of rank r, let T be a subspace of Cn of dimension s ≤ r, and let S be a

subspace of Cm of dimension m− s. The outer inverse of A with the range T and the null-space
S (denoted by A

(2)
T,S) is a matrix X ∈ C

n×m such that

XAX = X, R(X) = T, N (X) = S,

Recall that A has an outer inverse X such that R(X) = T and N (X) = S if and only if

AT ⊕ S = C
m, and in this case X = A

(2)
T,S is unique [8, 156].

The Moore-Penrose inverse A†, the Drazin inverse AD and the group inverse A# can be
presented as particular generalized inverses A

(2)
T,S for appropriate choice of the matrix G such

that T = R(G) and S = N (G). For example, the next statement is valid for arbitrary matrix
A:

A† = A
(2)
R(A∗),N (A∗). (1.48)

The next identities (see [8, 156]) are satisfied for arbitrary A ∈ C
n×n:

AD = A
(2)

R(Ak),N (Ak)
, k = ind(A); A# = A

(2)

R(A),N (A), 1 = ind(A). (1.49)

1.6.1 Least-square properties of the Drazin-inverse solution

In the papers [12, 164, 171], the authors present some minimal properties of the Drazin-inverse
solution. It can be argued that, in some way, these properties correspond to the properties
of the Moore-Penrose inverse solution. Namely, in [12] it is shown that if b ∈ R(Ak), where
k = ind(A), then the Drazin-inverse solution is the unique solution of the system Ax = b which
belongs to R(Ak). Also, Wei et al. in [164, 171] proved that the Drazin-inverse solution of the
system Ax = b is a solution of minimum P -norm, where P is the matrix included in the Jordan
decomposition A = PJP−1 of the matrix A.

The obtained results related to the Drazin-inverse solution of a given system SoLE, are
inspiration to investigate possibilities if they can be used in order to calculate the Drazin inverse
of a given matrix, i.e., to find the Drazin-inverse solution of the matrix equation AXB = D, in
general. With appropriate modifications, it is possible to find the solution in the form ADGBD.
The matrix ADGBD is not always a solution of the matrix equation AXB = D, but however it
can be always used in order to calculate the Drazin inverse of arbitrary matrix.

The results of this section are complement to the results investigated in [171]. Namely, they
are motivated form the idea of defining a gradient iterative method for computing the Drazin-
inverse solution of the system (3.9). The goal is achieved by establishing a relation between the
Drazin-inverse solution and the linear system (3.9).

Theorem 1.6.1. [166] Each solution to

Ax = b, b ∈ R(Ak), k = ind(A) (1.50)

is also a solution to
Ap+1x = Apb p ≥ k, (1.51)

but the opposite statement does not hold.

Proof. Clearly Ax = b, b ∈ R(Ak) implies Ap(Ax− b) = 0 for p ≥ k.

On the other hand, Wei in [164] proved that the general solution of (3.9) is given by

x = ADb+ Ak−1(I −ADA)z, (1.52)

where z is an arbitrary vector.

The solution ADb is known as the Drazin-inverse solution of (3.9).
Remark that the opposite statement is not valid, since not every element from N (Ak) can

be represented as Ak−1(I − ADA)z, z ∈ C
n is arbitrary. Consequently, not every solution of

(3.10) is a solution of the equation (3.9) nor a solution of the equation (3.1).

Theorem 1.6.2. [171] Consider A ∈ C
n×n with k = ind(A). The Drazin inverse solution ADb

is the unique solution in R(Ak) to the system

Ak+1x = Akb. (1.53)

Theorem 1.6.3. [171] Let A ∈ C
n×n, b ∈ C

n and k = ind(A). The set of all solutions of the
equation (3.12) is given by

x = ADb+N (Ak). (1.54)
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1.6.2 Least-square properties of outer inverses

The outer generalized inverses with prescribed range and null-space are very important in matrix
theory. The {2}-inverses have application in defining iterative methods for solving the nonlinear
equations [8], in statistics [45] as well as in stable approximations of ill-posed problems and in
linear and nonlinear problems involving rank-deficient generalized inverses [118].

Outer inverses with prescribed range and null space are useful in solving the restricted SoLE.
This application is based on the following essential result from [22]:

Proposition 1.6.1. [22] Let A ∈ C
m×n be of rank r, let T be a subspace of Cn, and let the

condition
b ∈ AT, dim (AT ) = dim (T )

be satisfied. Then the unique solution to the constrained SoLE

Ax = b, x ∈ T

is given by
x = A

(2)
T,Sb,

for any subspace S of Cm satisfying AT ⊕ S = C
m.

Further investigations show that some new classes of generalized inverses are applicable
in solving corresponding unconstrained and constrained SoLE. These generalized inverses are
composed of appropriate outer inverses and the Moore-Penrose inverse and surveyed in the
subsequent Section 2.3.

1.7 Nonlinear optimization and generalized inversion

It is known that calculation of the inverse matrix can be included in finding solutions to some
optimization models. On the other hand, the calculation of the inverse matrix can be defined on
the basis of certain optimization models. In his famous paper [122], Penrose was the first who
showed the close connection between the Moore-Penrose inverse and the least-squares solution
problem of a system of linear equations. The same principle is extended to solving matrix
equations. Since the least-squares problem represents a special case of the nonlinear optimization
problems, a close relationship between the theory of generalized inverses and the optimization
theory is evident. Additionally, the discovered minimal properties of the solution of a linear
system of equations, obtained with the usage of the Moore-Penrose inverse, brought to intensive
usage of the optimization methods in numerical computation of generalized inverses.

The theory of optimization represents a very important mathematical discipline and finds
a great application, not only in the theory of applied mathematics, but also in many practical
disciplines such as: production, aviation, management, sociology, genetic etc. Moreover, the
process of evolution follows the principles of optimization. Although the optimization theory is
a part of everyday life for a very long time, this science has faced an important development in the
last five decades. The subject is involved in the process of finding optimal solution of problems
which are defined mathematically. More precisely, given a practical problem, the “best” solution
to the problem can be found from lots of schemes by means of scientific methods and tools. It
involves the study of optimality conditions of the problems, the construction of model problems,
the determination of algorithmic method of solution, the establishment of convergence theory
of the algorithms, and numerical experiments with typical problems and real life problems.
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Chapter 2

Composite generalized inverses

To extend and unify the notions of the core, dual core, DMP, MPD, CMP, MPCEP and ∗CEPMP
inverses, the OMP, MPO and MPOMP inverses were introduced in [108] composing an arbitrary
outer inverse and the Moore-Penrose inverse. We use composite outer inverses to denote one
common term for all appearances of the OMP, MPO and MPOMP inverses. The core inverse,
the DMP inverse and the ∗CEPMP inverse are particular cases of the OMP inverse, because
the group, Drazin and dual core-EP inverses are particular outer inverses. The MPD, dual core
and MPCEP inverses are special cases of MPO inverses. Also, the MPOMP inverses include the
CMP and Moore-Penorse inverses.

Different characterizations and representations of composite outer inverses are surveyed and
analysed in this chapter based on [136]. New characterizations and representations of the core,
dual core, DMP, MPD, CMP, MPCEP and ∗CEPMP inverses are obtained in [136] as particular
consequences of these results.

2.1 Survey of composite outer inverses involving the
Moore-Penrose inverse

Proper combinations of particular outer inverses with the MP inverse is a popular trend in
research of generalized inverses. Main properties, representations and characterizations of these
inverses have been investigated in a number of papers. Main interest will be possible solutions
of restricted systems of linear equations in terms of various composite outer inverses.

2.1.1 Core-EP inverse

To solve some types of matrix equations, Baksalary and Trenkler introduced the core inverse
of a square matrix in [2]. Observe that a matrix A ∈ C

n×n has the core inverse if and only if
ind(A) ≤ 1. In this case, the core inverse of A can be expressed by A#© = A#AA†. Kurata [71]
established the maximal classes of matrices Q and S included in A{1}, for which QAS coincides
with the core inverse of A.

The core-EP inverse was presented by Prasad and Mohana in [123] for a square matrix,
which is not essentially of index one, generalizing the notion of the core inverse.

Definition 2.1.1. [123] Let A ∈ C
n×n and k = ind(A). A matrix X ∈ C

n×n, denoted by A †©,
is called the core-EP inverse of A if it satisfies

XAX = X, R(X) = R(X∗) = R(Ak).

Wang in [151] introduced a new decomposition for the core-EP inverse which arises from
the Schur decomposition.

Lemma 2.1.1. [151] Let A ∈ C
n×n with ind(A) = k and rank(Ak) = r. The Schur form of A

is given by

A = U

[
T1 T2

0 T3

]
U∗, (2.1)

where U ∈ C
n×n is unitary, T1 is a r × r nonsingular upper-triangular matrix and T3 is a

nilpotent matrix with index k. The core-EP decomposition of A is defined in [151] as the sum
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A = A1 + A2, where A1 ∈ C
n×n, ind(A1) = 1, Ak

2 = 0, A∗
1A2 = A2A

∗
1 = 0. One possible

decomposition satisfying these conditions was originated in [151], as follows:

A1 = U

[
T1 T2

0 0

]
U∗ = Ak(Ak)†A,

A2 = U

[
0 0
0 T3

]
U∗ = A− Ak(Ak)†A.

Then the core-EP inverse can be expressed in the form [151]

A
†© = U

[
T−1
1 0
0 0

]
U∗ = ADAk(Ak)† = Ak(Ak+1)†.

Also, the following representation from [123] is known:

A
†© = Ak

((
Ak
)∗

Ak+1
)− (

Ak
)∗

= A
(2)

R(Ak),N((Ak)∗)
. (2.2)

In [42] the core-EP inverse is represented as the combination of the Drazin inverse, matrix power
and the Moore-Penrose inverse:

A
†© := ADAk(Ak)†.

If ind(A) = 1, then A †© becomes his predecessor, known as the core inverse of A and denoted
by A#© [2]. Thus, A#© = A#AA†.

The dual core-EP inverse is given by A †© = (Ak)†AkAD. As a consequence, the dual core
inverse of A (denoted by A#©) is expressed as A#© = A†AA#.

In the recent years, the core-EP inverse has become a very popular kind of outer inverse.
Various representations of the core-EP inverse were investigated in [81, 151, 185]. The core-EP
inverse was extended to rectangular matrices in [40], to bounded linear Hilbert space operators
in [106, 104], to elements of rings in [42], while the extensions to tensors and quaternion matrices
are originated in [128] and [62], respectively.

2.1.2 DMP and MPD inverse

Two new generalized inverses of a square matrices of arbitrary index are defined in [86] as a
hybrid combination of the Drazin inverse with the Moore-Penrose inverse. These generalized
inverses are known as the DMP inverse and MPD inverse. The DMP inverse of A ∈ C

n×n

(denoted by AD,†) is the unique solution to the following matrix equations:

XAX = X, XA = ADA, AkX = AkA†, k = ind(A). (2.3)

The system of equations (2.3) is consistent and has a unique solution ADAA† [86, Theorem 2.2],
denoted by AD,† := ADAA† and termed as the DMP inverse of A. Deng and Yu, [180], Liu and
Cai [75] described the range space and null space of the DMP inverse, as follows:

R(AD,†) = R(Ak), N (AD,†) = N (AkA†), k = ind(A).

The DMP inverse is just the outer inverse satisfying AD,† = A
(2)

R(Ak),N(AkA†)
[29, 180]. Main

results concerning the DMP inverse were proved in [62, 75, 79, 89, 106, 154, 180]. Recently, Meng
in [89] extended the definition of the DMP inverse to rectangular matrices. Zhu in [?] introduced
the pseudo DMP inverse in a ring as an extension of the DMP inverse. In [153], the authors
developed an algorithm for computing the DMP inverse on the basis of the Cayley-Hamilton
theorem. Various representations for the DMP inverse can be found in [79]. Iterative method
for finding DMP inverse was proved in [75]. The DMP inverse was generalized to operators in
[106, 180] and to tensors in [154].

The MPD inverse of A is defined as the dual to the DMP inverse and defined by A†,D :=
A†AAD [86].

In [153], the authors developed an algorithm for computing the DMP inverse on the basis
of the Cayley-Hamilton theorem. Various representations for the DMP inverse can be found in
[39, 62, 79]. Iterative method for finding DMP inverse was proved in [75]. Meng in [89] extended
the definition of the DMP inverse to rectangular matrices. Zhu in [186] introduced the pseudo
DMP inverse in a ring as an extension of the DMP inverse. The DMP inverse was generalized to
operators in [101, 106, 180] and to tensors in [154]. Applications of the DMP and MPD inverses
in solving some restricted quaternion matrix equations can be found in [64, 70].
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2.2 Overview of remaining composed generalized in-
verses

The CMP inverse is a new generalized inverse of a square matrix A, which was originated by
Mehdipour and Salemi [88] in terms of the core part AADA of A and A†. The CMP inverse of
A ∈ C

n×n (denoted by Ac,†) is the unique solution of the next matrix equations:

XAX = X, AXA = AADA, AX = AADAA†, XA = A†AADA.

It is known that
Ac,† = A†AADAA†.

Various representations and main properties of the CMP inverse can be found in [39, 96, 97,
100, 103, 110, 154, 177]. Maximal classes of matrices determining the DMP and CMP inverses
were developed in [39].

Let A ∈ C
n×n and k = ind(A). There exists the core-EP inverse (or CEP inverse) of A

(denoted by A †©) as the unique matrix X ∈ C
n×n such that [123]:

X = XAX, R(Ak) = R(X) = R(X∗).

The core-EP inverse is defined by the matrix expression defined by the Drazin inverse, rank-
invariant matrix power and its pseudoinverse [42]:

A
†© = ADAk(Ak)†.

The dual core-EP inverse (or ∗core-EP) inverse of A is uniquely determined matrix X ∈ C
n×n

(denoted by A †©) such that

X = XAX, R
(
(Ak)∗

)
= R(X) = R(X∗).

The dual core-EP is defined inverting the order of terms included in the core-EP inverse:

A †© = (Ak)†AkAD,

which is the unique solution to

XAX = X, R(X) = R(X∗) = R((Ak)∗).

If ind(A) = 1, then A †© reduces to the core inverse of A (denoted by A#©) [2]. It is known that

A
#© = A#AA†.

The dual core (or ∗core) inverse of A (denoted by A#©) is expressed as

A#© = A†AA#.

Recently, many authors have studied the core and core-EP inverse for matrices. Border-
ing technique and iterations for finding the core-EP inverse were given in [124, 125]. Several
characterizations and representations for core-EP inverse were proposed in [43, 81, 82, 105, 102,
158, 185, 183, 184]. Further, for the core-EP inverse, some limit representations were studied in
[185]. Continuity of the core-EP inverse was considered in [43]. The core-EP was generalized to
rectangular matrices using a weight matrix in [40], to bounded linear Hilbert space operators in
[104, 106], to Banach algebra elements in [93], to elements in rings [42, 94, 187], to quaternion
matrices in [61] and to tensors in [128].

The weak group inverse was introduced in [152] by the expression

A
w© := (A

†©)2A,

where A ∈ C
n×n. The latest results related to the weak group inverse are included in [41, 117].

Representations suitable for numerical calculation of the weak group inverse were introduced in
[116] for l ≥ k = ind(A):

A
w© =

(
AD
)2

Al(Al)†A = Al
(
Al+2

)†
A.

Applying the Moore-Penrose inverse and the core-EP inverse, the MPCEP inverse for a
Hilbert space operator was presented in [19]. The MPCEP inverse of A ∈ C

n×n (denoted by
A†, †©) is the unique solution to the system of matrix equations:

XAX = X, AX = AA
†©, XA = A†AA

†©A.
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Also, by [19], we have
A†, †© = A†AA

†©.

The ∗CEPMP inverse is presented in [19] as

A †©,† = A †©AA†

and it is the unique solution to the system of matrix equations

XAX = X, AX = AA †©AA†, XA = A †©A.

Some representations and properties of the MPCEP inverse were introduced in [107, 64, 66, 148].
The MPCEP and ∗CEPMP inverses are applied to solve quaternion matrix equations with
constrains in [65, 63, 69].

The W -weighted Drazin inverse was introduced in [25] as an extension of the Drazin inverse
to rectangular matrices. In the case that W ∈ C

n×m and A ∈ C
m×n, the W -weighted Drazin

inverse AD,W of A can be considered as

AD,W =
[
(AW )D

]2
A = A

[
(WA)D

]2
.

More details about A-weighted Drazin inverse can be found in [156].
The core-EP inverse was generalized to rectangular matrices in [40]. For A ∈ C

m×n, W ∈
C

n×m and k = max{ind(AW ), ind(WA)}, the unique matrix A †©,W = X ∈ C
m×n is the W -

weighted core-EP inverse of A if

WAWX = (WA)k[(WA)k]†, R((AW )k) = R(X).

Recall that, by [104], A †©,W = A[(WA) †©]2. For more recent results considering W -weighted
core-EP inverse see [39, 44, 78]. The W -weighted core-EP inverse was studied for bounded linear
Hilbert space operators in [97, 99, 104], for elements of C∗-algebras in [105] and for elements of
rings in [187].

2.3 OMP inverses

Composing the outer inverse and the Moore-Penrose inverse in adequate ways, three outer
inverses of a rectangular matrix were presented in [108]. In this section, we consider main
properties of the first of them, which is called the OMP inverse.

2.3.1 Characterizations of the OMP inverse

We characterize the OMP inverse from algebraic and geometrical approaches in this subsection.
The OMP inverse was introduced as a solution to some type of matrix equations in [108,

Theorem 2.1].

Theorem 2.3.1. [108, Theorem 2.1] If A ∈ C
m×n
T,S , the system of matrix equations

XAX = X, AX = AA
(2)
T,SAA†, XA = A

(2)
T,SA (2.4)

is consistent and its unique solution is X := A
(2)
T,SAA†.

Proof. If X := A
(2)
T,SAA†, then

AX = AA
(2)
T,SAA†,

XA = A
(2)
T,SAA†A = A

(2)
T,SA,

XAX = A
(2)
T,SAX = A

(2)
T,SAA

(2)
T,SAA† = A

(2)
T,SAA† = X.

Therefore, X = A
(2)
T,SAA† satisfies the system of equations (2.4).

Assume that two matrices X and X1 satisfy (2.4), that is, (2.4) holds, X1AX1 = X1,

AX1 = AA
(2)
T,SAA† and X1A = A

(2)
T,SA. Hence,

X = (XA)X = (A
(2)
T,SA)X = X1(AX) = X1(AA

(2)
T,SAA†) = X1AX1 = X1

and so the system (2.4) has the unique solution.

Definition 2.3.1. [108] Let A ∈ C
m×n
T,S . The OMP (or outer Moore-Penrose) inverse of A is

defined as
A

(2),†
T,S = A

(2)
T,SAA†.
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Significant special cases of OMP inverses are given below:

(i) When m = n, ind(A) = k and A
(2)
T,S := AD, the system (2.4) becomes

XAX = X, AX = AADAA† and XA = ADA. (2.5)

According to Theorem 2.3.1, the matrix X := ADAA† = AD,† is the unique solution to
(2.5). So, the OMP inverse reduces to the DMP inverse in the case A

(2)
T,S := AD. In view

of basic properties of the Drazin inverse, notice that (2.5) implies (1.39).

(ii) If m = n, ind(A) = 1 and A
(2)
T,S := A#, the system (2.4) is converted into the system

XAX = X, AX = AA†, XA = A#A,

which has the unique solution X = A#AA† = A#© by Theorem 2.3.1. Thus, the OMP
inverse becomes the core inverse in this case.

(iii) For m = n, ind(A) = k and A
(2)
T,S := A †©, the ∗CEPMP inverse A †©,† = A †©AA† is the

unique solution to the matrix system [19]

XAX = X, AX = AA †©AA†, XA = A †©A.

More characterizations of the OMP inverse arising from algebraic approach were proved in
[108, Theorem 2.2].

Theorem 2.3.2. [108, Theorem 2.2] If A ∈ C
m×n
T,S , the following statements are equivalent:

(i) X ∈ C
n×m is the OMP inverse A

(2)
T,SAA† of A;

(ii) XAX=X, AXA=AA
(2)
T,SA, AX=AA

(2)
T,SAA†, XA=A

(2)
T,SA;

(iii) A
(2)
T,SAX = X, AX = AA

(2)
T,SAA†;

(iv) XAA
(2)
T,SAA† = X, XA = A

(2)
T,SA;

(v) XAA
(2)
T,SAX=X, AA

(2)
T,SAX=AA

(2)
T,SAA†, XAA

(2)
T,SA=A

(2)
T,SA;

(vi) XAA
(2)
T,SAX = X, AA

(2)
T,SAXAA

(2)
T,SA = AA

(2)
T,SA,

AA
(2)
T,SAX = AA

(2)
T,SAA†, XAA

(2)
T,SA = A

(2)
T,SA;

(vii) A
(2)
T,SAX = X, AA

(2)
T,SAX = AA

(2)
T,SAA†;

(viii) XAA
(2)
T,SAA† = X, XAA

(2)
T,SA = A

(2)
T,SA;

(ix) XAA† = X, XAA∗ = A
(2)
T,SAA∗;

(x) XAA† = X, XA = A
(2)
T,SA.

Proof. (i) ⇒ (ii): The hypothesis X = A
(2)
T,SAA† yields AXA = AA

(2)
T,SAA†A = AA

(2)
T,SA. The

rest three equalities are evident by Theorem 2.3.1.
(ii) ⇒ (iii): The assumptions XAX = X and XA = A

(2)
T,SA imply A

(2)
T,SAX = XAX = X.

(iii) ⇒ (i): We have X = A
(2)
T,S(AX) = A

(2)
T,SAA

(2)
T,SAA† = A

(2)
T,SAA†.

(ii) ⇒ (iv) ⇒ (i): It can be verified as (ii) ⇒ (iii) ⇒ (i).
In an analogy manner, we show that (i) ⇒ (v) ⇒ (vi) ⇒ (vii) ⇒ (i) and (vi) ⇒ (viii) ⇒

(i).

(i) ⇒ (ix): Using X = A
(2)
T,SAA† and A∗ = A†AA∗, we get XAA† = A

(2)
T,SAA†AA† =

A
(2)
T,SAA† = X and XAA∗ = A

(2)
T,SAA†AA∗ = A

(2)
T,SAA∗.

(ix) ⇒ (x): From the condition XAA∗ = A
(2)
T,SAA∗, we observe that

XA = XAA†A = (XAA∗)(A†)∗ = A
(2)
T,SAA∗(A†)∗ = A

(2)
T,SA.

(x) ⇒ (i): Notice that XAA† = X and XA = A
(2)
T,SA give X = (XA)A† = A

(2)
T,SAA†.

Taking, for B ∈ C
n×k and C ∈ C

l×m, T := R(B) and S := N (C), certain equivalent

conditions for a rectangular matrix to be the OMP inverse A
(2),†
R(B),N (C) := A

(2)
R(B),N (C)AA† were

verified in [108, Theorem 2.3].

Theorem 2.3.3. [108, Theorem 2.3] For arbitrary B ∈ C
n×k, C ∈ C

l×m and A ∈ C
m×n
R(B),N (C),

the following statements are equivalent:

(i) X ∈ C
n×m is the OMP inverse A

(2),†
R(B),N (C) := A

(2)
R(B),N (C)AA† of A;
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(ii) CAX = CAA†, A
(2)
R(B),N (C)AX = X;

(iii) CAXA = CA, A
(2)

R(B),N (C)
AXAA† = X;

(iv) CAXAA∗ = CAA∗, A
(2)
R(B),N (C)AXAA† = X;

(v) XAB = B, XAA
(2)
R(B),N (C)AA† = X;

(vi) AXAB = AB, A
(2)

R(B),N (C)AXAA
(2)

R(B),N (C)AA† = X;

(vii) A∗AXAB = A∗AB, A
(2)
R(B),N (C)AXAA

(2)
R(B),N (C)AA† = X.

Proof. Since R(A
(2)

R(B),N (C)
) = R(B), we observe that A

(2)

R(B),N(C)
AB = B and A

(2)

R(B),N (C)
=

BB(1)A
(2)
R(B),N (C), for B

(1) ∈ B{1}. Also, byN (A
(2)
R(B),N (C)) = N (C), we haveCAA

(2)
R(B),N (C) =

C and A
(2)

R(B),N (C) = A
(2)

R(B),N (C)C
(1)C, for C(1) ∈ C{1}.

(i) ⇒ (ii): Because X = A
(2)
R(B),N (C)AA†, then CAX = (CAA

(2)
R(B),N (C))AA† = CAA† and

A
(2)

R(B),N (C)AX = A
(2)

R(B),N (C)AA
(2)

R(B),N (C)AA† = A
(2)

R(B),N (C)AA† = X.

(ii) ⇒ (i): From CAX = CAA† and A
(2)
R(B),N (C)AX = X, it follows

X = A
(2)

R(B),N (C)
AX = A

(2)

R(B),N (C)
C(1)(CAX)

= (A
(2)
R(B),N (C)C

(1)C)AA† = A
(2)
R(B),N (C)AA†.

(i) ⇒ (iii): Notice that X = A
(2)
R(B),N(C)AA† implies CAXA = CAA†A = CA and

A
(2)
R(B),N (C)AXAA† = XAA† = A

(2)
R(B),N (C)AA†AA† = A

(2)
R(B),N (C)AA† = X.

(iii) ⇒ (iv): This implication is clear.
(iv) ⇒ (i): Multiplying CAXAA∗ = CAA∗ by (A†)∗ from the right hand side, we get

CAXA = CA. Therefore,

A
(2)

R(B),N (C)AXA = A
(2)

R(B),N (C)C
(1)(CAXA)

=
(
A

(2)

R(B),N (C)
C(1)C

)
A = A

(2)

R(B),N (C)
A

in conjunction with the assumption A
(2)

R(B),N (C)AXAA† = X give

X =
(
A

(2)

R(B),N (C)
AXA

)
A† = A

(2)

R(B),N (C)
AA†.

(i) ⇒ (v): Applying X = A
(2)

R(B),N (C)
AA† and A

(2)

R(B),N (C)
AB = B, we obtain

XAB = A
(2)
R(B),N (C)(AA†A)B = A

(2)
R(B),N (C)AB = B

and

XAA
(2)
R(B),N (C)AA† = A

(2)
R(B),N (C)AA†AA

(2)
R(B),N (C)AA† = A

(2)
R(B),N (C)AA† = X.

(v) ⇒ (i): By A
(2)
R(B),N (C) = BB(1)A

(2)
R(B),N (C) and the hypothesis XAB = B, we have

A
(2)
R(B),N (C) = BB(1)A

(2)
R(B),N (C) = XA

(
BB(1)A

(2)
R(B),N (C)

)
= XAA

(2)
R(B),N (C).

Now, fromXAA
(2)
R(B),N (C)AA† = X, it follows thatX = (XAA

(2)
R(B),N (C))AA† = A

(2)
R(B),N (C)AA†.

(i) ⇒ (vi): The equalities X = A
(2)

R(B),N (C)AA† and A
(2)

R(B),N (C)AB = B yield from
AXAB = AB and

A
(2)

R(B),N (C)AXAA
(2)

R(B),N (C)AA† = A
(2)

R(B),N (C)AA
(2)

R(B),N (C)AA†AA
(2)

R(B),N (C)AA†

= A
(2)
R(B),N (C)AA† = X.

(vi) ⇒ (vii): It is evident.
(vii) ⇒ (i): Multiplying A∗AXAB = A∗AB by (A†)∗ from the left hand side, we obtain

AXAB = AB. If we multiply the previous equality by B(1)A
(2)

R(B),N (C) from the right hand

side, then AXAA
(2)
R(B),N (C) = AA

(2)
R(B),N (C). Hence,

A
(2)

R(B),N (C) = A
(2)

R(B),N (C)(AA
(2)

R(B),N (C)) = A
(2)

R(B),N (C)AXAA
(2)

R(B),N (C)

and, by A
(2)
T,SAXAA

(2)
R(B),N (C)AA† = X,

A
(2)
R(B),N (C)AA† = A

(2)
R(B),N (C)AXAA

(2)
R(B),N (C)AA† = X,

which completes the proof.
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Notice that the core inverse and the DMP inverse are special cases of the OMP inverse.
Corresponding characterizations of the DMP and core inverses are derived as consequences.
Applying Theorem 2.3.2 and basic properties of the Drazin inverse, we firstly obtain character-
izations of the DMP inverse.

Corollary 2.3.1. If A ∈ C
n×n and ind(A) = k, the following statements are equivalent:

(i) X ∈ C
n×n is the DMP inverse ADAA† of A;

(ii) XAX = X, AXA = AADA, AX = AADAA†, XA = ADA;

(iii) ADAX = X, AX = AADAA†;

(iv) XAADAA† = X, XA = ADA;

(v) XAADAX = X, AADAX = AADAA†, XAADA = ADA;

(v’) XAADAX = X, AkX = AkA†, XAk+1 = Ak;

(vi) XAADAX = X, AADAXAADA = AADA,
AADAX = AADAA†, XAADA = ADA;

(vi’) XAADAX=X, AkXAk=A2k−1, AkX=AkA†, XAk+1=Ak;

(vii) ADAX = X and AADAX = AADAA†;

(vii’) ADAX = X, AkX = AkA†;

(viii) XAADAA† = X, XAADA = ADA;

(viii’) XAADAA† = X, XAk+1 = Ak;

(ix) XAA† = X, XAA∗ = ADAA∗;

(x) XAA† = X, XA = ADA.

In a particular case that ind(A) = 1 in Corollary 2.3.1, we get necessary and sufficient
conditions which characterize the core inverse of a square matrix.

Corollary 2.3.2. If A ∈ C
n×n and ind(A) = 1, the following statements are equivalent:

(i) X ∈ C
n×n is the core inverse A#AA† of A;

(ii) XAX = X, AXA = A, AX = AA†, XA = A#A;

(iii) A#AX = X, AX = AA†;

(iv) XAA† = X, XA = A#A;

(v) XAX = X, AX = AA†, XA2 = A;

(vi) XAX = X, AXA = A, AX = AA†, XA2 = A;

(vii) XAA† = X, XA2 = A;

(viii) XAA† = X, XAA∗ = A#AA∗.

Some well-known and several new characterizations of the ∗CEPMP inverse can be obtained
using Theorem 2.3.2.

Corollary 2.3.3. If A ∈ C
n×n and ind(A) = k, the following statements are equivalent:

(i) X ∈ C
n×n is the ∗CEPMP inverse A †©AA† of A;

(ii) XAX = X, AXA = AA †©A, AX = AA †©AA†, XA = A †©A;

(iii) A †©AX = X, AX = AA †©AA†;

(iv) XAA †©AA† = X, XA = A †©A;

(v) XAA †©AX = X, AA †©AX = AA †©AA†, XAA †©A = A †©A;

(v’) XA(Ak)†AkX = X, AkX = AkA†, XA(Ak)∗ = (Ak)∗;

(vi) XAA †©AX = X, AA †©AXAA †©A = AA †©A,
AA †©AX = AA †©AA†, XAA †©A = A †©A;

(vi’) XA(Ak)†AkX = X, AkXA(Ak)†Ak = Ak,
AkX = AkA†, XA(Ak)∗ = (Ak)∗;

(vii) A †©AX = X, AA †©AX = AA †©AA†;

(vii’) (Ak)†AkX = X, AkX = AkA†;

(viii) XAA †©AA† = X, XAA †©A = A †©A;

(viii’) XA(Ak)†AkA† = X, XA(Ak)∗ = (Ak)∗;
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(ix) XAA† = X XAA∗ = A †©AA∗;

(x) XAA† = X, XA = A †©A.

Since the OMP inverse of A is an outer inverse of A, it is interesting to find its range and
null space. Also, we can consider projectors involving the OMP inverse.

Lemma 2.3.1. [108, Lemma 2.1] If A ∈ C
m×n
T,S , then:

(i) AA
(2),†
T,S is a projector onto R(AA

(2)
T,S) along N (A

(2)
T,SAA†);

(ii) A
(2),†
T,S A is a projector onto T along N (A

(2)
T,SA);

(iii) A
(2),†
T,S = A

(2)

T,N (A
(2)
T,S

AA†)
.

Proof. (i) Because A
(2),†
T,S AA

(2),†
T,S = A

(2),†
T,S , we deduce that AA

(2),†
T,S is a projector. From A

(2),†
T,S =

A
(2)
T,SAA†, we get

R(AA
(2),†
T,S ) ⊆ R(AA

(2)
T,S) = R(AA

(2)
T,SAA†AA

(2)
T,S) ⊆ R(AA

(2),†
T,S ),

i.e., R(AA
(2),†
T,S ) = R(AA

(2)
T,S). Note that N (AA

(2),†
T,S ) = N (A

(2),†
T,S ) = N (A

(2)
T,SAA†).

(ii) We observe that A
(2),†
T,S A = A

(2)
T,SA. Thus, N (A

(2),†
T,S A) = N (A

(2)
T,SA) and

R(A
(2),†
T,S A) = R(A

(2)
T,SA) = R(A

(2)
T,S) = T.

(iii) It follows by R(A
(2),†
T,S ) = R(A

(2),†
T,S A) = T and N (A

(2),†
T,S ) = N (A

(2)
T,SAA†).

Using Lemma 2.3.1, we obtain the nullity and range of the DMP inverse as well as some
properties of projectors involving the DMP inverse. The parts (i)–(ii) of Corollary 2.3.4 are
equivalent to results presented in [86, Theorem 2.12].

Corollary 2.3.4. If A ∈ C
n×n and ind(A) = k, then

(i) AAD,† is a projector onto R(Ak) along N (AkA†);

(ii) AD,†A is a projector onto R(Ak) along N (Ak);

(iii) AD,† = A
(2)

R(Ak),N (AkA†)
= A

(2)

R(AkA†),N (AkA†)
.

Under the assumption ind(A) = 1 in Corollary 2.3.4, it is possible to conclude the following
properties of the core inverse of A, presented in Corollary 2.3.5.

Corollary 2.3.5. If A ∈ C
n×n and ind(A) = 1, then

(i) AA#© is the orthogonal projector onto R(A);

(ii) A#©A is a projector onto R(A) along N (A);

(iii) A#© = A
(2)
R(A),N (A∗) = A

(2)
R(AA∗),N (AA∗).

Lemma 2.3.1 gives some properties related to the ∗CEPMP inverse, presented in Corollary
2.3.6.

Corollary 2.3.6. If A ∈ C
n×n and ind(A) = k, then:

(i) AA †©,† is a projector onto R (A(Ak)∗
)
along N (AkA†

)
;

(ii) A †©,†A is a projector onto R((Ak)∗) along N (Ak);

(iii) A †©,† = A
(2)

R((Ak)∗),N(AkA†)
= A

(2)

R((Ak)∗AkA†),N ((Ak)∗AkA†)
.

From a geometrical point of view, the characterization of the OMP inverse was verified in
[108, Theorem 2.8]. Notice that both algebraic and geometrical approaches are equivalent.

Theorem 2.3.4. If A ∈ C
m×n
T,S , then the constrained matrix equation

AX = P
R

(
AA

(2)
T,S

)
,N

(
A

(2)
T,S

AA†
) and R(X) ⊆ T (2.6)

is consistent and it has the unique solution X = A
(2),†
T,S .
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Proof. By Lemma 2.3.1, AA
(2),†
T,S = P

R(AA
(2)
T,S

),N (A
(2)
T,S

AA†)
and R(A

(2),†
T,S ) ⊆ T . So, A

(2),†
T,S satisfies

conditions (2.6).
Suppose that two matrices X and X1 satisfy (2.6). Then

A(X −X1) = P
R(AA

(2)
T,S

),N (A
(2)
T,S

AA†)
− P

R(AA
(2)
T,S

),N (A
(2)
T,S

AA†)
= 0

gives R(X − X1) ⊆ N (A) ⊆ N (A
(2)
T,SA). Because R(X) ⊆ T = R(A

(2)
T,S) = R(A

(2)
T,SA) and

R(X1) ⊆ R(A
(2)
T,SA), we observe that R(X − X1) ⊆ R(A

(2)
T,SA) ∩ N (A

(2)
T,SA) = {0}. Hence,

X = X1 and the system (2.6) has the unique solution A
(2),†
T,S .

Applying Theorem 2.3.4, we characterize the DMP inverse from a geometrical point of view.
We can observe that Corollary 2.3.7 recovers [86, Theorem 2.13].

Corollary 2.3.7. If A ∈ C
n×n and ind(A) = k, then the constrained matrix equation

AX = PR(Ak),N (AkA†) and R(X) ⊆ R(Ak)

is consistent and it has the unique solution X = AD,†.

In the case that ind(A) = 1 in Corollary 2.3.7, we get the characterization of the core inverse
which coincides with the definition of the core inverse given in [2].

Corollary 2.3.8. If A ∈ C
n×n and ind(A) = 1, then the constrained matrix equation

AX = PR(A) and R(X) ⊆ R(A)

is consistent and it has the unique solution X = A#©.

Theorem 2.3.4 yields a characterization of the ∗CEPMP inverse from a geometrical point
of view.

Corollary 2.3.9. If A ∈ C
n×n and ind(A) = k, then the constrained matrix equation

AX = PR(A(Ak)∗),N(AkA†) and R(X) ⊆ R((Ak)∗)

is consistent and it has the unique solution X = A †©,†.

Remark that Corollary 2.3.9 is a special case of [19, Theorem 3.3].

2.3.2 Representations of the OMP inverse

In this subsection, we investigate the general, integral and limit representations of the OMP
inverse.

The maximal classes of matrices providing the most general form which represents the OMP
were developed in [108, Theorem 2.11].

Theorem 2.3.5. [108, Theorem 2.11] Let A ∈ C
m×n
T,S and let U, V ∈ C

n×m such that V ∈ A{1}.
Then the following statements are equivalent:

(i) A
(2),†
T,S = UAV ;

(ii) UA = A
(2)
T,SA and A

(2)
T,SAA† = A

(2)
T,SAV ;

(iii) R(UA) = T , N (A∗) ⊆ N (A
(2)
T,SAV ) and AUA = AA

(2)
T,SA;

(iv) U = A
(2)
T,S + Y (Im −AA†) and V = A† + (In − A

(2)
T,SA)Z, for arbitrary Y,Z ∈ C

n×m.

Proof. (i) ⇒ (ii): The equalities AVA = A, A
(2),†
T,S = UAV and A

(2),†
T,S = A

(2)
T,SAA† imply

UA = (UAV )A = A
(2),†
T,S A = A

(2)
T,SAA†A = A

(2)
T,SA

and
A

(2)
T,SAA† = A

(2),†
T,S = (UA)V = A

(2)
T,SAV.

(ii)⇒ (iii): The assumption UA = A
(2)
T,SA yields AUA = AA

(2)
T,SA andR(UA) = R(A

(2)
T,SA) =

R(A
(2)
T,S) = T. Applying the condition A

(2)
T,SAA† = A

(2)
T,SAV , we get N (A∗) = N (A†) ⊆

N (A
(2)
T,SAA†) = N (A

(2)
T,SAV ).
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(iii) ⇒ (i): Since R(UA) = T = R(A
(2)
T,S) = R(A

(2)
T,SA) and AUA = AA

(2)
T,SA, then

UA = A
(2)
T,SAUA = A

(2)
T,SAA

(2)
T,SA = A

(2)
T,SA.

Using R(I − AA†) = N (AA†) = N (A†) = N (A∗) ⊆ N (A
(2)
T,SAV ), we obtain

A
(2)
T,SAV = A

(2)
T,SAVAA† = A

(2)
T,SAA†.

Therefore,
UAV = A

(2)
T,SAV = A

(2)
T,SAA† = A

(2),†
T,S .

(ii) ⇒ (iv): Recall that all solutions of equation UA = A
(2)
T,SA are obtained as a sum of

a particular solution of UA = A
(2)
T,SA and the general solution of the homogeneous equation

UA = 0. According to [8, p. 52], the general solution of UA = A
(2)
T,SA is given by

U = A
(2)
T,S + Y (Im − AA†),

for arbitrary Y ∈ C
n×m. In a same way, the general solution of A

(2)
T,SAA† = A

(2)
T,SAV is given

by
V = A† + (In − A

(2)
T,SA)Z,

for arbitrary Z ∈ C
n×m.

(iv) ⇒ (i): If U = A
(2)
T,S + Y (Im − AA†) and V = A† + (In − A

(2)
T,SA)Z, for arbitrary

Y,Z ∈ C
n×m, then

UAV = A
(2)
T,SAV = A

(2)
T,SAA† = A

(2),†
T,S .

Theorem 2.3.5 gives maximal classes of matrices determining the DMP inverse. It is inter-
esting to compare assumptions of Corollary 2.3.10 with conditions of [39, Theorem 2.2].

Corollary 2.3.10. Let A ∈ C
n×n with ind(A) = k and let U, V ∈ C

n×n such that V ∈ A{1}.
Then the following statements are equivalent:

(i) AD,† = UAV ;

(ii) UA = ADA and AkA† = AkV ;

(iii) R(UA) = R(Ak), N (A∗) ⊆ N (AkV ) and AUA = AADA;

(iv) U = AD + Y (In −AA†) and V = A† + (In − ADA)Z, for arbitrary Y,Z ∈ C
n×n.

Corollary 2.3.10 implies the corresponding result for the core inverse (see also [71, Theorem
3]).

Corollary 2.3.11. Let A ∈ C
n×n with ind(A) = 1 and let U, V ∈ C

n×n such that V ∈ A{1}.
Then the following statements are equivalent:

(i) A#© = UAV ;

(ii) UA = A#A and AA† = AV ;

(iii) R(UA) = R(A), N (A∗) ⊆ N (AV ) and AUA = A;

(iv) U = A# + Y (In − AA†) and V = A† + (In − A#A)Z, for arbitrary Y,Z ∈ C
n×n.

In view of Theorem 2.3.5, it is possible to derive some new characterizations of the general
representation of the ∗CEPMP inverse.

Corollary 2.3.12. Let A ∈ C
n×n with ind(A) = 1 and let U, V ∈ C

n×n such that V ∈ A{1}.
Then the following statements are equivalent:

(i) A †©,† = UAV ;

(ii) UA = (Ak)†Ak and AkA† = AkV ;

(iii) R(UA) = T , N (A∗) ⊆ N (AkV ) and AUA = A(Ak)†Ak;

(iv) U = A †© + Y (Im − AA†) and V = A† + (In − (Ak)†Ak)Z, for arbitrary Y,Z ∈ C
n×m.

Recall that, in the case that the eigenvalues of A ∈ C
n×n lie in the open right halfplane,

the inverse of A is represented as

A−1 =

∫ ∞

0

exp(−tA)dt.

Some integral representations of different generalized inverses such as the Moore-Penrose and
the Drazin inverse were presented in papers [16, 17, 46]. Some of these integral representations
impose certain restrictions on eigenvalues of A.

We now state some integral representations for the OMP inverse.
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Theorem 2.3.6. Let A ∈ C
m×n
T,S .

(i) If G ∈ C
n×m such that R(G) = T and N (G) = S, then

A
(2),†
T,S =

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗Gdt

∞∫
0

AA∗ exp(−AA∗u)du

=

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗GPR(A) dt.

(ii) If G1 ∈ C
n×m such that R(G1) = T and N (G1) = N (A

(2)
T,SAA†), then

A
(2),†
T,S =

∞∫
0

exp
[−G1(G1AG1)

∗G1At
]
G1(G1AG1)

∗G1 dt.

Proof. (i) By [165, Theorem 2.2] and [46], we have

A
(2)
T,S =

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗G dt

and

A† =

∞∫
0

A∗ exp(−AA∗u)du.

The proof of this part can be completed using the definition of the OMP inverse.

(ii) It is well-known, by Lemma 2.3.1(iii), that A
(2),†
T,S = A

(2)

T,N (A
(2)
T,S

AA†)
. Applying [165,

Theorem 2.2], we obtain that (ii) holds.

For G = Ak and G1 = AkA† in Theorem 2.3.6, where ind(A) = k, we have integral
representations for the DMP inverse.

Corollary 2.3.13. If A ∈ C
n×n and ind(A) = k, then

AD,†=

∞∫
0

exp
[−Ak(A2k+1)∗Ak+1t

]
Ak(A2k+1)∗Akdt

∞∫
0

AA∗ exp(−AA∗u)du

=

∞∫
0

exp
[− Ak(A2k+1)∗Ak+1t

]
Ak(A2k+1)∗AkPR(A) dt

=

∞∫
0

exp
[− AkA†(A2k−1)∗Akt

]
AkA†(A2k−1)∗AkA† dt.

If k = 1 in Corollary 2.3.13, the integral representations for the core inverse can be obtained.

Corollary 2.3.14. If A ∈ C
n×n and ind(A) = 1, then

A
#© =

∞∫
0

exp
[− A(A3)∗A2t

]
A(A3)∗A dt

∞∫
0

AA∗ exp(−AA∗u)du

=

∞∫
0

exp
[− A(A3)∗A2t

]
A(A3)∗APR(A) dt

=

∞∫
0

exp
(− AA†A∗At

)
AA†A∗ dt.

In the case that G = (Ak)†Ak and G1 = (Ak)†AkA† in Theorem 2.3.6, we get new integral
representations for the ∗CEPMP inverse.
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Corollary 2.3.15. Let A ∈ C
n×n and ind(A) = k. Then

A †©,† =

∞∫
0

exp
[− A∗(Ak)†Ak+1t

]
A∗(Ak)†Akdt

∞∫
0

AA∗ exp(−AA∗u)du

=

∞∫
0

exp
[−A∗(Ak)†Ak+1t

]
A∗(Ak)†AkPR(A)dt

=

∞∫
0

exp
[− (Ak)†Ak−1((Ak)†A†)∗t

]
(Ak)†Ak−1((Ak)†A†)∗A†dt.

Notice that investigation of the limit representation of different kinds of generalized inverses
is a hot topics many years. One limit representation for Drazin inverse was proved by Meyer
[90] in 1974. Some limit representations for outer inverses are given in [76, 131, 161].

Proposition 2.3.1. [161] Let A ∈ C
m×n be of rank r, let T be a subspace of Cn of dimension

s ≤ r, and let S be a subspace of Cm of dimension m− s. In addition, suppose that G ∈ C
n×m

satisfies R(G) = T and N (G) = S. If A
(2)
T,S exists, then it possesses the limit representations

A
(2)
T,S = lim

λ→0
(GA+ λI)−1 G = lim

λ→0
G (AG+ λI)−1 . (2.7)

Proposition 2.3.2. [76, Theorem 7] Let A ∈ C
m×n be of rank r, let T be a subspace of Cn of

dimension s ≤ r, and let S be a subspace of Cm of dimension m− s. In addition, suppose that
P ∈ C

n×s
s satisfies R(P ) = T and Q ∈ C

s×m
s satisfies N (Q) = S. If A

(2)
T,S exists, then

A
(2)
T,S = lim

λ→0
P (QAP + λI)−1 Q. (2.8)

The limit representations for the OMP inverse were developed in [108].

Theorem 2.3.7. [108] Let A ∈ C
m×n
T,S , B,B1 ∈ C

n×s
s and C,C1 ∈ C

s×m
s .

(i) If R(B) = T and N (C) = S, then

A
(2),†
R(B),N (C) = lim

t→0
B(tI + CAB)−1C lim

λ→0
AA∗(λI +AA∗)−1

= lim
t→0

B(tI + CAB)−1CPR(A).

In addition, if rank(CABC) = rank(CA), then

A
(2),†
R(B),N (C) = BB

(1,2)
R(C),N (CA)A

†.

(ii) If R(B1) = T and N (C1) = N(A
(2)
T,SAA†), then

A
(2),†
T,S = lim

t→0
B1(tI + C1AB1)

−1C1

= lim
t→0

(tI +B1C1A)−1B1C1 = lim
t→0

B1C1(tI + AB1C1)
−1.

Proof. (i) Using Proposition 2.3.2 and [131], we observe that

A
(2)
T,S = lim

t→0
B(tI + CAB)−1C

and
A† = lim

λ→0
A∗(λI + AA∗)−1 = lim

λ→0
(λI +A∗A)−1A∗.

We can easily complete this part of the proof.
Let rank(CABC) = rank(CA). Because rank(CAB) = rank(C) = rank(B) = s, we have

rank(CA) ≤ rank(C) = rank(CAB) ≤ rank(CA).

Hence, rank(CA) = rank(C) and, by R(CA) ⊆ R(C), R(CA) = R(C). Since rank(CABC) =

rank(CA) = rank(C) = rank(B), the outer inverse B
(2)

R(CA),N (CA)
= B

(1,2)

R(C),N (CA)
exists. Then

the limit representation of the OMP inverse can be transformed using Theorem 2.3.7(i) into

A
(2),†
R(B),N (C)

= lim
t→0

B(tI + CAB)−1CAA†.

Applying Proposition 2.3.1, one can conclude

A
(2),†
R(B),N (C) = BB

(2)
R(CA),N (CA)A

† = BB
(1,2)
R(C),N (CA)A

†.

(ii) It follows by Lemma 2.3.1 and Proposition 2.3.2.
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Theorem 2.3.7 gives limit representations for the DMP, core and ∗CEPMP inverses.

Corollary 2.3.16. If A ∈ C
n×n and ind(A) = k, then

AD,† = lim
t→0

Ak(tI + A2k)−1AkA†

= lim
t→0

(tI + A2k)−1A2kA† = lim
t→0

A2kA†(tI + A2k+1A†)−1

= lim
t→0

Ak(tI + A2k+1)−1Ak lim
λ→0

AA∗(λI + AA∗)−1

= Ak(Ak)#A†.

Corollary 2.3.17. If A ∈ C
n×n and ind(A) = 1, then

A#© = lim
t→0

A(tI + A2)−1AA†

= lim
t→0

(tI + A2)−1A2A† = lim
t→0

A2A†(tI + A3A†)−1

= lim
t→0

A(tI + A3)−1A lim
λ→0

AA∗(λI + AA∗)−1.

Corollary 2.3.18. If A ∈ C
n×n and ind(A) = k, then

A †©,† = lim
t→0

(Ak)∗(tI + Ak+1(Ak)∗)−1Ak lim
λ→0

AA∗(λI +AA∗)−1

= lim
t→0

(Ak)∗(tI + Ak+1(Ak)∗)−1AkPR(A)

= lim
t→0

(Ak)∗(tI + Ak(Ak)∗)−1AkA†

= lim
t→0

(tI + (Ak)∗Ak)−1(Ak)∗AkA†

= lim
t→0

(Ak)∗AkA†(tI + A(Ak)∗AkA†)−1

= (Ak)†AkA†.

2.4 MPO inverses

We now investigate characterizations of the second inverse introduced using the Moore-Penrose
inverse and the outer inverse, known as the MPO inverse. The MPO inverse can become the
dual core inverse, the MPD inverse and the MPCEP inverse under particular conditions.

2.4.1 Characterizations of the MPO inverse

In this subsection, we present characterizations of the MPO inverse. Applying these results, we
characterize the dual core inverse, the MPD inverse and the MPCEP inverse.

The MPO inverse was defined in [108] as a solution of the adequate system of equations.

Theorem 2.4.1. [108] If A ∈ C
m×n
T,S , the system of equations

XAX = X, AX = AA
(2)
T,S and XA = A†AA

(2)
T,SA (2.9)

is consistent and its unique solution is X = A†AA
(2)
T,S.

Definition 2.4.1. [108] Let A ∈ C
m×n
T,S . The MPO (or Moore-Penrose outer) inverse of A is

defined as
A

†,(2)
T,S = A†AA

(2)
T,S.

The main particular cases of the MPO inverse are listed as follows.

(i) For m = n, ind(A) = k and A
(2)
T,S = AD, notice that the system (2.9) becomes

XAX = X, AX = AAD and XA = A†AADA. (2.10)

According to Theorem 2.4.1, the MPD inverseX := A†AAD = A†,D is the unique solution
to (2.10) and it is a special case of the MPO inverse.

(ii) In the case that m = n, ind(A) = 1 and A
(2)
T,S = A#, by Theorem 2.4.1, the unique

solution to the system

XAX = X, AX = AA# and XA = A†A

is X = A†AA# = A#©. So, the MPO inverse coincides with the dual core inverse in such
particular case.
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(iii) Let m = n, ind(A) = k and A
(2)
T,S = A †©. Then the MPO inverse reduces to the MPCEP

inverse [19].

We now state algebraic characterizations of the MPO inverse.

Theorem 2.4.2. If A ∈ C
m×n
T,S , the following statements are equivalent:

(i) X ∈ C
n×m is the MPO inverse A†AA

(2)
T,S of A;

(ii) XAX = X, AXA=AA
(2)
T,SA, AX=AA

(2)
T,S, XA=A†AA

(2)
T,SA;

(iii) A†AA
(2)
T,SAX = X, AX = AA

(2)
T,S;

(iv) XAA
(2)
T,S = X, XA = A†AA

(2)
T,SA;

(v) XAA
(2)
T,SAX=X, AA

(2)
T,SAX=AA

(2)
T,S, XAA

(2)
T,SA=A†AA

(2)
T,SA;

(vi) XAA
(2)
T,SAX = X, AA

(2)
T,SAXAA

(2)
T,SA = AA

(2)
T,SA,

AA
(2)
T,SAX = AA

(2)
T,S, XAA

(2)
T,SA = A†AA

(2)
T,SA;

(vii) A†AA
(2)
T,SAX = X, AA

(2)
T,SAX = AA

(2)
T,S;

(viii) XAA
(2)
T,S = X, XAA

(2)
T,SA = A†AA

(2)
T,SA;

(ix) A†AX = X, A∗AX = A∗AA
(2)
T,S;

(x) A†AX = X, AX = AA
(2)
T,S.

If we suppose that T and S are the range and the null spaces of adequate matrices B and
C, respectively, we develop the next characterizations of the MPO inverse A†AA

(2)
R(B),N (C) as in

[108, Theorem 2.5].

Theorem 2.4.3. [108, Theorem 2.5] If B ∈ C
n×k, C ∈ C

l×m and A ∈ C
m×n
R(B),N (C), the following

statements are equivalent:

(i) X ∈ C
n×m is the MPO inverse A†AA

(2)
R(B),N (C) of A;

(ii) XAB = A†AB, XAA
(2)

R(B),N (C)
= X;

(iii) AXAB = AB, A†AXAA
(2)
R(B),N (C) = X;

(iv) A∗AXAB = A∗AB, A†AXAA
(2)

R(B),N (C) = X;

(v) CAX = C, A†AA
(2)

R(B),N (C)
AX = X;

(vi) CAXA = CA, A
(2)
R(B),N (C)AXAA† = X;

(vii) CAXAA∗ = CAA∗, A
(2)

R(B),N (C)
AXAA† = X.

Applying Theorem 2.4.2, necessary and sufficient conditions for a matrix to be the MPD
inverse, the dual core inverse and the MPCEP inverse can be verified.

Corollary 2.4.1. If A ∈ C
n×n and ind(A) = k, the following statements are equivalent:

(i) X ∈ C
n×n is the MPD inverse A†AAD of A;

(ii) XAX = X, AXA = AADA, AX = AAD, XA = A†AADA;

(iii) A†AADAX = X, AX = AAD;

(iv) XAAD = X, XA = A†AADA;

(v) XAADAX = X, AADAX = AAD, XAADA = A†AADA;

(v’) XAADAX = X, Ak+1X = Ak, XAk = A†Ak;

(vi) XAADAX = X, AADAXAADA = AADA,
AADAX = AAD, XAADA = A†AADA;

(vi’) XAADAX=X, AkXAk=A2k−1, Ak+1X= Ak, XAk=A†Ak;

(vii) A†AADAX = X, Ak+1X = Ak;

(vii’) A†AADAX = X, AADAX = AAD;

(viii) XAAD = X, XAADA = A†AADA;

(viii’) XAAD = X, XAk = A†Ak;

(ix) A†AX = X, A∗AX = A∗AAD;
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(x) A†AX = X, AX = AAD.

Corollary 2.4.2. If A ∈ C
n×n and ind(A) = 1, the following statements are equivalent:

(i) X ∈ C
n×n is the dual core inverse A†AA# of A;

(ii) XAX = X, AXA = A, AX = AA#, XA = A†A;

(iii) A†AX = X, AX = AA#;

(iv) XAA# = X, XA = A†A;

(v) XAX = X, A2X = A, XA = A†A;

(vi) XAX = X, AXA = A, A2X = A, XA = A†A;

(vii) A†AX = X, A2X = A;

(viii) A†AX = X, A∗AX = A∗AA#.

Corollary 2.4.3. If A ∈ C
n×n and ind(A) = k, the following statements are equivalent:

(i) X ∈ C
n×m is the MPCEP inverse A†AA †© of A;

(ii) XAX = X, AXA = AA †©A, AX = AA †©, XA = A†AA †©A;

(iii) A†AA †©AX = X, AX = AA †©;

(iv) XAA †© = X, XA = A†AA †©A;

(v) XAA †©AX = X, AA †©AX = AA †©, XAA †© = A†AA †©;

(v’) XAk(Ak)†AX = X, (Ak)∗AX = (Ak)∗, XAk = A†Ak;

(vi) XAA †©AX = X, AA †©AXAA †©A = AA †©A,
AA †©AX = AA †©, XAA †©A = A†AA †©A;

(vi’) XAk(Ak)†AX = X, Ak(Ak)†AXAk = Ak,
(Ak)∗AX = (Ak)∗, XAk = A†Ak;

(vii) A†AA †©AX = X, AA †©AX = AA †©;

(vii’) A†Ak(Ak)†AX = X, (Ak)∗AX = (Ak)∗;

(viii) XAk(Ak)† = X, XAk = A†Ak;

(viii’) XAA †© = X, XAA †©A = A†AA †©A;

(ix) A†AX = X, A∗AX = A∗AA †©;

(x) A†AX = X, AX = AA †©.

Projectors determined by the MPO inverse are studied in the following result as well as the
range and null space of the MPO inverse.

Lemma 2.4.1. If A ∈ C
m×n
T,S , then

(i) AA
†,(2)
T,S is a projector onto R(AA

(2)
T,S) along S;

(ii) A
†,(2)
T,S A is a projector onto R(A†AA

(2)
T,S) along N (A

(2)
T,SA);

(iii) A
†,(2)
T,S = A

(2)

R(A†AA
(2)
T,S

),S
.

Lemma 2.4.1 gives corresponding properties of the MPD, dual core and MPCEP inverses.

Corollary 2.4.4. If A ∈ C
n×n and ind(A) = k, then:

(i) AA†,D is a projector onto R(Ak) along N (Ak);

(ii) A†,DA is a projector onto R(A†Ak) along N (Ak);

(iii) A†,D = A
(2)

R(A†Ak),N (Ak)
= A

(2)

R(A†Ak),N (A†Ak)
.

Corollary 2.4.5. If A ∈ C
n×n and ind(A) = 1, then:

(i) AA#© is a projector onto R(A) along N (A);

(ii) A#©A is a projector onto R(A∗) along N (A);

(iii) A#© = A
(2)
R(A∗),N (A) = A

(2)
R(A∗A),N (A∗A).

Corollary 2.4.6. If A ∈ C
n×n and ind(A) = k, then:

(i) AA†, †© is the orthogonal projector onto R(Ak);

(ii) A†, †©A is a projector onto R(A†Ak) along N ((Ak)∗A);
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(iii) A†, †© = A
(2)

R(A†Ak),N ((Ak)∗)
= A

(2)

R(A†Ak(Ak)∗),N (A†Ak(Ak)∗)
.

Parts (i) and (ii) of Corollary 2.4.6 are special cases of parts (i) and (ii) of [19, Lemma 2.1],
respectively.

By [108, Theorem 2.8], the MPO inverse is characterized from a geometrical approach.

Theorem 2.4.4. [108, Theorem 2.8] If A ∈ C
m×n
T,S , then the constrained matrix equation

AX = P
R(AA

(2)
T,S

),S
and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A
†,(2)
T,S .

According to Theorem 2.4.4, we characterize the MPD inverse, the dual core inverse and
the MPCEP inverse by a geometrical point of view.

Corollary 2.4.7. If A ∈ C
n×n and ind(A) = k, then the constrained matrix equation

AX = PR(Ak),N (Ak) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A†,D.

Corollary 2.4.8. If A ∈ C
n×n and ind(A) = 1, then the constrained matrix equation

AX = PR(A),N (A) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A#©.

Corollary 2.4.9. If A ∈ C
n×n and ind(A) = k, then the system of conditions

AX = PR(Ak) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A†, †©.

Remark that Corollary 2.4.9 is a particular case of [19, Theorem 2.3].

2.4.2 Representations of the MPO inverse

In this subsections, we give the general, integral and limit representations of the MPO inverse.
The general form for the MPO inverse is given in Theorem 2.4.5.

Theorem 2.4.5. Let A ∈ C
m×n
T,S and let U, V ∈ C

n×m such that V ∈ A{1}. Then the following
statements are equivalent:

(i) A
†,(2)
T,S = V AU ;

(ii) AU = AA
(2)
T,S, A

†AA
(2)
T,S = V AA

(2)
T,S;

(iii) N (AU) = S, R(V AA
(2)
T,S) ⊆ R(A∗), AUA = AA

(2)
T,SA;

(iv) U = A
(2)
T,S + (In − A†A)Y and V = A† + Z(Im −AA

(2)
T,S), for arbitrary Y,Z ∈ C

n×m.

Using Theorem 2.4.5, we get representations of the MPD, dual core and MPCEP inverses
in the most general form.

Corollary 2.4.10. Let A ∈ C
n×n with ind(A) = k and let U, V ∈ C

n×n such that V ∈ A{1}.
Then the following statements are equivalent:

(i) A†,D = V AU ;

(ii) AU = AAD, A†Ak = V Ak;

(iii) N (AU) = N (Ak), R(V Ak) ⊆ R(A∗), AUA = AADA;

(iv) U = AD + (In − A†A)Y and V = A† + Z(Im −AAD), for arbitrary Y,Z ∈ C
n×n.

Corollary 2.4.11. Let A ∈ C
n×n with ind(A) = 1 and let U, V ∈ C

n×n such that V ∈ A{1}.
Then the following statements are equivalent:

(i) A#© = V AU ;

(ii) AU = AA#. A†A = V A;

(iii) N (AU) = N (A), R(V A) ⊆ R(A∗) and AUA = A;

(iv) U = A# + (In − A†A)Y and V = A† + Z(Im − AA#), for arbitrary Y,Z ∈ C
n×n.
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Corollary 2.4.12. Let A ∈ C
n×n with ind(A) = k and let U, V ∈ C

n×n such that V ∈ A{1}.
Then the following statements are equivalent:

(i) A†, †© = V AU ;

(ii) AU = Ak(Ak)†, A†Ak = V Ak;

(iii) N (AU) = N ((Ak)∗), R(V Ak) ⊆ R(A∗), AUA = Ak(Ak)†A;

(iv) U = A#© + (In − A†A)Y and V = A† + Z(Im − Ak(Ak)†), for arbitrary Y,Z ∈ C
n×n.

It is observable that Corollary 2.4.12 is a special case of [19, Theorem 2.7].

The general integral representations for the MPO inverse are presented in Theorem 2.4.6.

Theorem 2.4.6. Let A ∈ C
m×n
T,S .

(i) If G ∈ C
n×m such that R(G) = T and N (G) = S, then

A
†,(2)
T,S =

∞∫
0

A∗ exp(−AA∗u)duA

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗Gdt

=

∞∫
0

PR(A∗) exp
[−G(GAG)∗GAt

]
G(GAG)∗G dt.

(ii) If G2 ∈ C
n×m such that R(G2) = R(A†AA

(2)
T,S) and N (G2) = S, then

A
†,(2)
T,S =

∞∫
0

exp
[−G2(G2AG2)

∗G2At
]
G2(G2AG2)

∗G2 dt.

Using Theorem 2.4.6, we can derive integral representations for the MPD, dual core and
MPCEP inverses.

Corollary 2.4.13. If A ∈ C
n×n with ind(A) = k, then

A†,D =

∞∫
0

A∗ exp(−AA∗u)duA

∞∫
0

exp
[−Ak(A2k+1)∗Ak+1t

]
Ak(A2k+1)∗Akdt

=

∞∫
0

PR(A∗) exp
[− Ak(A2k+1)∗Ak+1t

]
Ak(A2k+1)∗Akdt

=

∞∫
0

exp
[− A†Ak(A2k−1)∗A†Ak+1t

]
A†Ak(A2k−1)∗A†Akdt.

Corollary 2.4.14. If A ∈ C
n×n with ind(A) = 1, then

A#© =

∞∫
0

A∗ exp(−AA∗u)duA

∞∫
0

exp
[− A(A3)∗A2t

]
A(A3)∗Adt

=

∞∫
0

PR(A∗) exp
[− A(A3)∗A2t

]
A(A3)∗Adt

=

∞∫
0

exp
(− A∗A†A2t

)
A∗A†Adt.

Corollary 2.4.15. Let A ∈ C
n×n with ind(A) = k.

A†, †© =

∞∫
0

A∗ exp(−AA∗u)duA

∞∫
0

exp
[− Ak(Ak)†A∗Ak+1t

]
Ak(Ak)†A∗Akdt

=

∞∫
0

PR(A∗) exp
[− Ak(Ak)†A∗Ak+1t

]
Ak(Ak)†A∗Akdt

=

∞∫
0

exp
[− Ak(Ak)†A∗Ak+1t

]
Ak(Ak)†A∗Akdt.
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We also study the limit representations for the MPO inverse.

Theorem 2.4.7. Let A ∈ C
m×n
T,S , B,B1 ∈ C

n×s
s and C,C1 ∈ C

s×m
s .

(i) If R(B) = T and N (C) = S, then

A
†,(2)
R(B),N (C) = lim

λ→0
(λI +A∗A)−1A∗A lim

t→0
B(tI + CAB)−1C

= lim
t→0

PR(A∗)B(tI + CAB)−1C.

In addition, if rank(BCAB) = rank(AB), then

A
†,(2)
R(B),N (C) = A†C

(1,2)
R(AB),N (B)C.

(ii) If R(B2) = R(A†AA
(2)
T,S) and N (C2) = S, then

A
†,(2)
T,S = lim

t→0
B2(tI + C2AB2)

−1C2

= lim
t→0

(tI +B2C2A)−1B2C2 = lim
t→0

B2C2(tI + AB2C2)
−1.

As consequences of Theorem 2.4.7, we get the limit representations for the MPD, dual core
and MPCEP inverses.

Corollary 2.4.16. If A ∈ C
n×n and ind(A) = k, then

A†,D = lim
t→0

A†Ak(tI +A2k)−1Ak

= lim
t→0

(tI + A†A2k+1)−1A†A2k = lim
t→0

A†A2k(tI + A2k)−1

= lim
λ→0

(λI + A∗A)−1A∗A lim
t→0

Ak(tI +A2k+1)−1Ak

= A†(Ak)#Ak.

Corollary 2.4.17. If A ∈ C
n×n and ind(A) = 1, then

A#© = lim
t→0

A†A(tI + A2)−1A

= lim
t→0

(tI + A†A3)−1A†A2 = lim
t→0

A†A2(tI + A2)−1

= lim
λ→0

(λI + A∗A)−1A∗A lim
t→0

A(tI + A3)−1A.

Corollary 2.4.18. If A ∈ C
n×n and ind(A) = k, then

A†, †© = lim
t→0

A†Ak(tI + (Ak)†Ak)−1(Ak)†

= lim
t→0

(tI + A†Ak(Ak)†A)−1A†Ak(Ak)†

= lim
t→0

A†Ak(Ak)†(tI + Ak(Ak)†)−1

= lim
λ→0

(λI + A∗A)−1A∗A lim
t→0

A†Ak(tI + (Ak)∗Ak)−1(Ak)∗

= A†Ak(Ak)†.

For more representations of the MPCEP inverse see [107].

2.5 MPOMP inverses

The third type of outer inverses defined in terms which include an outer inverse and the Moore-
Penrose inverse is the MPOMP inverse. This new outer inverse reduces to the MPCMP inverse
in a particular special case.

2.5.1 Characterizations of the MPOMP inverse

Several equivalent conditions for a rectangular complex matrix to be the MPOMP inverse are
established in this subsection.

We firstly present the MPOMP inverse by an algebraic approach.
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Theorem 2.5.1. If A ∈ C
m×n
T,S , the system of equations

XAX = X, AX = AA
(2)
T,SAA†, XA = A†AA

(2)
T,SA (2.11)

is consistent and its unique solution is X = A†AA
(2)
T,SAA†.

Definition 2.5.1. Let A ∈ C
m×n
T,S . The MPOMP (or Moore-Penrose outer Moore-Penrose)

inverse of A is defined as
A

†,(2),†
T,S = A†AA

(2)
T,SAA†.

Consider the next special MPOMP inverses:

(i) If m = n, ind(A) = k and A
(2)
T,S = AD, the system (2.11) reduces to

XAX = X, AX = AADAA†, XA = A†AADA, (2.12)

which has the unique solution X = A†AADAA† = Ac,†. Hence, the MPOMP becomes
the CMP inverse in this case.

(ii) For m = n, ind(A) = 1 and A
(2)
T,S = A#, the unique solution of

XAX = X, AX = AA†, XA = A†A

is X = A†AA† = A† and so the MPOMP inverse reduces to the MP inverse in this
particular choice.

(iii) When m = n, ind(A) = k and A
(2)
T,S = A †©, the MPOMP inverse becomes the MPCEP

inverse [19].

Several characterizations of the MPOMP inverse are listed in the following results, restated
from [108].

Theorem 2.5.2. [108] If A ∈ C
m×n
T,S , the following statements are equivalent:

(i) X ∈ C
n×m is the MPOMP inverse A†AA

(2)
T,SAA† of A;

(ii) XAX = X, AXA = AA
(2)
T,SA,

AX = AA
(2)
T,SAA†, XA = A†AA

(2)
T,SA;

(iii) A†AA
(2)
T,SAX = X, AX = AA

(2)
T,SAA†;

(iv) XAA
(2)
T,SAA† = X, XA = A†AA

(2)
T,SA;

(v) XAA
(2)
T,SAX=X, AA

(2)
T,SAX=AA

(2)
T,SAA†, XAA

(2)
T,SA=A

†AA
(2)
T,SA;

(vi) XAA
(2)
T,SAX = X, AA

(2)
T,SAXAA

(2)
T,SA = AA

(2)
T,SA,

AA
(2)
T,SAX = AA

(2)
T,SAA†, XAA

(2)
T,SA = A†AA

(2)
T,SA;

(vii) A†AA
(2)
T,SAX = X, AA

(2)
T,SAX = AA

(2)
T,SAA†;

(viii) XAA
(2)
T,SAA† = X, XAA

(2)
T,SA = A†AA

(2)
T,SA;

(ix) A†AXAA† = X, A∗AXAA∗ = A∗AA
(2)
T,SAA∗;

(x) A†AXAA† = X, AXA = AA
(2)
T,SA.

Some characterizations of the MPOMP inverse A†AA
(2)

R(B),N (C)
AA† are presented in Theo-

rem 2.5.3 .

Theorem 2.5.3. If B ∈ C
n×k, C ∈ C

l×m and A ∈ C
m×n
R(B),N (C)

, the following statements are
equivalent:

(i) X ∈ C
n×m is the MPOMP inverse A†AA

(2)

R(B),N (C)AA† of A;

(ii) XAB = A†AB, XAA
(2)

R(B),N (C)AA† = X;

(iii) AXAB = AB, A†AXAA
(2)
R(B),N (C)AA† = X;

(iv) A∗AXAB = A∗AB, A†AXAA
(2)
R(B),N (C)AA† = X;

(v) CAX = CAA†, A†AA
(2)
R(B),N (C)AX = X;

(vi) CAXA = CA, A†AA
(2)
R(B),N (C)AXAA† = X;
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(vii) CAXAA∗ = CAA∗, A†AA
(2)
R(B),N (C)AXAA† = X.

By Theorem 2.5.2, the following characterizations of the CMP inverse are developed. Some
of these characterizations were involved in [177, Theorem 2.3].

Corollary 2.5.1. If A ∈ C
n×n and ind(A) = k, the following statements are equivalent:

(i) X ∈ C
n×n is the CMP inverse A†AADAA† of A;

(ii) XAX = X, AXA = AADA,
AX = AADAA†, XA = A†AADA;

(iii) A†AADAX = X, AX = AADAA†;

(iv) XAADAA† = X, XA = A†AADA;

(v) XAADAX = X, AADAX = AADAA†, XAADA = A†AADA;

(v’) XAADAX = X, AkX = AkA†, XAk = A†Ak;

(vi) XAADAX = X, AADAXAADA = AADA,
AADAX = AADAA†, XAADA = A†AADA;

(vi’) XAADAX = X, AkXAk = A2k−1,
AkX = AkA†, XAk = A†Ak;

(vii) A†AADAX = X, AADAX = AADAA†;

(vii’) A†AADAX = X, AkX = AkA†;

(viii) XAADAA† = X, XAADA = A†AADA;

(viii’) XAADAA† = X, XAk = A†Ak;

(ix) A†AXAA† = X, A∗AXAA∗ = A∗AADAA∗;

(x) A†AXAA† = X, AXA = AADA.

Lemma 2.5.1 investigates the range and null space of the MPOMP inverse as well as the
projectors which contain the MPOMP inverse.

Lemma 2.5.1. If A ∈ C
m×n
T,S , then

(i) AA
†,(2),†
T,S is a projector onto R(AA

(2)
T,S) along N (A

(2)
T,SAA†);

(ii) A
†,(2),†
T,S A is a projector onto R(A†AA

(2)
T,S) along N (A

(2)
T,SA);

(iii) A
†,(2),†
T,S = A

(2)

R
(
A†AA

(2)
T,S

)
,N

(
A

(2)
T,S

AA†
).

As a consequence of Lemma 2.5.1, we describe the projectors determined by the CMP
inverse and also the range and the null space of the CMP inverse.

Corollary 2.5.2. If A ∈ C
n×n and ind(A) = k, then

(i) AAc,† is a projector onto R(Ak) along N (AkA†);

(ii) Ac,†A is a projector onto R(A†Ak) along N (Ak);

(iii) Ac,† = A
(2)

R(A†Ak),N(AkA†)
.

We give one more characterization of the MPOMP inverse proved in [108, Theorem 2.8].

Theorem 2.5.4. If A ∈ C
m×n
T,S , then the system of conditions

AX = P
R

(
AA

(2)
T,S

)
,N

(
A

(2)
T,S

AA†
) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A
†,(2),†
T,S .

Applying Theorem 2.5.4, we present a characterization of the CMP inverse, which recovers
[100, Corollary 2.3].

Corollary 2.5.3. If A ∈ C
n×n and ind(A) = k, then the system of conditions

AX = PR(Ak),N (AkA†) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = Ac,†.
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Necessary and sufficient conditions which include the OMP, MPO and MPOMP inverses
and ensure that the equality AA

(2)
T,SA = A holds, are given in the next result. It is interesting

to note that A
(2)
T,S ∈ A{1} ⇐⇒ A

(2),†
T,S ∈ A{1} ⇐⇒ A

†,(2)
T,S ∈ A{1} ⇐⇒ A

†,(2),†,
T,S ∈ A{1}.

Theorem 2.5.5. Let A, T , S satisfy the assumptions of Theorem 2.3.1. The following state-
ments are equivalent:

(i) AA
(2)
T,SA = A;

(ii) AA
(2),†
T,S = AA†;

(iii) A
†,(2)
T,S A = A†A;

(iv) AA
†,(2),†
T,S = AA†;

(v) A
†,(2),†
T,S A = A†A;

(vi) A
†,(2),†
T,S = A†;

(vii) AA
(2),†
T,S A = A;

(viii) AA
†,(2)
T,S A = A;

(ix) AA
†,(2),†
T,S A = A.

Proof. (i) ⇔ (ii): From A
(2),†
T,S = A

(2)
T,SAA†, we deduce that AA

(2),†
T,S = AA† is equivalent to

AA
(2)
T,SAA† = AA†. Multiplying the equality AA

(2)
T,SAA† = AA† by A from the right hand side,

we obtain AA
(2)
T,SA = A. On the other hand, multiplying AA

(2)
T,SA = A by A† from the right

hand side, we get AA
(2)
T,SAA† = AA†. Thus, (i) and (ii) are equivalent.

In a similar manner, we show that (i) is equivalent to (iii)-(ix).

We also can present the following relations between some projectors involving the OMP,
MPO and MPOMP inverses.

Theorem 2.5.6. Let A, T , S satisfy the assumptions of Theorem 2.3.1. Then

(i) A
(2),†
T,S = A† if and only if A

(2)
T,SA = A†A if and only if A

(2),†
T,S A = A†A;

(ii) A
(2),†
T,S = A∗ if and only if A

(2)
T,SA = A∗A if and only if A

(2),†
T,S A = A∗A;

(iii) A
†,(2)
T,S = A† if and only if AA

(2)
T,S = AA† if and only if AA

†,(2)
T,S = AA†;

(iv) A
†,(2)
T,S = A∗ if and only if AA

(2)
T,S = AA∗ if and only if AA

†,(2)
T,S = AA∗;

(v) A
†,(2),†
T,S = A∗ if and only if AA

(2)
T,SA = AA∗A;

(vi) A
(2),†
T,S = 0 if and only if A

(2)
T,S = 0 if and only if A

†,(2)
T,S = 0 if and only if A

†,(2),†
T,S = 0.

Proof. (i) Note that, by A
(2),†
T,S A = A

(2)
T,SA,

A
(2),†
T,S = A† ⇔ A

(2)
T,SAA† = A† ⇔ A

(2)
T,SA = A†A ⇔ A

(2),†
T,S A = A†A.

(ii) This part can be proved similarly as part (i), using A∗ = A∗AA†.
The rest of the proof follows analogously.

2.5.2 Representations of the MPOMP inverse

The general form, the integral and limit representations of the MPOMP inverse are presented
in this subsection.

We give maximal classes of complex matrices for which the representation of the MPOMP
inverse is still valid.

Theorem 2.5.7. Let A ∈ C
m×n
T,S and let Q,U, V ∈ C

n×m such that Q,V ∈ A{1}. Then the
following statements are equivalent:

(i) A
†,(2),†
T,S = QAUAV ;

(ii) AUA = AA
(2)
T,SA, QAA

(2)
T,SA = A†AA

(2)
T,SA, AA

(2)
T,SAV = AA

(2)
T,SAA†;

(iii) R(QAA
(2)
T,SA) ⊆ R(A∗), N (A∗) ⊆ N (AA

(2)
T,SAV ), AUA = AA

(2)
T,SA;

(iv) U = A†AA
(2)
T,SAA† + Y − A†AY AA†, Q = A† + Z(Im − AA

(2)
T,S) and V = A† + (In −

A
(2)
T,SA)W , for arbitrary Y,Z,W ∈ C

n×m.

52



2.5. MPOMP INVERSES 45

By Theorem 2.5.7, we obtain the next result about the CMP inverse which generalizes [39,
Theorem 4.1].

Corollary 2.5.4. Let A ∈ C
n×n with ind(A) = k and let Q,U, V ∈ C

n×n such that Q,V ∈
A{1}. Then the following statements are equivalent:

(i) Ac,† = QAUAV ;

(ii) AUA = AADA, QAk = A†Ak, AkV = AkA†;

(iii) R(QAk) ⊆ R(A∗), N (A∗) ⊆ N (AkV ), AUA = AADA;

(iv) U = A†AADAA†+Y −A†AY AA†, Q = A†+Z(In−AAD) and V = A†+(In−ADA)W ,
for arbitrary Y,Z,W ∈ C

n×n.

Integral representations of the MPOMP inverse are given in Theorem 2.5.8.

Theorem 2.5.8. Let A ∈ C
m×n
T,S .

(i) If G ∈ C
n×m such that R(G) = T and N (G) = S, then

A
†,(2),†
T,S =

∞∫
0

A∗ exp(−AA∗u)du A

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗G dt

×
∞∫
0

AA∗ exp(−AA∗v)dv

=

∞∫
0

PR(A∗) exp
[−G(GAG)∗GAt

]
G(GAG)∗GPR(A)dt.

(ii) If G3 ∈ C
n×m such that R(G3) = R(A†AA

(2)
T,S) and N (G3) = N (A

(2)
T,SAA†), then

A
†,(2)
T,S =

∞∫
0

exp
[−G3(G3AG3)

∗G3At
]
G3(G3AG3)

∗G3 dt.

By Theorem 2.5.8, we propose integral representations for the CMP inverse.

Corollary 2.5.5. If A ∈ C
n×n and ind(A) = k, then

Ac,† =

∞∫
0

A∗ exp(−AA∗u)du

× A

∞∫
0

exp
[−Ak(A2k+1)∗Ak+1t

]
Ak(A2k+1)∗Ak dt

×
∞∫
0

AA∗ exp(−AA∗v)dv

=

∞∫
0

PR(A∗) exp
[− Ak(A2k+1)∗Ak+1t

]
Ak(A2k+1)∗Ak PR(A) dt

=

∞∫
0

exp
[−A†Ak−1(A†A2k−1A†)∗Ak−1t

]
A†Ak(A†A2k−1A†)∗Ak−1dt.

The limit representations for the MPOMP inverse are stated in the following theorem.

Theorem 2.5.9. Let A ∈ C
m×n
T,S , B,B1 ∈ C

n×s
s and C,C1 ∈ C

s×m
s .

(i) If R(B) = T and N (C) = S, then

A
†,(2),†
R(B),N (C) = lim

λ→0
(λI +A∗A)−1A∗A lim

t→0
B(tI + CAB)−1C

× lim
λ→0

AA∗(λI + AA∗)−1

= lim
t→0

PR(A∗)B(tI + CAB)−1CPR(A).

In addition, if rank(CABC) = rank(CA) and rank(BCAB) = rank(AB), then

A
†,(2),†
R(B),N (C) = A†C

(1,2)
R(AB),N (B)CPR(A)

= PR(A∗)BB
(1,2)
R(C),N (CA)A

†.
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(ii) If R(B3) = R(A†AA
(2)
T,S) and N (C3) = N (A

(2)
T,SAA†), then

A
†,(2),†
T,S = lim

t→0
B3(tI + C3AB3)

−1C3

= lim
t→0

(tI +B3C3A)−1B3C3 = lim
t→0

B3C3(tI + AB3C3)
−1.

Corollary 2.5.6. If A ∈ C
n×n and ind(A) = k, then

Ac,† = lim
t→0

A†Ak(tI + A2k−1)−1AkA†

= lim
t→0

(tI +A†A2k)−1A†A2kA† = lim
t→0

A†A2kA†(tI + A2kA†)−1

= lim
λ→0

(λI+A∗A)−1A∗A lim
t→0

Ak(tI+A2k+1)−1Ak lim
λ→0

AA∗(λI+AA∗)−1

= A†(Ak)#AkA†PR(A)

= PR(A∗)A
k(Ak)#A†.

Notice that some integral and limit representations of the CMP inverse proved in [96] are
recovered in Corollary 2.5.6.

2.6 Examples about OMP and MPO inverses

This section is aimed to numerical illustration of presented results.

Example 2.6.1. Consider the matrix

A =

⎡
⎢⎢⎣

2 0 0
−a a a
−a −a −a
2 0 1

⎤
⎥⎥⎦ , a ∈ R,

in conjunction with

B =

⎡
⎣ 1 0

a 0
0 a

⎡
⎣ , C =

⎡
⎣ 1 a a 1

1 a a 1
0 0 1 1

⎤
⎦ .

These matrices satisfy rank(A) = 3, rank(B) = rank(C) = rank(CAB) = 2, which is a guarantee
for the existence of

A
(2)
R(B),N (C) = B(CAB)†C.

Symbolic calculation gives

A
(2)
R(B),N (C) =

⎡
⎢⎢⎢⎣

1
−2a2−a+2

− a
2a2+a−2

−a2+a−1

(a−1)(2a2+a−2)
− a

(a−1)(2a2+a−2)

− a
2a2+a−2

− a2

2a2+a−2

a(−a2+a−1)
(a−1)(2a2+a−2)

− a2

(a−1)(2a2+a−2)
a+2

2a2+a−2

a(a+2)

2a2+a−2
a3−a2−2a+4

(a−1)(2a2+a−2)
−a2+a+2

(a−1)(2a2+a−2)

⎤
⎥⎥⎥⎦ .

Now, the OMP inverse of A is equal to

A
(2),†
R(B),N (C) = A

(2)

R(B),N (C)AA† =⎡
⎢⎢⎢⎢⎣

2a3−2a2−a+2
2a5−a4+a3−6a+4

−a4+a3+a2−a+1
2a5−a4+a3−6a+4

− a4−a3+a+1
2a5−a4+a3−6a+4

− a

(a−1)(2a2+a−2)
a(2a3−2a2−a+2)
2a5−a4+a3−6a+4

−a5+a4+a3−a2+a
2a5−a4+a3−6a+4

− a(a4−a3+a+1)
2a5−a4+a3−6a+4

− a2

(a−1)(2a2+a−2)

− 2(a4−3a2+a+2)
2a5−a4+a3−6a+4

a5+a4−3a3+a2+2a−4

(a−1)(a2+2)(2a2+a−2)
a5−a4−3a3+a2+2a+4

2a5−a4+a3−6a+4
−a2+a+2

(a−1)(2a2+a−2)

⎤
⎥⎥⎥⎥⎦ .

Further, the MPO inverse of A is equal to

A
†,(2)
R(B),N (C) = A†AA

(2)
R(B),N (C) =⎡

⎢⎢⎢⎣
1

−2a2−a+2
− a

2a2+a−2
−a2+a−1

(a−1)(2a2+a−2)
− a

(a−1)(2a2+a−2)

− a
2a2+a−2

− a2

2a2+a−2
− a(a2−a+1)

(a−1)(2a2+a−2)
− a2

(a−1)(2a2+a−2)
a+2

2a2+a−2

a(a+2)

2a2+a−2
a3−a2−2a+4

(a−1)(2a2+a−2)
−a2+a+2

(a−1)(2a2+a−2)

⎤
⎥⎥⎥⎦ .
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and the MPOMP inverse is

A
†,(2),†
R(B),N (C)

= A†AA
(2)

R(B),N (C)
AA† =⎡

⎢⎢⎢⎢⎣
2a3−2a2−a+2

2a5−a4+a3−6a+4
−a4+a3+a2−a+1
2a5−a4+a3−6a+4

− a4−a3+a+1
2a5−a4+a3−6a+4

− a

(a−1)(2a2+a−2)
a(2a3−2a2−a+2)
2a5−a4+a3−6a+4

−a5+a4+a3−a2+a
2a5−a4+a3−6a+4

− a(a4−a3+a+1)
2a5−a4+a3−6a+4

− a2

(a−1)(2a2+a−2)

− 2(a4−3a2+a+2)
2a5−a4+a3−6a+4

a5+a4−3a3+a2+2a−4

(a−1)(a2+2)(2a2+a−2)
a5−a4−3a3+a2+2a+4

2a5−a4+a3−6a+4
−a2+a+2

(a−1)(2a2+a−2)

⎤
⎥⎥⎥⎥⎦ .

After simplifications, it can be verified that the MPO inverse, OMP as well as MPOMP inverse
satisfy the Penrose equation (2).

Example 2.6.2. Consider the matrix

A =

⎡
⎢⎢⎣

−0.892519 0.625642 0.175331 0.321944 −0.232234
0.365003 −0.163061 −1.49664 0.739601 1.04074
−1.01684 0.739323 −0.190166 0.615956 0.00524681
−0.139044 0.0979357 −0.327397 0.0538087 −0.0193572

⎤
⎥⎥⎦ ,

of rank 3 and matrices

B =

⎡
⎢⎢⎢⎢⎣

0.391719 −0.920874
0.109785 −0.124002
−0.607216 −0.559493
−0.320068 0.835002
0.984287 −0.742661

,

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎣ 0.539054 0.766478 0.155971 0.414893

−0.373504 0.163028 −0.114286 −0.0928122
−0.255181 0.125827 −0.07821 −0.0593588

⎤
⎦

of rank 2. Since rank(A) = 3, rank(B) = rank(C) = rank(CAB) = 2, the existence of

A
(2)

R(B),N (C)
= B(CAB)†C is guaranteed. Numerical calculation gives

A
(2)

R(B),N (C) =

⎡
⎣ 0.996462 1.24348

0.59948 −0.5468
0.436414 −0.367027

⎤
⎦ .

Now, the OMP inverse of A is equal to

A
(2),†
R(B),N (C) = A

(2)
R(B),N (C)AA† =⎡

⎢⎢⎢⎢⎣
−0.301166 0.0326154 −0.360323 −0.219517
−0.0483605 0.0318106 −0.0507907 −0.0246206
−0.0673006 −0.386489 −0.185273 −0.206558
0.268275 −0.0126901 0.325324 0.202088
−0.334358 0.347601 −0.317199 −0.11916

⎤
⎥⎥⎥⎥⎦ .

Further, the MPO inverse of A is equal to

A
†,(2)
R(B),N (C) = A†AA

(2)
R(B),N (C) =⎡

⎢⎢⎢⎢⎣
−0.484834 0.0284051 −0.14671 −0.171859
0.33207 −0.00229212 0.10033 0.122522

−0.209065 −0.425538 −0.0593427 −0.196884
0.10084 0.154856 0.0290746 0.0808309
−0.19085 0.19214 −0.0593712 −0.0169011

⎤
⎥⎥⎥⎥⎦ .

and the MPOMP inverse is

A
†,(2),†
R(B),N (C) = A†AA

(2)
R(B),N (C)AA† =⎡

⎢⎢⎢⎢⎣
−0.273048 0.0763509 −0.314237 −0.18031
0.184742 −0.0356455 0.21687 0.128401

−0.0597676 −0.391739 −0.17744 −0.202841
0.035502 0.140065 0.0807583 0.0834382
−0.131446 0.205588 −0.106361 −0.0192716

⎤
⎥⎥⎥⎥⎦ .

Since the Frobenius norm

‖A(2),†
R(B),N (C)AA

(2),†
R(B),N (C) − A

(2),†
R(B),N (C)‖F = 7.71123 ∗ 10−16

55



48 CHAPTER 2. COMPOSITE GENERALIZED INVERSES

is near zero, it follows that the OMP inverse is an outer inverse. Similar situation appears with
MPO and MPOMP inverses:

‖A†,(2)
R(B),N (C)AA

(2),†
R(B),N (C) − A

(2),†
R(B),N (C)‖F = 4.52153 ∗ 10−16

‖A†,(2),†
R(B),N (C)AA

(2),†
R(B),N (C) − A

(2),†
R(B),N (C)‖F = 7.66812 ∗ 10−16.

In order to verify part (ii) of Theorem 2.3.3, we calculate

CAA
(2),†
R(B),N (C) − CAA†

=

⎡
⎣1.1102 ∗ 10−16 1.1102 ∗ 10−16 1.110210−16 4.44089 ∗ 10−16

2.77556 ∗ 10−17 −2.77556 ∗ 10−17 8.32667 ∗ 10−17 −8.32667 ∗ 10−17

8.32667 ∗ 10−17 −5.5511 ∗ 10−17 1.38778 ∗ 10−16 −1.11022 ∗ 10−16

⎤
⎦ .

Example 2.6.3. Consider the matrix

A =

⎡
⎣ 0.101312 0.0100717 −0.573253 −0.643856

−0.408473 0.7352 1.3185 0.51637
0.897308 −0.72165 −0.0984336 0.837847

⎤
⎦ ,

of rank 3 and matrices

B =

⎡
⎢⎢⎣

0.207101 + 0.408489i 0.899214 − 0.327931i
−0.0828035 + 0.993832i 0.0705601 + 0.443512i
0.00881961 − 0.663084i 0.228649 − 0.730613i
0.478787 − 0.800084i 0.44478 + 0.407056i

,

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

−0.0442875 + 0.0547413i −0.162671 + 0.280591i −0.350576 − 0.156153i
−0.160937 + 0.14094i 0.160623 + 0.254029i −0.32686 − 0.250027i
0.336677 − 0.0543376i −0.450241 − 0.584124i 0.14928 + 0.252637i
−0.695626 − 0.556272i −1.1618 + 1.26054i 0.399886 − 1.54995i

⎤
⎥⎥⎦

of rank 2. Since rank(A) = 3, rank(B) = rank(C) = rank(CAB) = 2, A
(2)
R(B),N (C) =

B(CAB)†C exists, and it is equal to⎡
⎢⎢⎣

0.334828 − 1.10851i −3.02792 − 0.854075i 1.77737 − 0.973814i
0.577164 − 0.381528i −1.3846 − 1.02733i 0.698604 + 0.182486i
−0.450406 − 0.207286i −0.419421 + 0.72282i 0.104675 − 0.902493i
0.0973201 + 0.41839i 1.87974 − 0.542228i 0.0570891 + 1.09417i

⎤
⎥⎥⎦ .

Now, the OMP inverse of A is equal to

A
(2),†
R(B),N (C) = A

(2)
R(B),N (C)AA† =⎡

⎢⎢⎣
0.334828 − 1.10851i −3.02792 − 0.854075i 1.77737 − 0.973814i
0.577164 − 0.381528i −1.3846 − 1.02733i 0.698604 + 0.182486i
−0.450406 − 0.207286i −0.419421 + 0.72282i 0.104675 − 0.902493i
0.0973201 + 0.41839i 1.87974 − 0.542228i 0.0570891 + 1.09417i

⎤
⎥⎥⎦ .

Further, the MPO inverse of A is equal to

A
†,(2)
R(B),N (C) = A†AA

(2)
R(B),N (C) =⎡

⎢⎢⎣
0.348491 − 1.10632i −3.02046 − 0.881221i 1.78521 − 0.949198i
0.143976 − 0.451035i −1.62131 − 0.166675i 0.450141 − 0.597953i
−0.070264 − 0.14629i −0.211697 − 0.0324428i 0.322714 − 0.217621i
−0.245764 + 0.36334i 1.69226 + 0.139407i −0.139693 + 0.476063i

⎤
⎥⎥⎦ .

and the MPOMP inverse is

A
†,(2),†
R(B),N (C)

= A†AA
(2)

R(B),N (C)
AA† =⎡

⎢⎢⎣
0.348491 − 1.10632i −3.02046 − 0.881221i 1.78521 − 0.949198i
0.143976 − 0.451035i −1.62131 − 0.166675i 0.450141 − 0.597953i
−0.070264 − 0.14629i −0.211697 − 0.0324428i 0.322714 − 0.217621i
−0.245764 + 0.36334i 1.69226 + 0.139407i −0.139693 + 0.476063i

⎤
⎥⎥⎦ .

Since the Frobenius norm is

‖A(2),†
R(B),N (C)AA

(2),†
R(B),N (C) − A

(2),†
R(B),N (C)‖F = 7.09538 ∗ 10−15

is near zero, it follows that the OMP inverse is an outer inverse. Similar conclusion is valid for
the MPO and MPOMP inverses:

‖A†,(2)
R(B),N (C)AA

(2),†
R(B),N (C) − A

(2),†
R(B),N (C)‖F = 4.70311 ∗ 10−15

‖A†,(2),†
R(B),N (C)AA

(2),†
R(B),N (C) − A

(2),†
R(B),N (C)‖F = 8.59751 ∗ 10−15.
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2.7 Summary

The OMP, MPO and MPOMP inverses, i.e. composite outer inverses, are presented in [108] in
order to unify and extend the notions of the core, dual core, DMP, MPD, CMP, MPCEP and
∗CEPMP inverses, which are very popular generalized inverses in the recent years. The outer
inverse and the Moore-Penrose inverse are used to define composite outer inverses. Various
characterizations and representations of composite outer inverses are given from [136]. Using
the group, Drazin, core-EP and dual core-EP inverses instead of the outer inverse in presented
results, we obtain many characterizations and expressions for the core, dual core, DMP, MPD,
CMP, MPCEP and ∗CEPMP inverses. Notice that some of these characterizations and expres-
sions for the core, dual core, DMP, MPD, CMP, MPCEP and ∗CEPMP inverses, are well-known,
but some of them are new in literature.

A clear summarization of these particular cases is given in Table 2.1.

Table 2.1: Particular cases of composite outer inverses.

Restrictions A
(2)
T,S Result Ref.

m=n, ind(A)=1A
(2)
T,S = A# A

(2),†
R(A),N (A∗) = A#© = A#AA† [2]

m=n, ind(A)=1A
(2)
T,S = A# A

†,(2)
R(A∗),N (A) = A#© = A†AA# [21]

m = n A
(2)
T,S = AD A

(2),†

R(Ak),N (AkA†)
= AD,† = ADAA† [86]

m = n A
(2)
T,S = AD A

†,(2)

R(A†Ak),N (Ak)
= A†,D = A†AAD [86]

m = n A
(2)
T,S = AD A

†,(2),†

R(A†Ak),N (AkA†)
= Ac,† = A†AADAA† [88]

m = n A
(2)
T,S = A †© A

†,(2)

R(A†Ak),N ((Ak)∗)
= A†, †© = A†AA †© [19]

m = n A
(2)
T,S = A †© A

†,(2)

R((Ak)∗),N (AkA†)
= A †©,† = A †©AA† [19]

One possibility for further research is the generalization to power-composite outer inverses,
proposed in [108]. Another possible extension of OMP, MPO and MPOMP inverses could be
their extension to tensors case.
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Chapter 3

Least squares properties of
generalized inverses

3.1 Least squares and best approximate solutions

The Moore-Penrose inverse and certain solutions to some of Penrose equations play fundamental
role concerning solutions to the general system of linear equations (or SoLE)

Ax = b, A ∈ C
m×n, b ∈ C

m (3.1)

with respect to unknowns x ∈ C
n. Fundamental result is restated in Theorem 3.1.

Theorem 3.1.1. The linear system (3.1) is solvable if and only if b ∈ R(A). Equivalently,
(3.1) has a solution if and only if AA†b = b.

In this case, a general solution to (3.1) is of the form

x = A†b+ (I − A†A)y, for arbitrary y ∈ C
n. (3.2)

An arbitrary inconsistent SoLE, given by

Ax = b, A ∈ C
m×n, b /∈ R(A) (3.3)

has no solution. Then the problem is to find an x which minimizes the residual Ax− b. Then a
vector u ∈ C

n is called a least squares solution to (3.3) if

‖Au− b‖ ≤ ‖Ax− b‖, ∀x ∈ C
n.

The following proposition, restated from [8], shows that ‖Ax−b‖ is minimized by the vector
x = A(1,3)b. This statement establishes very important relation between the set of {1, 3}-inverses
and the least-squares solutions of the system (3.1).

Proposition 3.1.1. Let A ∈ C
m×n and b ∈ C

m. Then ‖Ax− b‖ is smallest when x = A(1,3)b,
where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ C

n×m has the property that, for all b, ‖Ax − b‖ is
smallest when x = Xb, then X ∈ A{1, 3}.

Since A(1,3) inverse of a matrix is not unique, as a consequence, a SoLE has many least-
squares solutions in general. However, among all least-squares solutions of a given SoLE, there
exists only one such solution of minimum norm.

Definition 3.1.1. Let A ∈ C
m×n and b ∈ C

m. A vector x̂, which satisfies the minimization
problem

‖x̂‖ = min
x∈Cn

‖x‖, subject to Ax = b, (3.4)

is called a minimal-norm solution of the system Ax = b.

The next proposition, restated from [8], establishes a relation between {1, 4}-inverses and
the minimum-norm solutions of the linear system Ax = b.

Proposition 3.1.2. Let A ∈ C
m×n and b ∈ C

m. If Ax = b is consistent, the unique solution
x for which ‖x‖ is smallest is given by x = A(1,4)b, where A(1,4) ∈ A{1, 4}. Conversely, if
X ∈ C

n×m is such that, whenever Ax = b has a solution, x = Xb is the solution of minimal-
norm, then X ∈ A{1, 4}.
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3.2. LEAST-SQUARE PROPERTIES OF THEDRAZIN-INVERSE SOLUTION51

The least-squares solution of minimum norm is known as best approximate solution. Joining
the results from Proposition 3.1.1 and Proposition 3.1.2, we are coming to the most important
property of the Moore-Penrose inverse.

Corollary 3.1.1. (Penrose 1955) [122] Let A ∈ C
m×n and b ∈ C

m. Then, among the least-
squares solutions of Ax = b, the solution A†b is the one of minimum-norm. Conversely, if
X ∈ C

n×m has the property that Xb is the minimal-norm least-squares solution of Ax = b for
all b, then X = A†.

In the essence, Corollary 3.1.1 shows that A†b is the minimal-norm least-squares solution of
the linear system Ax = b. This fact caused a dramatic increase of the interest in the generalized
inverses theory.

Furthermore, the next proposition characterizes the set of all least-squares solutions of a
given SoLE.

Proposition 3.1.3. (Nashed 1970, 1976) [119, 118] For A ∈ C
m×n, the set S of all least-squares

solutions of the system Ax = b is given by

S = A†b⊕N (A) = {A†b+ (I − A†A)y| y ∈ C
n}.

These results are extended in solving the linear matrix equations (LME) AX = B. More
precisely, the Moore-Penrose inverse satisfies the following inequalities [122]:

‖AX −B‖ ≥ ‖AA†B −B‖ (3.5)

for all X, with equality in (3.5) if and only if

X = A†B + (I − A†A)L,

where L is arbitrary matrix of appropriate dimensions. Moreover,

‖A†B + (I −A†A)L‖ ≥ ‖A†B‖, (3.6)

with equality in (3.6) if and only if (I − A†A)L = 0.

Penrose’s inequalities (3.5) and (3.6) has been extended in [85] to the supremum norm and
the Lp norm as well as to the set of {1, 3} inverses. This result is restated here for complex
matrices.

Proposition 3.1.4. Let A ∈ C
m×n and A(1,3) be an {1, 3} inverse of A. Then for all X

‖AX −B‖ ≥ ‖AA(1,3)B −B‖, (3.7)

with equality in (3.7) if and only if

X = A(1,3)B + (I − A(1,3)A)L,

where L is arbitrary. Furthermore, the choice A(1,3) := A† leads to the least squares solution of
minimum norm, equal to A†B:

‖A†B + (I −A†A)L‖ ≥ ‖A†B‖. (3.8)

The properties of the Moore-Penrose inverse presented in this section have caused a real
expansion in the study of generalized inverses. It showed the great usability of generalized
inverses in solving systems of linear equations as well as matrix equations. In this way, the
theory developed for the classical matrix inverse is continued for arbitrary matrices, including
square singular as well as rectangular matrices.

3.2 Least-square properties of the Drazin-inverse so-

lution

In the papers [12, 164, 171], the authors present some minimal properties of the Drazin-inverse
solution. It can be argued that, in some way, these properties correspond to the properties
of the Moore-Penrose inverse solution. Namely, in [12] it is shown that if b ∈ R(Ak), where
k = ind(A), then the Drazin-inverse solution is the unique solution of the system Ax = b which
belongs to R(Ak). Also, Wei et al. in [164, 171] proved that the Drazin-inverse solution of the
system Ax = b is a solution of minimum P -norm, where P is the matrix included in the Jordan
decomposition A = PJP−1 of the matrix A.
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A major result in this area led to the use of the Drazin inverse in solving some matrix
equations and systems of linear equations. More precisely, the utility of the Moore-Penrose
inverse in generating least squares solutions A∗Ax = A∗b is extended to linear systems of the
form Ak+1x = Ak, where k ≥ ind(()A).

The obtained results related to the Drazin-inverse solution of a given system SoLE, are
inspiration to investigate possibilities if they can be used in order to calculate the Drazin inverse
of a given matrix, i.e., to find the Drazin-inverse solution of the matrix equation AXB = D, in
general. With appropriate modifications, it is possible to find the solution in the form ADGBD.
The matrix ADGBD is not always a solution of the matrix equation AXB = D, but however it
can be always used in order to calculate the Drazin inverse of arbitrary matrix.

The results of this section are complement to the results investigated in [171]. Namely, they
are motivated form the idea of defining a gradient iterative method for computing the Drazin-
inverse solution of the system (3.9). The goal is achieved by establishing a relation between the
Drazin-inverse solution and the linear system (3.9).

Theorem 3.2.1. [166] Each solution to

Ax = b, b ∈ R(Ak), k = ind(A) (3.9)

is also a solution to
Ap+1x = Apb p ≥ k, (3.10)

but the opposite statement does not hold.

Proof. Clearly Ax = b, b ∈ R(Ak) implies Ap(Ax− b) = 0 for p ≥ k.

On the other hand, Wei in [164] proved that the general solution of (3.9) is given by

x = ADb+ Ak−1(I −ADA)z, (3.11)

where z is an arbitrary vector.

The solution ADb is known as the Drazin-inverse solution of (3.9).
Remark that the opposite statement is not valid, since not every element from N (Ak) can

be represented as Ak−1(I − ADA)z, z ∈ C
n is arbitrary. Consequently, not every solution of

(3.10) is a solution of the equation (3.9) nor a solution of the equation (3.1).

Theorem 3.2.2. [171] Consider A ∈ C
n×n with k = ind(A). The Drazin inverse solution ADb

is the unique solution in R(Ak) to the system

Ak+1x = Akb. (3.12)

Theorem 3.2.3. [171] Let A ∈ C
n×n, b ∈ C

n and k = ind(A). The set of all solutions of the
equation (3.12) is given by

x = ADb+N (Ak). (3.13)

3.3 Least-square properties of outer inverses

The outer generalized inverses with prescribed range and null-space are very important in matrix
theory. The {2}-inverses have application in defining iterative methods for solving the nonlinear
equations [8], in statistics [45] as well as in stable approximations of ill-posed problems and in
linear and nonlinear problems involving rank-deficient generalized inverses [118].

This section shows that outer inverses with prescribed range and null space are useful in
solving the restricted SoLE. This application is based on the following essential result from [22]:

Proposition 3.3.1. [22] Let A ∈ C
m×n be of rank r, let T be a subspace of Cn, and let the

condition
b ∈ AT, dim (AT ) = dim (T )

be satisfied. Then the unique solution to the constrained SoLE

Ax = b, x ∈ T

is given by
x = A

(2)
T,Sb,

for any subspace S of Cm satisfying AT ⊕ S = C
m.

Further investigations show that some new classes of generalized inverses are applicable
in solving corresponding unconstrained and constrained SoLE. These generalized inverses are
composed of appropriate outer inverses and the Moore-Penrose inverse and surveyed in the
subsequent Section 2.3.
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3.4 Least squares properties of composite inverses

The goal of this section is to show usability of arbitrary generalized inverses in solving SoLE
and matrix equations. Practically, each kind of generalized inverses is related to appropriate
matrix equation and/or linear system. In this section we will show that the composite outer
inverses inherit and generalize least squares properties of the Moore-Penrose inverse as well
as the minimal properties that the Drazin inverse and the outer inverses exhibit in solving
unconstrained and constraines SoLE. In order to find appropriate approximations to inconsistent
SoLE Ax = b, A ∈ C

m×n, x ∈ C
n and b ∈ C

m, one typical approach is to asks for, so called,
generalized solutions, defined as solutions to GAx = Gb with respect to an appropriate matrix
G ∈ C

n×m [84]. It is important to mention that the system GAx = Gb is consistent in the case
rank(GA) = rank(G). Such approach has been exploited extensively. One particular choice is
G = A∗, which leads to widely used least-squares solutions obtained as solutions to the normal
equation A∗Ax = A∗b. Another important choice is m = n, G = Ak and k = ind(A), which
leads to the so called Drazin normal equation (3.12) and usage of the Drazin inverse solution
ADb. The set of all solutions to Ak+1x = Akb is given by x = ADb +N (Ak) [168]. Moreover,
x = ADb is the unique solution to Ak+1x = Akb on the set R(Ak) [168]. The SoLE of the form

GAx = Gb, A ∈ R
m×n
r , G ∈ R

n×m
s , 0 < s ≤ r (3.14)

was considered in [139]. The m × n matrix A in (3.14) is given and n ×m matrix G is chosen
such that rank(GA) = rank(G) = s ≤ r.

Theorem 3.4.1. [139] The set of all solutions of the SoLE (3.14) under the assumptions
rank(GA) = rank(G) is given by

x = A
(2)

R(G),N (G) b+N (GA). (3.15)

The particular case G = Ak, k = ind(A) of (3.15) was investigated in [?].

The least squares properties of composite inverses will be used in the sense that the general
solution to the system G(Ax = b) is given in the form

x = Xb+ (I − A
(2)
T,SA)y, (3.16)

or in the form
x = Xb + (I −XA)y, (3.17)

where X is one of composite outer inverses considered in Section 2.3.

3.4.1 Least squares properties of the DMP inverse

The choice G := AA† = PR(A) gives the projection PR(A)b of b on R(A). Then the induced
SoLE

GAx = Gb ⇐⇒ Ax = PR(A)b, ind(A) = k (3.18)

is consistent. Then the Drazin-inverse solution to (3.18) is equal to

x = AD(PR(A)b) = (ADAA†)b = AD,†b,

which is just the DMP-inverse solution to Ax = b.
As it was shown in [12], ADb is a solution of the following system

Ax = b, where b ∈ R(Ak), k = ind(A). (3.19)

In the case b ∈ R(Ak), the general solution to Ax = b, is

x = AD,†b+ (I − ADA)y = ADb+ (I − ADA)y = AD,†b+ (I − AD,†A)y, y ∈ R(Ak).

Theorem 3.4.2. [79] Let (2.1) be the Schur decomposition of A ∈ C
n×n of index ind(A) = k.

Further, assume that the columns of V and U∗ are the bases for N (Ak) and N (Ak∗), respectively.
Consider the matrix

E = V (UV )−1U.

Then the range and the kernel of E are equal to R(E) = R(V ) = N (Ak) and N (E) = N (U) =
R(Ak). Furthermore, Ak +E is a nonsingular matrix, its inverse is

(Ak +E)−1 = (Ak)# + E#,

and the DMP inverse solution AD,†b of Ax = b satisfies

AD,†b = (Ak +E)−1AA†b.
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3.4.2 Least squares properties of the MPCEP-inverse

Solvability of certain systems of linear equations in terms of expressions involving the MPCEP
inverse was investigated in [107].

Corollary 3.4.1. [107] If A ∈ C
n×n of index ind(A) = k and b ∈ C

n, the SoLE

Ax = Ak(Ak)†b (3.20)

is consistent and its general solution is

x = A†, †©b+ (In − A†A)y,

for arbitrary y ∈ C
n.

Proof. The results follows from [108, Theorem 3.1] in the particular case A
(2)
T,S = A †©.

In the specific case when b ∈ R(Ak) in Corollary 3.4.1, it is possible to derive the following
consequence.

Corollary 3.4.2. [107] If A ∈ C
n×n and ind(A) = k, the constrained SoLE (3.9) is consistent

and its general solution is

x = A†, †©b+ (In − A†A)y = A†b+ (In −A†A)y,

for arbitrary y ∈ C
n.

Proof. Since b ∈ R(Ak) gives b = Ak(Ak)†b, one can deduce A†, †©b = A†Ak(Ak)†b = A†b. The
rest of the proof follows from Corollary 3.4.1.

Theorem 3.4.3. [107] If A ∈ C
n×n and ind(A) = k, A†, †©b is the unique solution to (3.20) in

R(A†Ak).

Proof. By Corollary 3.4.1we conclude that A†, †©b is a solution in R(A†Ak) of (3.20).
For two solutions x, x1 ∈ R(A†Ak) of (3.20), notice that

x− x1 ∈ R(A†Ak) ∩N (A) ⊆ R(A†, †©A) ∩N (A†, †©A) = {0}.
Hence, x = x1 and so the unique solution to (3.20) is x = A†, †©b.

3.4.3 Least squares properties of the OMP and MPO inverses

In this section we investigate possibility to apply the composite inverses in solving an inconsistent
SoLE (3.1). One possible projection G(Ax = b) is defined by G = AA†(= PR(A)), which projects

Ax = b on the consistent SoLE (3.18). As a consequence, the A
(2)
T,S solution to (3.18) is equal to

x = A
(2)
T,S

(
PR(A)b

)
=
(
A

(2)
T,SAA†

)
b = A

(2),†
T,S b,

which coincides with the OMP-inverse solution to Ax = b. So, an important conclusion is that
the OMP-inverse solution to inconsistent system Ax = b coincides with the the A

(2)
T,S solution

to the projected consistent system (3.18).
Applying the MPO inverse, some systems of linear equations were solved in [108].

Theorem 3.4.4. [108] For A ∈ C
m×n
T,S , the SoLE

Ax = AA
(2)
T,Sb (3.21)

is consistent and its general solution is equal to

x = A
†,(2)
T,S b+ (I − A†A)y, (3.22)

for arbitrary y ∈ C
n.

Proof. For x given by (3.22), we get

Ax = AA
†,(2)
T,S b = AA†AA

(2)
T,Sb = AA

(2)
T,Sb

and so x is a solution to (3.21).
If x is a solution to (3.21), we have

A
†,(2)
T,S b = A†

(
AA

(2)
T,Sb

)
= A†Ax.

Thus,
x = A

†,(2)
T,S b+ x−A†Ax = A

†,(2)
T,S b+ (I − A†A)x,

i.e., the solution x is of the form (3.22).
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Remark 3.4.1. The proof of Corollary 3.4.1 is derived using [108, Theorem 3.1]. It is important
to mention that the proof can be derived using Theorem 3.4.4.

Under an extra assumption b ∈ R(AA
(2)
T,S) in Theorem 3.4.4, we get the following conse-

quence.

Corollary 3.4.3. Let A ∈ C
m×n
T,S . Then the SoLE

Ax = b, b ∈ R(AA
(2)
T,S)

is consistent and its general solution is of the form (3.22).

3.4.4 Least squares properties of the weak group inverse

The results of this section are mainly based on the results from [116]. The weak group inverse
can be applied in solving appropriate SoLE.

Theorem 3.4.5. [116] If A ∈ C
n×n and ind(A) = k, the equation(

Ak+2
)∗

A2x =
(
Ak+2

)∗
Ab, b ∈ C

n, (3.23)

is consistent and its general solution is

x = A
w©b+ (I −A

w©A)y, (3.24)

for arbitrary y ∈ C
n.

Proof. Suppose that x is represented as in (3.24). Applying Aw© = Ak(Ak+2)†A, we have
(Ak+2)∗A2Aw© = (Ak+2)∗A. Therefore, (Ak+2)∗A2x = (Ak+2)∗Ab, which implies that (3.23) is
true for x defined as in (3.24).

For a solution x to (3.23), one obtains

A
w©b = Ak

(
Ak+2

)†
Ab = Ak(Ak+2)†

((
Ak+2

)†)∗ (
Ak+2

)∗
Ab

= Ak
(
Ak+2

)†((
Ak+2

)†)∗ (
Ak+2

)∗
A2x = Ak

(
Ak+2

)†
A2x

= A
w©Ax.

Now, we get
x = Aw©b+ x− Aw©Ax = Aw©b+ (I −Aw©A)x,

i.e., x possesses the form (3.24).

3.4.5 Least squares properties of the core–EP inverse

The results of Corollary 3.4.4 can be concluded using Theorem 3.4.1 in conjunction with stated
representations of composite outer inverses.

Corollary 3.4.4. Let A ∈ C
n×n and ind(A) = k.

(a) The set of all solutions of the SoLE (3.14) under the choice G := Ak
(
Ak
)∗

(i.e.

Ak
(
Ak
)∗

Ax = Ak
(
Ak
)∗

b), is given by

x = A
(2)

R(Ak(Ak)∗),N (Ak(Ak)∗)
b+N

(
Ak
(
Ak
)∗

A
)

= A
†©b+N

((
Ak
)∗

A
)
.

(3.25)

(b) The set of all solutions of the SoLE (3.14) in the case G := AkA† (i.e. Akx = AkA†b), is
given by

x = A
(2)

R(AkA†),N(AkA†)
b+N

(
Ak
)

= AD,†b+N
(
Ak
)
.

(3.26)

(c) The set of all solutions of the SoLE (3.14) in the case G := A†Ak
(
Ak
)∗

(i.e. A†Ak
(
Ak
)∗

Ax =

A†Ak
(
Ak
)∗

b) is given by

x = A
(2)

R(A†Ak(Ak)∗),N(A†Ak(Ak)∗)
b+N

(
A†Ak

(
Ak
)∗

A
)

= A†, †©b+N
((

Ak
)∗

A
)
.

(3.27)
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(d) The set of all solutions of the SoLE (3.14) in the case G := A†AkA† (i.e. A†Akx =
A†AkA†b), is given by

x = A
(2)

R(A†AkA†),N(A†A2kA†)
b+N

(
A†Ak

)
= Ac,†b+N

(
Ak
)
.

(3.28)

3.5 Summary

Least squares solutions have achieved great importance in solving inconsistent SoLE. Minimum
norm least square solution is closest to the zero and unique. It is termed as the best approxi-
mate solution. One important application of the Moore-Penrose inverse is a presentation of the
best approximation solution of a SoLE or LME. Some characterizations of least square solutions
and the solution of minimum norm are considered. Beside the best approximation solution, the
Drazin-inverse solution and the outer-inverse solution exhibit some attracted many attention
in literature. Elementary properties of the Drazin-inverse solution and the outer-inverse solu-
tion are presented. Applicability of composite generalized inverses in solving unconstrained or
constrained systems of linear equations is systematized and investigated based on [136]. Least
squares properties of composite outer inverses are collected.

Further research could be oriented towards the investigation of further composite outer
inverses and their minimal and least squares properties. Also, applications of composite outer
inverses in solving appropriate constrained optimization problems is an interesting problems.

The data included in Table 3.1 summarizes results presented in this chapter.

Table 3.1: Particular cases of composite outer inverse solutions.

No Restrictions Equation/Model Solution Ref.

1. rank(GA) = rank(G) GAx = Gb x = A
(2)
R(G),N (G) b+N (GA) [139]

2. m = n, ind(A) = k Ax = PR(A)b x = AD(PR(A)b) = AD,†b [79]

3. A ∈ C
m×n
T,S Ax = PR(A)b x = A

(2)
T,S(PR(A)b) = A(2),†b [108]

4. m = n, ind(A) = k Ax = Ak(Ak)†b x = A†, †©b+ (In −AA†)y [107]

5. m = n, ind(A) = k Ax = b, b ∈ R(Ak)
x = A†, †©b+ (In −AA†)y

= A†b+ (In − AA†)y
[107]

6. A ∈ C
m×n
T,S Ax = AA

(2)
T,Sb x = A

†,(2)
T,S b+ (In − AA†)y [108]

7. m = n, ind(A) = k
(
Ak+2

)∗
A2x =

(
Ak+2

)∗
Ab x = Aw©b+ (I − Aw©A)y [116]
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Chapter 4

Solvability of matrix
approximation problems

For a nonsingular matrix M ∈ C
n×n and b ∈ C

n, the unique solution of Mx = b is x = M−1b.
Let M(j → b) be a matrix obtained from M replacing the jth column of M by b. The Cramer’s
rule for the solution x = (x1, x2, . . . , xn)

	 of the nonsingular system of equations Mx = b is
[5, 127]

xj =
det(M(j → b))

det(M)
, j = 1, . . . , n. (4.1)

In a special case M ∈ C
n×n, ind(M) = k and b ∈ R(Mk), Wang [155] presented a Cramer’s

rule for the unique Drazin inverse solution x = MDb to the restricted linear equation [12]

Mx = b, x ∈ R(Mk).

When M ∈ C
m×n, W ∈ C

n×m, k1 = ind(MW ), k2 = ind(WM) and b ∈ R((WM)k2), Wei [162]
gave a Cramer’s rule for the W -weighted Drazin inverse solution x = MD,W b to the general
restricted linear equation

WMWx = b, x ∈ R((MW )k1).

In particular, for M ∈ C
n×n, ind(M) = 1 and b ∈ R(M), x = M#b presents the unique

solution to Mx = b. Notice that M#b = M#©b and Cramer’s rule for finding the solution
x = M#©b was proposed in [80]. Without the assumption b ∈ R(M), for M ∈ C

n×n, ind(M) = 1
and b ∈ C

n, Wang and Zhang in [159] provided Cramer’s rule for finding x = M#©b to the next
constrained matrix approximation problem, stated in the Frobenius norm as follows:

min ‖Mx− b‖F subject to x ∈ R(M).

Using the core-EP inverse, the first goal of this chapter is to obtain the unique solution
to the following more-general constrained matrix minimization problem in the Euclidean norm
[111]:

min ‖Mx− b‖2 subject to x ∈ R(Mk), (4.2)

where b ∈ C
n, M ∈ C

n×n and k = Ind(M). Thus, we solve the problem which generalizes
the problem proposed in [159] for complex matrices with index one to complex matrices with
arbitrary index. Observe that assumption b ∈ R(Mk), which appeared in [12, 155], is omitted.

We present two kinds of Cramer’s rules to find the unique solution to (4.2) based on one
well-known expression and one novel representation for the core-EP inverse.

We also propose a solution to the next constrained problem [111]:

min ‖WMWx− b‖2 subject to x ∈ R((MW )k), (4.3)

where W ∈ C
n×m is a nonzero matrix, M ∈ C

m×n, k = max{Ind(MW ), Ind(WM)} and b ∈ C
n.

Extension of these results to the class of quaternion matrices can be found in [67, 68].

4.1 Solvability of (4.2) based on core-EP inverse

Throughout this section, it is supposed that M ∈ C
n×n and k = Ind(M). The following

decomposition of matrix M is well-known, and the expression for core-EP inverse of M was
verified in [158].
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Lemma 4.1.1. [158] There exist a unitary matrix P ∈ C
n×n, a nonsingular matrix M1 ∈ C

t×t,
t = rank(Mk), and a nilpotent matrix M3 ∈ C

(n−t)×(n−t) of index k with

M = P

[
M1 M2

0 M3

]
P ∗. (4.4)

In addition,

M
†© = P

[
M−1

1 0
0 0

]
P ∗. (4.5)

We also state a useful relation between a certain invertible bordered matrix and core-EP
inverse, proved in [81].

Lemma 4.1.2. [81, Theorem 2.3] Let two full column rank matrices U∗ and V satisfy

N (U) = R(Mk) and R(V ) = N
(
(Mk)∗

)
. (4.6)

Then the bordered matrix

S =

[
M V
U 0

]
is nonsingular and its inverse is equal to

S−1 =

[
M †© (I −M †©M)U†

V †(I −MM †©) −V †(I −MM †©)MU†

]
.

We now obtain the unique solution of the constrained matrix approximation problem (4.2),
using the core-EP inverse. Note that Theorem 4.1.1 incudes [159, Theorem 3.1] as a particular
case.

Theorem 4.1.1. [111] The unique solution to (4.2) is

x = M
†©b.

Proof. Because of x ∈ R(Mk), there exists y ∈ C
n such that x = Mky. Let M be represented

as in (4.4),

P ∗y =

[
y1
y2

]
, P ∗b =

[
b1
b2

]
and y1, b1 ∈ C

t.

By (4.5), we get

M
†©b = P

[
M−1

1 b1
0

]
.

For a corresponding matrix Y ∈ C
t×(n−t), we obtain

Mx = Mk+1y = P

[
M1 M2

0 M3

] [
Mk

1 Y
0 0

] [
y1
y2

]

= P

[
Mk+1

1 M1Y
0 0

] [
y1
y2

]

= P

[
Mk+1

1 y1 +M1Y y2
0

]

and thus

‖Mx− b‖22 =

∥∥∥∥
[

Mk+1
1 y1 +M1Y y2 − b1

−b2

]∥∥∥∥
2

2

= ‖Mk+1
1 y1 +M1Y y2 − b1‖22 + ‖b2‖22.

Since x is a solution to (4.2) if and only if y is a solution to ‖Mk+1y − b‖2 = min, notice that
min
y2,y2

‖Mk+1
1 y1 +M1Y y2 − b1‖22 = 0, i.e. ‖Mk+1y − b‖2 = min = ‖b2‖2 for arbitrary y2 and

y1 = M
−(k+1)
1 b1 −M−k

1 Y y2.

Thus,

x = Mky = P

[
Mk

1 Y
0 0

] [
y1
y2

]
= P

[
Mk

1 y1 + Y y2
0

]

= P

[
M−1

1 b1 − Y y2 + Y y2
0

]
= P

[
M−1

1 b1
0

]

= M
†©b

is the unique solution to (4.2).
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Firstly, we present the Cramer’s rule related to finding unique solution to (4.2) based on
Lemma 4.1.2.

Theorem 4.1.2. [111] Let two full column rank matrices U∗ and V satisfy (4.6). The unique
solution x = (x1, x2, . . . , xn)

	 to (4.2) can be represented as

xj = det

([
M(j → b) V
U(j → 0) 0

])
/det

([
M V
U 0

])
, j = 1, . . . , n. (4.7)

Proof. From x = M †©b ∈ R(Mk) = N (U), we have Ux = 0. Now, the solution of (4.2) satisfies[
M V
U 0

] [
x
0

]
=

[
b
0

]
.

By Lemma 4.1.2 and the Cramer rule (4.1), x = M †©b and its componentwise representation
(4.7) follow.

We now establish new representations for the core-EP inverse. Notice that Theorem 4.1.3
generalizes corresponding representation of the core inverse proved in [159, Theorem 3.5]. The
following notations will be used for the sake of simplicity:

P := Mk(Mk)∗, Q := Mk(Mk)∗M + V V ∗ = PM + V V ∗. (4.8)

Theorem 4.1.3. [111] Let a matrix V satisfy

N (V ∗) = R(Mk) (or equivalently R(V ) = N ((Mk)∗)) (4.9)

and P,Q are defined as in (4.8). Then Q is nonsingular and

M †© = Q−1P. (4.10)

Proof. For T = Mk(Mk)∗M , we firstly observe that R(T ) ⊆ R(Mk). Further, by

R(Mk) = R(Mk(Mk)∗) = R(Mk(Mk)∗Mk) ⊆ R(Mk(Mk)∗M) = R(T ),

we deduce that R(T ) = R(Mk). Therefore, rank(T ) = rank(Mk) ≤ 1 and T #© exists.
From N (V ∗) = R(Mk) = R(M †©), we obtain V ∗M †© = 0 and

V ∗T #© = V ∗T (T #©)2 = V ∗Mk(Mk)∗M(T #©)2 = 0.

Let Y = T #© + (V V ∗)† −M †©M(V V ∗)†. Then, we get

TM
†© = Mk(Mk)∗MMDMk(Mk)† = Mk(Mk)∗Mk(Mk)† = Mk(Mk)∗.

Hence,

(T + V V ∗)Y = TT
#© + T (V V ∗)† − T (V V ∗)† + V V ∗(V V ∗)†

= TT
#© + V V ∗(V V ∗)† = PR(T ) + PR(V V ∗)

= PR(Mk) + PR(V ) = PN (V ∗) + PN (V ∗)⊥

= I

implies that T + V V ∗ is nonsingular. Since (T + V V ∗)M †© = Mk(Mk)∗, notice that

M
†© = (T + V V ∗)

−1
Mk(Mk)∗,

i.e., (4.10) holds.

Similarly as in Theorem 4.1.3, we verify the second representation for the core-EP inverse
under the same assumption (4.9).

Theorem 4.1.4. [111] Let a matrix V satisfy (4.9). Then Mk+1 + V V ∗ is nonsingular and

M
†© = Mk

(
Mk+1 + V V ∗

)−1

. (4.11)

Proof. Since rank(Mk+1) = rank(Mk) ≤ 1, we conclude that (Mk+1)#© exists. For

Y = (Mk+1)
#© + (V V ∗)† −MDM(V V ∗)†,

we obtain

(Mk+1 + V V ∗)Y = Mk+1(Mk+1)
#© + V V ∗(V V ∗)†

= PR(Mk) + PR(V ) = PN (V ∗) + PN (V ∗)⊥

= I

and so Mk+1+V V ∗ is nonsingular. The equality M †©
(
Mk+1 + V V ∗

)
= Mk+1 gives that (4.11)

is satisfied.
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By the proofs of Theorem 4.1.3 and Theorem 4.1.4, remark that expressions (4.10) and
(4.11) hold if we replace k with arbitrary l ≥ k.

In the case when k = 1 in Theorem 4.1.4, we can obtain new representation of the core
inverse.

Corollary 4.1.1. Let a matrix V satisfy (4.9). Then M2 + V V ∗ is nonsingular and

M
#© = M

(
M2 + V V ∗)−1

.

Applying Theorem 4.1.3, we can propose the following Cramer’s rule for finding the solution
to (4.2).

Theorem 4.1.5. Let a matrix V satisfy (4.9) and P,Q are defined as in (4.8). Then the unique
solution x = (x1, x2, . . . , xn)

	 to (4.2) satisfies

xj =
det (Q(j → P b))

det(Q)
, j = 1, . . . , n. (4.12)

Proof. By Theorem 4.1.1 and Theorem 4.1.3,

x = M
†©b = Q−1P b.

So,
Qx = P b.

The rest follows by the Cramer rule (4.1).

As usual, ej represents a jth column of the identity matrix. Inspired by the condensed
determinantal expressions for Moore-Penrose and Drazin inverses presented in [53] and for the
core inverse given in [159], we proved the condensed determinantal expression for the core-EP
inverse.

Theorem 4.1.6. Let a matrix V satisfy (4.9). The core-EP inverse M †© is represented as

M
†©

j,l =
det (Q(j → P el))

det(Q)
, j, l = 1, . . . , n. (4.13)

Proof. Using
Qx = P el, l = 1, . . . , n

we obtain

e	j x =
det (Q(j → P el))

det(Q)
, j, l = 1, . . . , n.

Applying Theorem 4.1.3 and M
†©
j,l = e	j M

†©el, we finish the proof.

4.2 Solvability of (4.3) based on weighted core-EP in-
verse

In this section, it is supposed that W ∈ C
n×m is a nonzero matrix, M ∈ C

m×n and k =
max{Ind(MW ), Ind(WM)}. Moreover, the following extensions of the notations (4.8) will be
used:

PW := M(WM)k[(WM)k+1]∗,

QW := M(WM)k[(WM)k+1]∗WMW + U∗U = PWWMW + U∗U.
(4.14)

Lemma 4.2.1. [170][40, Theorem 4.1 and Theorem 5.2] There exist unitary matrices P ∈ C
m×m

and Q ∈ C
n×n, two nonsingular matrices M1,W1 ∈ C

t×t, and matrices M3 ∈ C
(m−t)×(n−t),

W3 ∈ C
(n−t)×(m−t) such that M3W3 and W3M3 are nilpotent of indices ind(MW ) and ind(WM),

respectively, with

M = P

[
M1 M2

0 M3

]
Q∗ and W = Q

[
W1 W2

0 W3

]
P ∗. (4.15)

In addition,

M
†©,W = P

[
(W1M1W1)

−1 0
0 0

]
Q∗. (4.16)

In [78], Ma generalized Lemma 4.1.2 related to an invertible bordered matrix and core-EP
inverse to certain invertible bordered matrix and weighted core-EP inverse.
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Lemma 4.2.2. [78, Theorem 2.2] Let two full column rank matrices U∗ and V satisfy

N (U) = R((MW )k) and R(V ) = N
(
((WM)k)∗

)
. (4.17)

Then the bordered matrix

S =

[
WMW V

U 0

]
is nonsingular and

S−1 =

[
M †©,W (I −M †©,WWMW )U†

V †(I −WMWM †©,W ) −V †(I −WMWM †©,W )WMWU†

]
. (4.18)

Theorem 4.2.1 confirms that the constrained matrix approximation problem (4.3) can be
solved by means of the W -weighted core-EP inverse.

Theorem 4.2.1. [111] The unique solution to (4.3) is

x = M
†©,W b.

Proof. By the hypothesis x ∈ R((MW )k), there exists y ∈ C
m such that x = (MW )ky. Assume

that M and W are given by (4.15),

P ∗y =

[
y1
y2

]
, Q∗b =

[
b1
b2

]
and y1, b1 ∈ C

t.

Using (4.16), note that

M
†©,W b = P

[
(W1M1W1)

−1b1
0

]
.

Because, for E = M1W2 +M2W3 and a corresponding matrix Y ,

WMWx = WMW (MW )ky

= Q

[
W1M1W1 W1E +W2M3W3

0 W3M3W3

] [
M1W1 E

0 M3W3

]k [
y1
y2

]

= Q

[
W1M1W1 W1E +W2M3W3

0 W3M3W3

] [
(M1W1)

k Y
0 0

] [
y1
y2

]

= Q

[
W1(M1W1)

k+1 W1M1W1Y
0 0

] [
y1
y2

]

= Q

[
W1(M1W1)

k+1y1 +W1M1W1Y y2
0

]
,

we obtain

‖WMWx− b‖22 =

∥∥∥∥
[

W1(M1W1)
k+1y1 +W1M1W1Y y2 − b1

−b2

]∥∥∥∥
2

2

= ‖W1(M1W1)
k+1y1 +W1M1W1Y y2 − b1‖22 + ‖b2‖22.

We now observe that min
y2,y2

‖W1(M1W1)
k+1y1 +W1M1W1Y y2 − b1‖22 = 0 for

y1 = (M1W1)
−(k+1)W−1

1 b1 − (M1W1)
−kY y2.

Hence,

x = (MW )ky = P

[
(M1W1)

k Y
0 0

] [
y1
y2

]

= P

[
(M1W1)

ky1 + Y y2
0

]

= P

[
(W1M1W1)

−1b1 − Y y2 + Y y2
0

]

= P

[
(W1M1W1)

−1b1
0

]

= M †©,W b

is the unique solution to (4.3).
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A Cramer’s rule representation of the solution to (4.3) is given as an application of Lemma
4.2.2.

Theorem 4.2.2. [111] Let two full column rank matrices U∗ and V satisfy (4.17). Then the
unique solution x = M †©,W b to (4.3) can be expressed componentwise by

xj = det

([
WMW (j → b) V

U(j → 0) 0

])
/det

([
WMW V

U 0

])
, j = 1, . . . , n.

Proof. Because x = M †©,W b ∈ R((MW )k) = N (U), we get Ux = 0. Hence, the solution of
(4.3) satisfies [

WMW V
U 0

] [
x
0

]
=

[
b
0

]
.

Applying Lemma 4.2.2, x = M †©,W b and, by the Cramer rule, corresponding elementwise state-
ment follows.

We can present new expressions for W -weighted core-EP inverse. The first expression is
proved in the case when N (U) = R((MW )k).

Theorem 4.2.3. [111] Let a matrix U∗ satisfy

N (U) = R((MW )k) (4.19)

and PW , QW are defined as in (4.14). Then QW is nonsingular and

M
†©,W = Q−1

W PW . (4.20)

Proof. Let T = M(WM)k[(WM)k+1]∗WMW . Since

T ∗ = (WMW )∗(WM)k+1[(MW )kM ]∗ = (WMW )∗(WM)k+1M∗[(MW )k]∗,

we observe that N ([(MW )k]∗) ⊆ N (T ∗). Then, by

N ([(MW )k]∗) = N ([(MW )k+1]∗) = N (W ∗[(WM)k]∗M∗) ⊇ N ([(WM)k]∗M∗)

= N ([(WM)k]†(WM)k[(WM)k]∗M∗)

= N ([(WM)k+1]†(WM)k+1[(WM)k]∗M∗) ⊇ N ((WM)k+1[(WM)k]∗M∗)

= N (([(WM)k+1]†)∗[(WM)k+1]∗(WM)k+1[(WM)k]∗M∗)

⊇ N ((WMW )∗(WM)k+1[(MW )kM ]∗) = N (T ∗),

we deduce that N (T ∗) = N ([(MW )k]∗). Thus, R(T ) = R((MW )k) which yields rank(T ) =
rank((MW )k) ≤ 1 and T #© exists. The hypothesis N (U) = R((MW )k) = R(M †©,W ) implies
UM †©,W = 0 and

UT
#© = UT (T

#©)2 = U(MW )kM [(WM)k+1]∗WMW (T
#©)2 = 0.

Set Y = T #© + (U∗U)† −M †©,WWMW (U∗U)†. Notice that

TM
†©,W = M(WM)k[(WM)k+1]∗(WM)k[(WM)k]† = M(WM)k[(WM)k+1]∗.

Therefore,

(T + U∗U)Y = TT
#© + T (U∗U)† − T (U∗U)† + U∗U(U∗U)†

= TT
#© + U∗U(U∗U)† = PR(T ) + PR(U∗U)

= PR((MW )k) + PR(U∗) = PR((MW )k) + PR((MW )k)⊥

= I,

which indicates that T +U∗U is nonsingular. From (T +U∗U)M †©,W = P , we conclude that is
satisfied.

Theorem 4.2.4 gives the second representation for the W -weighted core-EP inverse under
the assumption R(V ) = N (((WM)k)∗).

Theorem 4.2.4. [111] Let a matrix V satisfy

R(V ) = N (((WM)k)∗). (4.21)

Then (WM)k+2 + V V ∗ is nonsingular and

M
†©,W = M(WM)k

(
(WM)k+2 + V V ∗

)−1

. (4.22)
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Proof. Because rank((WM)k+2) = rank((WM)k) ≤ 1, then ((WM)k+2)#© exists. Set Y =
((WM)k+2)#© + (V V ∗)† − (WM)DWM(V V ∗)†. Then

((WM)k+2 + V V ∗)Y = (WM)k+2((WM)k+2)
#© + V V ∗(V V ∗)†

= PR((WM)k) + PR(V ) = PN (V ∗) + PN (V ∗)⊥

= I,

that is, (WM)k+2 + V V ∗ is nonsingular. Thus, M †©,W
(
(WM)k+2 + V V ∗

)
= M(WM)k yields

M †©,W = M(WM)k
(
(WM)k+2 + V V ∗

)−1
.

Using Theorem 4.2.3, one more Cramer’s rule for unique solution of (4.3) is obtained.

Theorem 4.2.5. [111] Let a matrix U satisfy (4.19). Then the unique solution x = (x1, . . . , xm)	

to (4.3) satisfies

xj =
det (QW (j → PW b))

det(QW )
, j = 1, . . . ,m.

Proof. According to Theorem 4.2.1 and Theorem 4.2.3, it follows

x = M
†©,W b = Q−1

W PW b,

which implies
QW x = PW b.

Using the Cramer rule, the proof is completed.

Based on Theorem 4.2.3, for the W -weighted core-EP inverse, we get the condensed deter-
minantal expression.

Theorem 4.2.6. [111] Let a matrix U satisfy (4.19). Then the W -weighted core-EP inverse
M †©,W is elementwise represented by

M †©,W
j,l =

det (QW (j → PW el))

det(QW )
,

where j = 1, . . . ,m, l = 1, . . . , n.

Proof. By
WW x = PW el, l = 1, . . . , n

for j = 1, . . . ,m, l = 1, . . . , n, we have

e	j x =
det (QW (j → PW el))

det(Q)
, j = 1, . . . ,m, l = 1, . . . , n.

The proof follows by Theorem 4.2.3 and M
†©,W

j,l = e	j M
†©,W el.

4.3 Numerical verification

Example 4.3.1. This example is a verification of Theorem 4.1.2 on the input data given by

M =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ , b = {0., 0., 0.127546, 0.099768}	 ∈ R(M2).

Matrices

U =

[
1 3 5 7
2 4 6 8

]
, V =

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦

satisfy (4.6). The bordered matrix S is equal to

S =

[
M V
U 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 3 5 7 0 0
2 4 6 8 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Therefore,

S1 =

[
M(1 → b) V
U(1 → 0) 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0. 1 0 0 1 0
0. 0 0 0 0 1

0.127546 0 0 1 0 0
0.099768 0 1 0 0 0

0. 3 5 7 0 0
0. 4 6 8 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then x1 = det(S1)/det(S) = 0.35.486. Continuing in the same way, it is possible to verify that
(4.7) generates first four elements from the vector

S−1b = {0.35486,−0.582174, 0.099768, 0.127546, 0.582174, 0.}	.

Indeed,

S2 =

[
M(2 → b) V
U(2 → 0) 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0. 0 0 1 0
0 0. 0 0 0 1
0 0.127546 0 1 0 0
0 0.099768 1 0 0 0
1 0. 5 7 0 0
2 0. 6 8 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

x2 = det(S2)/det(S) = −0.582174;

S3 =

[
M(3 → b) V
U(3 → 0) 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0. 0 1 0
0 0 0. 0 0 1
0 0 0.127546 1 0 0
0 0 0.099768 0 0 0
1 3 0. 7 0 0
2 4 0. 8 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

x3 = det(S3)/det(S) = 0.099768;

S4 =

[
M(4 → b) V
U(4 → 0) 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0. 1 0
0 0 0 0. 0 1
0 0 0 0.127546 0 0
0 0 1 0.099768 0 0
1 3 5 0. 0 0
2 4 6 0. 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

x4 = det(S4)/det(S) = 0.127546.

Example 4.3.2. Observe the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

of index k = ind(M) = 2. The core-EP inverse of M is equal to

M †© = MDMk(Mk)† =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
4

− 1
4

0 0 0 0
− 1

4
1
4

0 0 0 0
0 0 1

4
− 1

4
0 0

0 0 − 1
4

1
4

0 0
0 0 1

12
− 1

12
2
3

1
3

0 0 − 1
12

1
12

1
3

2
3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.23)

It can be verified that

N = N
(
(M2)T

)
=

[
0 0 1 1 0 0
1 1 0 0 0 0

]
.

The matrix V = NT satisfies (4.9). Application of (4.10) and (4.11) gives

(
Mk(Mk)TM + V V T

)−1

Mk(Mk)T = MDMk(Mk)† = Mk
(
Mk+1 + V V T

)−1

.
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Example 4.3.3. For the matrix M in Example 4.3.2 it can be verified

Q := Mk(Mk)TM + V V T =

⎡
⎢⎢⎢⎢⎢⎢⎣

17 −15 0 0 0 0
−15 17 0 0 0 0
0 0 27 −25 −30 30
0 0 −25 27 30 −30
−2 −2 −74 72 160 −158
−2 −2 72 −74 −158 160

⎤
⎥⎥⎥⎥⎥⎥⎦
,

P := Mk(Mk)T =

⎡
⎢⎢⎢⎢⎢⎢⎣

17 −15 0 0 0 0
−15 17 0 0 0 0
0 0 27 −25 −30 30
0 0 −25 27 30 −30
−2 −2 −74 72 160 −158
−2 −2 72 −74 −158 160

⎤
⎥⎥⎥⎥⎥⎥⎦
.

and det(Q) = 1990656. Further, Mk(Mk)Te1 = {8,−8, 0, 0, 0, 0}T, implies

det (Q(1 → P e1)) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

8 −15 0 0 0 0
−8 17 0 0 0 0
0 0 27 −25 −30 30
0 0 −25 27 30 −30
0 −2 −74 72 160 −158
0 −2 72 −74 −158 160

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= 497664.

So, according to (4.13), M †©
j,l = 497664/1990656 = 1/4, which is in accordance with (4.23).

Further, consider the vector

b = {0.132264,−0.132264, 0.0358987,−0.0358987, 0.893685, 0.57147}T ∈ R(M2).

Then

Q(1 → P b) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.11622 −15 0 0 0 0
−2.11622 17 0 0 0 0
−2.64775 0 27 −25 −30 30
2.64775 0 −25 27 30 −30
17.8245 −2 −74 72 160 −158
−14.8942 −2 72 −74 −158 160

⎤
⎥⎥⎥⎥⎥⎥⎦

and

x1 =
det (Q(1 → P b))

det(Q)
= 131646/1990656 = 0.0661319.

Similar computation gives

Q(2 → P b) =

⎡
⎢⎢⎢⎢⎢⎢⎣

17 2.11622 0 0 0 0
−15 −2.11622 0 0 0 0
0 −2.64775 27 −25 −30 30
0 2.64775 −25 27 30 −30
−2 17.8245 −74 72 160 −158
−2 −14.8942 72 −74 −158 160

⎤
⎥⎥⎥⎥⎥⎥⎦

and

x2 =
det (Q(2 → P b))

det(Q)
= −131646/1990656 = −0.0661319.

Simple verification approves the equalities x1 = (M †©b)1, x2 = (M †©b)2. Continuing in the
same way, the vector

x = M
†©b = {0.0661319,−0.0661319, 0.0179494,−0.0179494, 0.792264, 0.672893}	

can be generated using (4.12), as{
det (Q(j → P b))

det(Q)
, j = 1, . . . , 6

}
.

Example 4.3.4. Consider the matrices

M =

⎡
⎣ 0 1 2 0
−1 0 0 1
1 0 1 0

⎤
⎦ , W =

⎡
⎢⎢⎣
1 0 0
0 −1 1
0 0 0
1 0 0

⎤
⎥⎥⎦ ,
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with k = max{ind(MW ), ind(WM)} = 1. Then, for

U =

⎡
⎣0 1 0
0 −1 0
0 1 0

⎤
⎦ ,

it holds (4.19) and the matrix

QW = M(WM)k[(WM)k+1]TWMW + UTU =

⎡
⎣2 −12 12
0 3 0
5 −4 4

⎤
⎦ (4.24)

is nonsingular. Further, consider the matrix

PW := M(WM)k[(WM)k+1]T =

⎡
⎣ 6 2 0 6

0 0 0 0
2 5 0 2

⎤
⎦ . (4.25)

In accordance with (4.20), the W-weighted core-EP inverse of M shall be equal to

M
†©,W = Q−1

W PW =

⎡
⎣ 0 1 0 0

0 0 0 0
1/2 0 0 1/2

⎤
⎦ . (4.26)

On the other hand, the matrix

V =

⎡
⎢⎢⎣
0 −1
0 0
1 0
0 1

⎤
⎥⎥⎦

satisfies (4.21). Then,

(WM)k+2 + V V T =

⎡
⎢⎢⎣

1 1 2 −1
2 0 1 −1
0 0 1 0
−1 1 2 1

⎤
⎥⎥⎦

is nonsingular and according to (4.22), the value (4.26) of M †©,W can be generated again, i.e.,

M
†©,W = M(WM)k

(
(WM)k+2 + V V T

)−1

=

⎡
⎣ 0 1 0 0

0 0 0 0
1/2 0 0 1/2

⎤
⎦ .

Example 4.3.5. Consider the matrices M,W and U of Example 4.3.4 and the vector b =
{−6,−1, 0,−6}T ∈ R((WM)k). The expressions Q and P are defined as in (4.24) and (4.25),
respectively. Further calculation gives the list

{QW (1 → PW b), QW (2 → PW b), QW (3 → PW b)}

=

⎧⎨
⎩
⎡
⎣−74 −12 12

0 3 0
−29 −4 4

⎤
⎦ ,

⎡
⎣2 −12 12
0 3 0
5 −4 4

⎤
⎦ ,

⎡
⎣2 −12 −74
0 3 0
5 −4 −29

⎤
⎦
⎫⎬
⎭ .

We invoke Theorem 4.2.5, which implies

{x1, x2, x3} =

{
det (QW (1 → PW e1))

det(QW )
,
det (QW (2 → PW e1))

det(QW )
,
det (QW (3 → P e1))

det(QW )

}

=

det

⎛
⎝
⎡
⎣−74 −12 12

0 3 0
−29 −4 4

⎤
⎦
⎞
⎠

det

⎛
⎝
⎡
⎣2 −12 12
0 3 0
5 −4 4

⎤
⎦
⎞
⎠

,

det

⎛
⎝
⎡
⎣2 −74 12
0 0 0
5 −29 4

⎤
⎦
⎞
⎠

det

⎛
⎝
⎡
⎣2 −12 12
0 3 0
5 −4 4

⎤
⎦
⎞
⎠

,

det

⎛
⎝
⎡
⎣2 −12 −74
0 3 0
5 −4 −29

⎤
⎦
⎞
⎠

det

⎛
⎝
⎡
⎣2 −12 12
0 3 0
5 −4 4

⎤
⎦
⎞
⎠

.

= {−1, 0,−6}.

Finally, this numerical experience is in accordance with the solution vector x = M †©,W b is
x = {−1, 0,−6}T.
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The validity of Theorem 4.2.6 can be easily verified. Let’s actually test the element M
†©,W
3,1 ,

for which we know from example 4.3.4 that it is equal to 1
2
. Then, from Theorem 4.2.6 we have

M
†©,W
3,1 =

det (QW (3 → PW e1))

det(QW )
=

det

⎛
⎝
⎡
⎣2 −12 6
0 3 0
5 −4 2

⎤
⎦
⎞
⎠

det

⎛
⎝
⎡
⎣2 −12 12
0 3 0
5 −4 4

⎤
⎦
⎞
⎠

=
1

2
.

Likewise, we can verify all elements of the matrix M †©,W in (4.26). Indeed,

{QW (j → PW el), {j, 3}, {l, 4}}

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ 6 −12 12

0 3 0
2 −4 4

⎤
⎦

⎡
⎣ 2 −12 12

0 3 0
5 −4 4

⎤
⎦
⎡
⎣ 0 −12 12

0 3 0
0 −4 4

⎤
⎦
⎡
⎣ 6 −12 12

0 3 0
2 −4 4

⎤
⎦

⎡
⎣ 2 6 12

0 0 0
5 2 4

⎤
⎦

⎡
⎣ 2 2 12

0 0 0
5 5 4

⎤
⎦

⎡
⎣ 2 0 12

0 0 0
5 0 4

⎤
⎦

⎡
⎣ 2 6 12

0 0 0
5 2 4

⎤
⎦

⎡
⎣ 2 −12 6

0 3 0
5 −4 2

⎤
⎦

⎡
⎣ 2 −12 2

0 3 0
5 −4 5

⎤
⎦

⎡
⎣ 2 −12 0

0 3 0
5 −4 0

⎤
⎦

⎡
⎣ 2 −12 6

0 3 0
5 −4 2

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which generates the matrix

1

det(QW )

⎡
⎣ 0 −156 0 0

0 0 0 0
−78 0 0 −78

⎤
⎦

identical with M †©,W in (4.26).

4.4 Comparison of the core-EP inverse solution with
LS solutions

In this section, the core-EP inverse solution is compared with two solutions obtained by two
corresponding LS problems. The first one is the LS problem constrained by linear equality
constraints (known as LSE) and given in the form of the minimization problem

min
Bx=d

‖Mx− b‖2, (4.27)

where M ∈ R
m×n, B ∈ R

p×n, b ∈ R
m, d ∈ R

p, rank(B) = p < n. An approximate solution
(4.27) is based on the LS problem without constraints

min
x∈Rn

∥∥∥∥
[
M
λB

]
x−

[
b
λd

]∥∥∥∥
2

, (4.28)

where λ � 1 is a large real number [77, 181]. How can we exploit the LSE problem? Our
objective is the minimization (4.2), which could be derived from (4.27) in the choice

m = p = n, B = In, x = d = Mky, y ∈ R
n, k = ind(M).

So, we tend to find the solution to

min
y∈Rn

∥∥∥∥
[
M
λI

]
Mky −

[
b

λMky

]∥∥∥∥
2

. (4.29)

Then, the following numerical experiments can be performed:
Compute the solution y to (4.29) and then compare the vector x = Mky with x1 = M †©b by
‖x− x1‖. Also, it will be useful to compare ‖Mx− b‖2 with ‖Mx1 − b‖2.

The second LS approach used for comparison is based on the observation that the equality-
constrained LS problem (4.2) is equivalent to the following unconstrained LS problem:

min
y∈Rn

‖Mk+1y − b‖2. (4.30)

Then, we can perform the following numerical experiments:
Generate the solution y to (4.30) and compare x = Mky with x1 = M †©b by the vector norm
‖x− x1‖. Also, compare ‖My − b‖2 with ‖Mx1 − b‖2.
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Example 4.4.1. In this example, six large-scale randomly generated matrices are considered
in numerical experiments with the models (4.29) and (4.30). In particular, we considered the
matrices M = Mk = rand(k, k − 1) ∗ rand(k − 1, k), for k = 20, 30, M = M50 = rand(50, 19) ∗
rand(19, 50) and M = Mp = rand(p, p/2) ∗ rand(p/2, p), for p = 100, 200, 500. The value of λ
in (4.29) was set to λ = 106 and the value of the vector b, for all cases, was set to

b = 0.001 ∗ ones(size(Mj , 1), 1), j = 20, 30, 50, 100, 200, 500.

In order to solve the unconstrained optimization problems (4.29) and (4.30), we invoked the
MATLAB function fminunc which starts at the point

x0 = zeros(size(Mj, 1), 1), j = 20, 30, 50, 100, 200, 500.

Also, for the core-EP inverse, we have used the formula (see [42])

M
†© = MDMk(Mk)†,

while the Drazin inverse was computed according to Corollary 2.1 from [140].
The results of Table 4.1 were constructed by finding the solution to the optimization problem
(4.29). Then, using the solution y of (4.29) we compare the solution x = Mky with the core-
EP inverse solution x1 = M †©b by evaluating the norm ‖x − x1‖. Also, by comparing norm
‖Mx − b‖2 with ‖Mx1 − b‖2 we may conclude that ‖Mx1 − b‖2 is smaller in all test cases, so
that the core-EP inverse solution is a competitive alternative. The results of Table 4.2 were

‖x− x1‖2 ‖Mx− b‖ ‖Mx1 − b‖

M20 0.0029 6.4465e-04 2.5623e-04

M30 0.0035 0.0013 5.6952e-05

M50 7.7391e-04 0.0020 8.2942e-04

M100 8.4365e-04 0.0012 5.8856e-04

M200 4.3465e-04 2.9260e-10 7.4416e-08

M500 5.3429e-04 0.0224 5.6874e-04

Table 4.1: Numerical experiments for solving (4.29)

constructed by finding the solution to the optimization problem (4.30). Then, using the solution
y of (4.30) we compare the solution x = Mky with the core-EP inverse solution x1 = M †©b by
evaluating the norm ‖x − x1‖. Again, we may conclude that the core-EP inverse solution is a
competitive alternative, since ‖Mx1 − b‖2 is smaller in all test cases with respect to ‖Mx− b‖2.

‖x− x1‖2 ‖Mx− b‖ ‖Mx1 − b‖

M20 0.0029 0.0044 2.5623e-04

M30 0.0035 0.0054 5.6952e-05

M50 7.7518e-04 0.0700 8.2942e-04

M100 8.4361e-04 0.0100 5.8856e-04

M200 5.8990e-04 0.0141 7.4416e-08

M500 5.3428e-04 0.0224 5.6874e-04

Table 4.2: Numerical experiments for solving (4.30)

4.5 Applications of considered minimization problems

In the first application we will show that the constrained minimization problem (4.2) covers
solutions of some constrained linear systems.

One important case of (4.2), i.e., of (4.30) is the further restriction b ∈ R(Mk) in (4.2).
Such restriction leads to the following LS problem:

min
y

‖Mk+1y −Mkc‖2, c ∈ R
n. (4.31)
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Exact solutions of (4.31) are solutions of the Drazin normal equation

Mk+1y = Mkc. (4.32)

Let us introduce an additional assumption b ∈ R(Mk) in Theorem 4.1.1. The unique solution
of (4.30) is y = M †©b. Further, assumption b ∈ R(Mk) implies b = Mkc, for some c ∈ R

n, and
gives the unique solution od the form

y = M
†©Mkc = MDMk(Mk)†Mkc = MDMkc = MDb.

In this way, Proposition 4.5.1 reveals known result from [168].

Proposition 4.5.1. [168] Let M ∈ R
n×n, c ∈ R

n and k = ind(M). The set of all solutions of
the equation (4.32) is given by

y = MDc+N (Mk), k = ind(M). (4.33)

Moreover, y = MDb is the unique solution to (4.32) satisfying b ∈ R(Mk).

Another application of (4.2) is in the representation of some restricted matrix equations.
On the basis of Theorem 4.1.1, it is possible to express solutions to the following more-general
constrained matrix minimization problem:

min ‖MX −B‖2 subject to R(X) ⊆ R(Mk), (4.34)

where B ∈ C
n×n, M ∈ C

n×n and k = Ind(M).

Corollary 4.5.1. The unique solution to (4.34) is

X = M
†©B.

Further, assumption R(B) ⊆ R(Mk) implies B = MkC, C ∈ C
n×n and gives the unique

solution to (4.34) in the form

X = M
†©MkC = MDMk(Mk)†MkC = MDMkC = MDB.

In this way, we just derive known result from [157].

Proposition 4.5.2. [157] Let M ∈ R
n×n of index k = ind(M), B ∈ R

n satisfy R(B) ⊆ R(Mk).
Then the solution of

AX = B, R(X) ⊆ R(Mk) (4.35)

is equal to X = MDB.

Consequently, application of the core-EP inverse in solving constrained matrix equations
generalizes known application of the Drazin inverse in solving constrained matrix equations.
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Chapter 5

Generalizations of composite
inverses

The intention of this chapter is to generalize composite outer inverses and their extension to
arbitrary matrices. We were guided by two main ideas. First, the existence of composite outer
inverses is limited by strict constraints on the ranks of the input matrices. So, domain of their
applicability is reduced. Second, it is clear that the proposed extensions of composite outer
inverses will initiate analogous generalizations of known generalized inverses included in the
OMP, MPO and MPOMP classes, such as the core, core-EP and *core-EP inverses, the DMP
and MPD inverses as well as the CMP, MPCEP and *CEPMP inverses.

5.1 Generalization of core-EP inverse for rectangular

matrices

Since composite outer inverses do not involve the core-EP inverse, continuing previous research
about composite outer inverses, the goal of this section is to present generalization of the core-
EP inverse to rectangular matrices, using appropriate composition of outer inverse and the
Moore-Penorse inverse.

Precisely, we define an extension of the core-EP inverse (termed as the g-core-EP inverse)
for a rectangular matrix in terms of the Moore-Penrose inverse of a corresponding matrix and
the outer inverse A

(2)
T,S [113]. The core-EP inverse [123] and the core inverse [2] are special cases

of the g-core-EP inverse for A
(2)
T,S = AD and A

(2)
T,S = A#, respectively. Also, the Moore-Penrose

inverse can be derived after certain choice of the outer inverse in definition of the g-core-EP
inverse. As a consequence, this approach defines a wider class of outer inverses.

As the dual of the g-core-EP inverse, the *g-core-EP inverse for a rectangular matrix is
presented in the second research stream. Several characterizations and main properties of the
g-core-EP and the *g-core-EP inverse are discovered. Integral and limit representations of the
g-core-EP and *g-core-EP inverses are developed.

5.1.1 Characterizations of g-core-EP inverse

An algebraic approach enables us to present a new outer inverse applicable to arbitrary matrices.

Theorem 5.1.1. [113] Let A ∈ C
m×n
T,S . Then the system of matrix equations

XAX = X, XA = A
(2)
T,S(AA

(2)
T,S)

†A and AX = AA
(2)
T,S(AA

(2)
T,S)

† (5.1)

possesses the unique solution X := A
(2)
T,S

(
AA

(2)
T,S

)†
.

Proof. We can easily show that (5.1) holds for X := A
(2)
T,S

(
AA

(2)
T,S

)†
.

If different matrices X and X1 satisfy the system of matrix equations (5.1), then

AX1 = AA
(2)
T,S

(
AA

(2)
T,S

)†
= AX, X1A = A

(2)
T,S

(
AA

(2)
T,S

)†
A = XA,

which further implies
X = (XA)X = X1(AX) = X1AX1 = X1.

Thus, the solution X to the system (5.1) is unique.
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Definition 5.1.1. Let A ∈ C
m×n
T,S . The generalized core-EP (or g-core-EP) inverse of given

matrix A is defined as

A
2©
T,S := A

(2)
T,S

(
AA

(2)
T,S

)†
.

Various important special cases of the defined g-core-EP inverse, which recover some popular
outer inverses, are given now.

(i) For m = n, k = ind(A) and A
(2)
T,S = AD, the g-core-EP inverse becomes the core-EP

inverse. Indeed,

A
2©

R(Ak),N(Ak)
= AD(AAD)† = ADAAD(AAD)† = ADPR(AAD)

= ADPR(Ak) = ADAk(Ak)† = A
†©.

(ii) When k = 1 in part (i), we have A
(2)
T,S = A# and the g-core-EP inverse is equal to the

core inverse, i.e., A 2©
R(A),N(A)

= A#©,.

(iii) If A
(2)
T,S = A†, then A 2©

R(A∗),N(A∗)
= A†.

Corollary 5.1.1 gives a representation of the g-core-EP inverse which is based on correspond-
ing orthogonal projection.

Corollary 5.1.1. Let A ∈ C
m×n
T,S . Then

A
2©
T,S = A

(2)
T,SPR(AA

(2)
T,S

)
.

Proof. The proof follows from P
R(AA

(2)
T,S

)
= AA

(2)
T,S

(
AA

(2)
T,S

)†
.

In the next result, we consider projections determined by the g-core-EP inverse and observe
that the g-core-EP inverse is an outer inverse with corresponding null space and range.

Lemma 5.1.1. [113] Let A ∈ C
m×n
T,S . Then:

(i) A 2©
T,SA is a projector onto T along N ((A

(2)
T,SA)∗A);

(ii) AA 2©
T,S is the orthogonal projector onto R(AA

(2)
T,S);

(iii) A
2©
T,S = A

(2)

T,N ((AA
(2)
T,S

)∗)
.

Proof. (i) Since A 2©
T,S is an outer inverse of A, we have that A 2©

T,SA is a projector. Notice that

R(A
2©
T,SA) ⊆ R(A

(2)
T,S) = R(A

(2)
T,SAA

(2)
T,S)

= R(A
(2)
T, SAA

(2)
T,S(AA

(2)
T,S)

†AA
(2)
T,S)

⊆ R(A
2©
T,SA),

which gives R(A 2©
T,SA) = R(A

(2)
T,S) = T . Also, we obtain

N (A
2©
T,SA) = N

((
AA

(2)
T,S

)†
A

)
= N

((
AA

(2)
T,S

)∗
A
)
.

(ii) By Theorem 5.1.1, AA
2©
T,S = AA

(2)
T,S

(
AA

(2)
T,S

)†
is the orthogonal projector onto

R
(
AA

(2)
T,S

(
AA

(2)
T,S

)†)
= R(AA

(2)
T,S).

(iii) This part is clear byR(A
2©
T,S)=R(A

2©
T,SA) = T andN (A

2©
T,S)=N

(
AA

2©
T,S

)
=N

((
AA

(2)
T,S

)∗)
.

Remark that, by Lemma 5.1.1, for m = n, k = ind(A) and A
(2)
T,S = AD, A †© = A 2©

T,S =

A
(2)

R(AD),N ((AD)∗)
= A

(2)

R(Ak),N ((Ak)∗)
. In addition, ind(A) = 1 implies A

2©
T,S = A#© = A

(2)

R(A),N ((A)∗).

The g-core-EP inverse can be alternatively defined by means of a geometrical approach too.

Theorem 5.1.2. [113] Let A ∈ C
m×n
T,S . Then X := A 2©

T,S is the unique solution to the constrained
matrix equation

R(X) ⊆ T and AX = P
R(AA

(2)
T,S

)
. (5.2)
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Proof. By Lemma 5.1.1, notice that (5.2) holds for A
2©
T,S.

Let (5.2) be satisfied for different X,X1 ∈ C
n×m. Because

A(X −X1) = P
R(AA

(2)
T,S

)
− P

R(AA
(2)
T,S

)
= 0,

we see A
(2)
T,SA(X − X1) = 0 and so R(X − X1) ⊆ N (A

(2)
T,SA). Then, the inclusions R(X) ⊆

T = R(A
(2)
T,SA) and R(X1) ⊆ R(A

(2)
T,SA) yield R(X −X1) ⊆ N (A

(2)
T,SA)∩R(A

(2)
T,SA) = {0}. So,

X = X1, i.e. A
2©
T,S is the unique solution to the constrained system (5.2).

Using Theorem 5.1.2, we can deduce the following:

(i) if A ∈ C
n×n and k = ind(A), the core-EP inverse of A is the unique matrix satisfying

R(X) ⊆ R(Ak) and AX = PR(Ak);

(ii) [2, Definition 1] if A ∈ C
n×n and ind(A) = 1, the unique solution to

R(X) ⊆ R(A) and AX = PR(A),

is just the core inverse A#© of A.

Several characterizations for the g-core-EP inverse are proposed in Theorem 5.1.3.

Theorem 5.1.3. [113] Let A ∈ C
m×n
T,S . The following statements are mutually equivalent for

X ∈ C
n×m:

(i) X = A
2©
T,S;

(ii) AXA = AA
(2)
T,S

(
AA

(2)
T,S

)†
A, AX = AA

(2)
T,S

(
AA

(2)
T,S

)†
,

XAX = X and XA = A
(2)
T,S

(
AA

(2)
T,S

)†
A;

(iii) AX = AA
(2)
T,S

(
AA

(2)
T,S

)†
and X = A

(2)
T,S

(
AA

(2)
T,S

)†
AX;

(iv)
(
AA

(2)
T,S

)†
AX =

(
AA

(2)
T,S

)†
and A

(2)
T,S

(
AA

(2)
T,S

)†
AX = X;

(v) AX = AA
(2)
T,S

(
AA

(2)
T,S

)†
and A

(2)
T,SAX = X;

(vi) XA = A
(2)
T,S

(
AA

(2)
T,S

)†
A and XAA

(2)
T,S

(
AA

(2)
T,S

)†
= X;

(vii) XAA
(2)
T,S

(
AA

(2)
T,S

)†
= X and XAA

(2)
T,S = A

(2)
T,S;

(viii) A
(2)
T,SAXAA

(2)
T,S

(
AA

(2)
T,S

)†
= X and AXAA

(2)
T,S = AA

(2)
T,S;

(ix) A
(2)
T,SAXAA

(2)
T,S

(
AA

(2)
T,S

)†
= X and A

(2)
T,SAXAA

(2)
T,S = A

(2)
T,S;

(x) A
(2)
T,S

(
AA

(2)
T,S

)∗
= XAA

(2)
T,S

(
AA

(2)
T,S

)∗
and XAA

(2)
T,S

(
AA

(2)
T,S

)†
= X;

(xi) XAA
(2)
T,SAX = X, AA

(2)
T,SAXAA

(2)
T,SA = AA

(2)
T,SA,

AA
(2)
T,SAX = AA

(2)
T,S

(
AA

(2)
T,S

)†
and XAA

(2)
T,SA = A

(2)
T,SA;

(xii) XAA
(2)
T,SAX = X, AA

(2)
T,SAX = AA

(2)
T,S

(
AA

(2)
T,S

)†
and XAA

(2)
T,SA = A

(2)
T,SA.

Proof. (i)⇒ (ii): On the basis ofX = A
(2)
T,S

(
AA

(2)
T,S

)†
, one can verify AXA = AA

(2)
T,S

(
AA

(2)
T,S

)†
A.

The rest of the proof is evident by Theorem 5.1.1.

(ii) ⇒ (iii): It is observable that A
(2)
T,S

(
AA

(2)
T,S

)†
AX = XAX = X.

(iii) ⇒ (iv): The assumption AX = AA
(2)
T,S

(
AA

(2)
T,S

)†
initiates

(
AA

(2)
T,S

)†
AX =

(
AA

(2)
T,S

)†
.

(iv) ⇒ (i): This implication follows by A
(2)
T,S

(
AA

(2)
T,S

)†
= A

(2)
T,S

(
AA

(2)
T,S

)†
AX = X.

(iii) ⇒ (v): Using A
(2)
T,S

(
AA

(2)
T,S

)†
AX = X, we obtain

A
(2)
T,SAX = (A

(2)
T,SAA

(2)
T,S)

(
AA

(2)
T,S

)†
AX = A

(2)
T,S

(
AA

(2)
T,S

)†
AX = X.
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(v) ⇒ (i): Note that X = A
(2)
T,S(AX) = A

(2)
T,S

(
AA

(2)
T,S

)†
.

(ii) ⇒ (vi): We have that X = X(AX) = XAA
(2)
T,S

(
AA

(2)
T,S

)†
.

(vi) ⇒ (vii): By XA = A
(2)
T,S

(
AA

(2)
T,S

)†
A and A

(2)
T,S = A

(2)
T,SAA

(2)
T,S, we get XAA

(2)
T,S = A

(2)
T,S.

(vii) ⇒ (i): Since X = XAA
(2)
T,S

(
AA

(2)
T,S

)†
and XAA

(2)
T,S = A

(2)
T,S, one can conclude X =

A
(2)
T,S

(
AA

(2)
T,S

)†
.

(i) ⇒ (viii): The definition X := A
(2)
T,S

(
AA

(2)
T,S

)†
yields

A
(2)
T,SAXAA

(2)
T,S

(
AA

(2)
T,S

)†
= A

(2)
T,SAA

(2)
T,S

(
AA

(2)
T,S

)†
AA

(2)
T,S

(
AA

(2)
T,S

)†
= A

(2)
T,S

(
AA

(2)
T,S

)†
= X

and

AXAA
(2)
T,S = AA

(2)
T,S

(
AA

(2)
T,S

)†
AA

(2)
T,S = AA

(2)
T,S.

(viii) ⇒ (ix): If AXAA
(2)
T,S = AA

(2)
T,S, then A

(2)
T,SAXAA

(2)
T,S = A

(2)
T,SAA

(2)
T,S = A

(2)
T,S.

(ix) ⇒ (i): Because X = A
(2)
T,SAXAA

(2)
T,S

(
AA

(2)
T,S

)†
and A

(2)
T,SAXAA

(2)
T,S = A

(2)
T,S , we see

that X = A
(2)
T,S

(
AA

(2)
T,S

)†
.

(vii) ⇒ (x): Multiplying XAA
(2)
T,S = A

(2)
T,S from the right hand side by

(
AA

(2)
T,S

)∗
, notice

that XAA
(2)
T,S

(
AA

(2)
T,S

)∗
= A

(2)
T,S

(
AA

(2)
T,S

)∗
.

(x) ⇒ (vii): The hypothesis XAA
(2)
T,S

(
AA

(2)
T,S

)∗
= A

(2)
T,S

(
AA

(2)
T,S

)∗
gives

XAA
(2)
T,S = XAA

(2)
T,S

(
AA

(2)
T,S

)†
AA

(2)
T,S =

(
XAA

(2)
T,S

(
AA

(2)
T,S

)∗)((
AA

(2)
T,S

)†)∗

= A
(2)
T,S

(
AA

(2)
T,S

)∗ ((
AA

(2)
T,S

)†)∗

= A
(2)
T,S

(
AA

(2)
T,S

(
AA

(2)
T,S

)†
AA

(2)
T,S

)

= A
(2)
T,SAA

(2)
T,S = A

(2)
T,S .

(ii) ⇒ (xi): Using AX = AA
(2)
T,S

(
AA

(2)
T,S

)†
and XA = A

(2)
T,S

(
AA

(2)
T,S

)†
A, we get

AA
(2)
T,SAX = AA

(2)
T,SAA

(2)
T,S

(
AA

(2)
T,S

)†
= AA

(2)
T,S

(
AA

(2)
T,S

)†
and

XAA
(2)
T,SA = A

(2)
T,S

(
AA

(2)
T,S

)†
AA

(2)
T,SA = A

(2)
T,SA.

Now,

AA
(2)
T,SAXAA

(2)
T,SA = AA

(2)
T,S

(
AA

(2)
T,S

)†
AA

(2)
T,SA = AA

(2)
T,SA

and
XAA

(2)
T,SAX = A

(2)
T,SAX = X,

by the equivalence between (i) and (ii).
(xi) ⇒ (xii): It is evident.
(xii) ⇒ (i): This implication follows by

X = (XAA
(2)
T,SA)X = A

(2)
T,SAX = A

(2)
T,S(AA

(2)
T,SAX)

= A
(2)
T,SAA

(2)
T,S

(
AA

(2)
T,S

)†
= A

(2)
T,S

(
AA

(2)
T,S

)†
.

The proof is finished.

Corollary 5.1.2. [113] Let A ∈ C
m×n
T,S . Then

(i) A
2©
T,S ∈ (AA

(2)
T,SA){1, 2, 3};

(ii) A 2©
T,S =

(
AA

(2)
T,SA

)†
if and only if

(
A

(2)
T,SA

)∗
= A

(2)
T,SA;

(iii) for m = n, A 2©
T,S =

(
AA

(2)
T,SA

)#
if and only if AA

(2)
T,S

(
AA

(2)
T,S

)†
= A

(2)
T,SA.
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Proof. Follows from Theorem 5.1.3, part (xi).

The g-core-EP inverse A
(2)
T,S

(
AA

(2)
T,S

)†
can be further characterized under the assumptions

R(U) = E andN (V ) = F for some U ∈ C
n×k and V ∈ C

l×m. The notation ΩU,V := A
(2)

R(U),N (V )

will be used in order to simplify presentation.

Theorem 5.1.4. Let U ∈ C
n×k, V ∈ C

l×m and A ∈ C
m×n
R(U),N (V )

. Then the next assertions are
equivalent:

(i) A 2©
T,S just coincides with X ∈ C

n×m, defined by

X := ΩU,V (AΩU,V )† = U(V AU)(1)V
(
AU(V AU)(1)V

)†
;

(ii) V AX = V (AΩU,V )† and ΩU,V AX = X;

(iii) V AXAΩU,V = V and ΩU,V AXAΩU,V (AΩU,V )† = X;

(iv) V AXAΩU,V (AΩU,V )∗ = V (AΩU,V )∗ and ΩU,V AXAΩU,V (AΩU,V )† = X;

(v) XAΩU,V (AΩU,V )† = X and XAU = U ;

(vi) ΩU,V AXAΩU,V (AΩU,V )† = X and AXAU = AU ;

(vii) ΩU,V AXAΩU,V (AΩU,V )† = X and A∗AXAU = A∗AU.

Proof. The equality R(ΩU,V ) = R(U) implies, for U (1) ∈ U{1},
ΩU,V = UU (1)ΩU,V and ΩU,V AU = U.

From N (ΩU,V ) = N (V ), we get, for V (1) ∈ V {1},
ΩU,V = ΩU,V V (1)V and V AΩU,V = V.

(i) ⇒ (ii): Applying X = ΩU,V (AΩU,V )†, we conclude

ΩU,V AX = ΩU,V AΩU,V (AΩU,V )† = ΩU,V (AΩU,V )† = X

and
V AX = (V AΩU,V )(AΩU,V )

† = V (AΩU,V )† .

(ii) ⇒ (i): Notice that ΩU,V AX = X and V AX = V (AΩU,V )† give

X = ΩU,V AX = ΩU,V V (1)(V AX) = (ΩU,V V (1)V )(AΩU,V )†

= ΩU,V (AΩU,V )†.

(i) ⇒ (iii): Because X = ΩU,V (AΩU,V )†, it follows that

V AXAΩU,V = V AΩU,V (AΩU,V )†AΩU,V = V AΩU,V = V

and
ΩU,V AXAΩU,V (AΩU,V )†

= ΩU,V AΩU,V (AΩU,V )†AΩU,V (AΩU,V )†

= ΩU,V (AΩU,V )† = X.

(iii) ⇒ (iv): Obviously.
(iv) ⇒ (i): From the assumptions

V AXAΩU,V (AΩU,V )∗ = V (AΩU,V )∗ and ΩU,V AXAΩU,V (AΩU,V )† = X,
we get

X = ΩU,V AXAΩU,V (AΩU,V )†

= ΩU,V V (1) (V AXAΩU,V (AΩU,V )∗)
(
(AΩU,V )†

)∗
(AΩU,V )†

= (ΩU,V V (1)V )(AΩU,V )∗
(
(AΩU,V )†

)∗
(AΩU,V )†

= ΩU,V (AΩU,V )† .

(i) ⇒ (v): By Theorem 5.1.3, it follows

XAΩU,V = ΩU,V , XAΩU,V (AΩU,V )† = X.

Using ΩU,V AU = U , one obtains

XAU = (XAΩU,V )AU = ΩU,V AU = U.
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(v) ⇒ (i): Since XAU = U and ΩU,V = UU (1)ΩU,V , then

ΩU,V = UU (1)ΩU,V = XA
(
UU (1)ΩU,V

)
= XAΩU,V .

By XAΩU,V (AΩU,V )
† = X, we deduce

X = (XAΩU,V ) (AΩU,V )† = ΩU,V (AΩU,V )† .

(i) ⇒ (vi): Clearly, it is observable that X = ΩU,V (AΩU,V )† in conjunction with ΩU,V AU =
U imply

ΩU,V AXAΩU,V (AΩU,V )
†

= ΩU,V AΩU,V (AΩU,V )† AΩU,V (AΩU,V )†

= ΩU,V (AΩU,V )† = X.

and
AXAU = AΩU,V (AΩU,V )† AU

= AΩU,V (AΩU,V )† AΩU,V AU = AU.

(vi) ⇒ (vii): This implication is clear.

(vii) ⇒ (i): If we multiply A∗AXAU = A∗AU from the left hand side by (A†)∗, we get
AXAU = AU . Multiplying the previous equality by U (1)ΩU,V from the right hand side, it is
possible to derive AXAΩU,V = AΩU,V . So,

ΩU,V = ΩU,V (AΩU,V ) = ΩU,V AXAΩU,V .

Now, using ΩU,V AXAΩU,V (AΩU,V )† = X, one obtains

ΩU,V (AΩU,V )† = ΩU,V AXAΩU,V (AΩU,V )† = X,

which finishes the proof.

Theorem 5.1.5 gives some expressions for the Moore-Penorse inverse of the g-core-EP inverse.

Theorem 5.1.5. [113] Let A ∈ C
m×n
T,S . Then

(A
2©
T,S)

† = AA
(2)
T,S(A

(2)
T,S)

† = P
R

(
AA

(2)
T,S

)
,S
(A

(2)
T,S)

† = AP
R(A

(2)
T,S

)
.

Proof. We easily verify that (A
2©
T,S)

† = AA
(2)
T,S(A

(2)
T,S)

†, by the definition of the Moore-Penrose

inverse and A
2©
T,S = A

(2)
T,S

(
AA

(2)
T,S

)†
. Since AA

(2)
T,S = P

R
(
AA

(2)
T,S

)
,S

and A
(2)
T,S(A

(2)
T,S)

† = P
R(A

(2)
T,S

)
,

the rest is evident.

As a consequence of Theorem 5.1.5, in Corollary 5.1.3 we obtain representations for g-core-
EP inverses.

Corollary 5.1.3. Let A ∈ C
m×n
T,S . Then

A
2©
T,S =

(
AA

(2)
T,S(A

(2)
T,S)

†
)†

=

(
AP

R(A
(2)
T,S

)

)†

=

(
P
R

(
AA

(2)
T,S

)
,S
(A

(2)
T,S)

†

)†

.

For the g-core-EP inverse, we investigate maximal classes of matrices for which its repre-
sentation is satisfied.

Theorem 5.1.6. [113] Let Λ ∈ C
n×m and A ∈ C

m×n
T,S . The following propositions are equivalent:

(i) A 2©
T,S = Λ(AΛ)†;

(ii) AΛ(AΛ)† = AA
(2)
T,S

(
AA

(2)
T,S

)†
and (I − A

(2)
T,SA)Λ(AΛ)† = 0;

(iii) R(AΛ) = R
(
AA

(2)
T,S

)
and R(Λ(AΛ)∗) ⊆ T .

Proof. (i) ⇒ (ii): Because A
2©
T,S = A

(2)
T,S

(
AA

(2)
T,S

)†
= Λ(AΛ)†, we firstly get

AA
(2)
T,S

(
AA

(2)
T,S

)†
= AΛ(AΛ)†.

Further,

(I −A
(2)
T,SA)Λ(AΛ)† = (I −A

(2)
T,SA)A

2©
T,S = (I − A

(2)
T,SA)A

(2)
T,S

(
AA

(2)
T,S

)†
= 0.
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(ii) ⇒ (iii): From AΛ(AΛ)† = AA
(2)
T,S

(
AA

(2)
T,S

)†
, it follows that

R(AΛ) = R(AΛ(AΛ)†) = R(AA
(2)
T,S

(
AA

(2)
T,S

)†
) = R

(
AA

(2)
T,S

)
.

Also, by (I − A
(2)
T,SA)Λ(AΛ)† = 0, we observe that

R(Λ(AΛ)∗) = R(Λ(AΛ)†) ⊆ N (I − A
(2)
T,SA) = T.

(iii) ⇒ (i): Notice that

R(AΛ(AΛ)†) = R(AΛ) = R
(
AA

(2)
T,S

)
= R

(
AA

(2)
T,S

(
AA

(2)
T,S

)†)

implies

AA
(2)
T,S

(
AA

(2)
T,S

)†
= AΛ(AΛ)†AA

(2)
T,S

(
AA

(2)
T,S

)†
.

and

AΛ(AΛ)† = AA
(2)
T,S

(
AA

(2)
T,S

)†
AΛ(AΛ)†.

Therefore,

AΛ(AΛ)† = AA
(2)
T,S

(
AA

(2)
T,S

)†
AΛ(AΛ)† =

(
AA

(2)
T,S

(
AA

(2)
T,S

)†)∗

= AA
(2)
T,S

(
AA

(2)
T,S

)†
.

We observe that
R(Λ(AΛ)†) = R(Λ(AΛ)∗) ⊆ T = N (I − A

(2)
T,SA)

gives (I − A
(2)
T,SA)Λ(AΛ)† = 0. Thus,

Λ(AΛ)† = A
(2)
T,SAΛ(AΛ)† = A

(2)
T,SAA

(2)
T,S

(
AA

(2)
T,S

)†
= A

2©
T,S.

The proof is complete.

5.1.2 Characterizations of *g-core-EP inverse

The *g-core-EP inverse is defined as the dual case of the g-core-EP inverse.

Theorem 5.1.7. [113] Let A ∈ C
m×n
T,S . Then the matrix equations

XAX = X, AX = A
(
A

(2)
T,SA

)†
A

(2)
T,S and XA =

(
A

(2)
T,SA

)†
A

(2)
T,SA

have the unique solution X :=
(
A

(2)
T,SA

)†
A

(2)
T,S.

Definition 5.1.2. Let A ∈ C
m×n
T,S . The generalized core-EP (or *g-core-EP) inverse of A is

defined as

AT,S
2© :=

(
A

(2)
T,SA

)†
A

(2)
T,S.

Some particular cases of the *g-core-EP inverse are listed:

(i) When m = n, k = ind(A) and A
(2)
T,S = AD, the *g-core-EP inverse coincides with the

*core-EP inverse:

AT,S
2© = (ADA)†AD = PR((AAD)∗)A

D = PR((Ak)∗)A
D = (Ak)†AkAD = A †©.

(ii) If k = 1 in the part (i), then AT,S
(2) = A# and the generalized *core-EP inverse becomes

the dual core (or *core) inverse.

Corollary 5.1.4. Let A ∈ C
m×n
T,S . Then

AT,S
2© = P

R
((

A
(2)
T,S

A
)∗)A(2)

T,S.

We also investigate projections involving *g-core-EP inverse.

Lemma 5.1.2. Let A ∈ C
m×n
T,S . Then:
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(i) AT,S
2© A is the orthogonal projector onto R

((
A

(2)
T,SA

)∗)
;

(ii) AAT,S
2© is a projector onto R(A

(
A

(2)
T,SA

)∗
) along S;

(iii) AT,S
2© = A

(2)

R(
(
A

(2)
T,S

A
)∗

),S
.

By from a geometrical point of view, the *g-core-EP inverse is introduced now.

Theorem 5.1.8. [113] Let A ∈ C
m×n
T,S . Then X = AT,S

2© is the unique solution to the following
constrained matrix equation:

R(X) ⊆ R
((

A
(2)
T,SA

)∗)
and AX = P

R(A
(
A

(2)
T,S

A
)∗

),S
.

We present a few characterizations of the *g-core-EP inverse too.

Theorem 5.1.9. [113] The following assertions are equivalent for A ∈ C
m×n
T,S and X ∈ C

n×m:

(i) X is the *g-core-EP inverse of A;

(ii) AXA = A
(
A

(2)
T,SA

)†
A

(2)
T,SA, XAX = X,

AX = A
(
A

(2)
T,SA

)†
A

(2)
T,S and XA =

(
A

(2)
T,SA

)†
A

(2)
T,SA;

(iii) XA
(
A

(2)
T,SA

)†
A

(2)
T,S = X and XA =

(
A

(2)
T,SA

)†
A

(2)
T,SA;

(iv) XA
(
A

(2)
T,SA

)†
A

(2)
T,S = X and

(
A

(2)
T,SA

)†
= XA

(
A

(2)
T,SA

)†
;

(v) XA =
(
A

(2)
T,SA

)†
A

(2)
T,SA and XAA

(2)
T,S = X;

(vi)
(
A

(2)
T,SA

)†
A

(2)
T,SAX = X and AX = A

(
A

(2)
T,SA

)†
A

(2)
T,S;

(vii)
(
A

(2)
T,SA

)†
A

(2)
T,SAX = X and A

(2)
T,SAX = A

(2)
T,S;

(viii)
(
A

(2)
T,SA

)†
A

(2)
T,SAXAA

(2)
T,S = X and A

(2)
T,SAXA = A

(2)
T,SA;

(ix)
(
A

(2)
T,SA

)†
A

(2)
T,SAXAA

(2)
T,S = X and A

(2)
T,SAXAA

(2)
T,S = A

(2)
T,S;

(x)
(
A

(2)
T,SA

)†
A

(2)
T,SAX = X and

(
A

(2)
T,SA

)∗
A

(2)
T,S =

(
A

(2)
T,SA

)∗
A

(2)
T,SAX;

(xi) XAA
(2)
T,SAX = X, AA

(2)
T,SAXAA

(2)
T,SA = AA

(2)
T,SA,

AA
(2)
T,SAX = AA

(2)
T,S and XAA

(2)
T,SA =

(
A

(2)
T,SA

)†
A

(2)
T,SA;

(xii) XAA
(2)
T,SAX = X, AA

(2)
T,SAX = AA

(2)
T,S and XAA

(2)
T,SA =

(
A

(2)
T,SA

)†
A

(2)
T,SA.

Several additional properties of the *g-core-EP inverse are given in Corollary 5.1.5.

Corollary 5.1.5. [113] Let A ∈ C
m×n
T,S . Then

(i) AT,S
2© ∈ (AA

(2)
T,SA){1, 2, 4};

(ii) AT,S
2© = (AA

(2)
T,SA)† if and only if

(
AA

(2)
T,S

)∗
= AA

(2)
T,S;

(iii) for m = n, AT,S
2© = (AA

(2)
T,SA)# if and only if AA

(2)
T,S =

(
A

(2)
T,SA

)†
A

(2)
T,SA.

We also consider the *g-core-EP inverse of the form (ΩU,V A)†ΩU,V .

Theorem 5.1.10. Let U ∈ C
n×k, V ∈ C

l×m and A ∈ C
m×n
R(U),N (V ). Then the next statements

are equivalent:

(i) the *g-core-EP inverse of A is X ∈ C
n×m, defined by

X := (ΩU,V A)† ΩU,V =
(
U(V AU)(1)V A

)†
U(V AU)(1)V.

(ii) XAU = (ΩU,V A)† U and XAΩU,V = X;

(iii) ΩU,V AXAU = U and (ΩU,V A)† ΩU,V AXAΩU,V = X;
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(iv) (ΩU,V A)∗ ΩU,V AXAU = (ΩU,V A)∗ U and (ΩU,V A)† ΩU,V AXAΩU,V = X;

(v) (ΩU,V A)† ΩU,V AX = X and V AX = V ;

(vi) (ΩU,V A)† ΩU,V AXAΩU,V = X and V AXA = V A;

(vii) (ΩU,V A)† ΩU,V AXAΩU,V = X and V AXAA∗ = V AA∗.

We can establish formulae for the Moore-Penorse inverse of the generalized *core–EP inverse.

Theorem 5.1.11. Let A ∈ C
m×n
T,S . Then

(AT,S
2© )† = (A

(2)
T,S)

†A
(2)
T,SA = P

R
(
(A

(2)
T,S

)∗
)A = (A

(2)
T,S)

†P
T,N

(
A

(2)
T,S

A
).

Corollary 5.1.6. [113] Let A ∈ C
m×n
T,S . Then

AT,S
2© =

(
(A

(2)
T,S)

†A
(2)
T,SA

)†
=

(
(A

(2)
T,S)

†P
T,N

(
A

(2)
T,S

A
)
)†

=

(
P
R

(
(A

(2)
T,S

)∗
)A
)†

.

We give maximal classes for representing the *g-core-EP inverse in the most general form.

Theorem 5.1.12. [113] Let Λ ∈ C
n×m and let A ∈ C

m×n
T,S . The next conditions are equivalent:

(i) AT,S
2© = (ΛA)†Λ;

(ii)
(
A

(2)
T,SA

)†
A

(2)
T,SA = (ΛA)†ΛA and (ΛA)†Λ(I − AA

(2)
T,S) = O;

(iii) R((AV )∗) = R
((

A
(2)
T,SA

)∗)
and S ⊆ N ((ΛA)∗Λ).

5.2 Integral and limit representations of g-core-EP

and *g-core-EP inverses

5.2.1 Integral and limit representations of g-core-EP inverse

In the next theorem, we establish some integral representations for the g-core-EP inverse.

Theorem 5.2.1. [113] Let A ∈ C
m×n
T,S .

(i) If G ∈ C
n×m with N (G) = S and R(G) = T , then

A 2©
T,S =

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗GP

R
(
AA

(2)
T,S

) dt.

(ii) If G1 ∈ C
n×m with N (G1) = N (

(
A

(2)
T,SA

)∗
) and R(G1) = T , then

A
2©
T,S =

∞∫
0

exp
[−G1(G1AG1)

∗G1At
]
G1(G1AG1)

∗G1 dt.

Proof. (i) According to [165, Theorem 2.2], note that

A
(2)
T,S =

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗G dt.

By Corollary 5.1.1, recall that A 2©
T,S = A

(2)
T,SPR

(
AA

(2)
T,S

) and the rest is clear.

(ii) From Lemma 5.1.1(iii), we conclude that A 2©
T,S = A

(2)

T,N
((

A
(2)
T,S

A
)∗). Using [165, Theorem

2.2], we conclude that (ii) is satisfied.

Now, we derive the limit representations for the g-core-EP inverse.

Theorem 5.2.2. [113] Let A ∈ C
m×n
T,S .

(i) If U ∈ C
n×s
s and V ∈ C

s×m
s with N (V ) = S and R(U) = T , then

A
2©
T,S = lim

t→0
U(tI + V AU)−1V P

R
(
AA

(2)
T,S

).
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(ii) If U1 ∈ C
n×s
s and V1 ∈ C

s×m
s with N (V1) = N

((
A

(2)
T,SA

)∗)
and R(U1) = T , then

A
2©
T,S = lim

t→0
U1(tI + V1AU1)

−1V1

= lim
t→0

(tI + U1V1A)−1U1V1 = lim
t→0

U1V1(tI + AU1V1)
−1.

Proof. It follows from
A

(2)
T,S = lim

t→0
U(tI + V AU)−1V,

which is known result [76, Theorem 7].

5.2.2 Integral and limit representations of *g-core-EP inverse

The integral representations for the *g-core-EP inverse are given in Theorem 5.2.3.

Theorem 5.2.3. [113] Let A ∈ C
m×n
T,S .

(i) If G ∈ C
n×m with N (G) = S and R(G) = T , then

AT,S
2© =

∞∫
0

P
R

((
A

(2)
T,S

A
)∗) exp

[−G(GAG)∗GAt
]
G(GAG)∗G dt.

(ii) If G1 ∈ C
n×m with N (G1) = S and R(G1) = R(

(
A

(2)
T,SA

)∗
), then

AT,S
2© =

∞∫
0

exp
[−G1(G1AG1)

∗G1At
]
G1(G1AG1)

∗G1 dt.

Some limit representations for the generalized *core–EP inverse are presented in Theorem
5.2.4.

Theorem 5.2.4. [113] Let A ∈ C
m×n
T,S .

(i) If U ∈ C
n×s
s and V ∈ C

s×m
s with N (V ) = S and R(U) = T , then

AT,S
2© = lim

t→0
P
R

((
A

(2)
T,S

A
)∗)U(tI + V AU)−1V.

(ii) If U1 ∈ C
n×s
s and V1 ∈ C

s×m
s with N (V1) = S and R(U1) = R

((
A

(2)
T,SA

)∗)
, then

AT,S
2© = lim

t→0
U1(tI + V1AU1)

−1V1

= lim
t→0

(tI + U1V1A)−1U1V1 = lim
t→0

U1V1(tI + AU1V1)
−1.

5.3 Applications of g-core-EP inverses

Applications of g-core-EP and *g-core-EP inverses
The g-core-EP and *g-core-EP inverse can be applied in solving certain systems of linear

equations. Theorem 5.3.1 investigates applicability of the g-core-EP inverse.

Theorem 5.3.1. [113] If A ∈ C
m×n
T,S , then the general solution to

A
(2)
T,SAx = A

2©
T,Sb (5.3)

is given by

x = A
2©
T,Sb+

(
I − A

(2)
T,SA

)
y, (5.4)

for arbitrary y ∈ C
n.

Proof. Notice that x of the form (5.4) is a solution to (5.3):

A
(2)
T,SAx = A

(2)
T,SAA 2©

T,Sb = A 2©
T,Sb.

Let x be a solution to (5.3). Then, by A 2©
T,Sb = A

(2)
T,SAx, we deduce that x has the form

(5.4):

x = A
2©
T,Sb+ x− A

(2)
T,SAx = A

2©
T,Sb+

(
I − A

(2)
T,SA

)
x.
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Applying Theorem 5.3.1, we obtain the next results.

Corollary 5.3.1. If A ∈ C
n×n satisfies ind(A) = k then the general solution to

ADAx = A
†©b

is represented by
x = A

†©b+ (I − ADA)y,

for arbitrary y ∈ C
n.

Corollary 5.3.2. Let A ∈ C
n×n with ind(A) = 1. Then the general solution to

A#Ax = A
#©b

is
x = A

#©b+ (I − A#A)y,

for arbitrary y ∈ C
n.

Theorem 5.3.2. [113] Let A ∈ C
m×n
T,S . Then the general solution to

A
(2)
T,SAx = A

(2)
T,Sb, b ∈ R(AA

(2)
T,S), (5.5)

is given by

x = A
2©
T,Sb+

(
I − A

(2)
T,SA

)
y,

= A
(2)
T,Sb+

(
I − A

(2)
T,SA

)
y

(5.6)

for arbitrary y ∈ C
n.

Proof. If x is represented by (5.6), then

A
(2)
T,SAx = A

(2)
T,SAA

2©
T,Sb = A

(2)
T,SPR

(
AA

(2)
T,S

)b = A
(2)
T,Sb.

Hence, x is a solution to (5.5).
On the other hand, assume that x is a solution to (5.5). Using

A
2©
T,Sb = A

(2)
T,SPR

(
AA

(2)
T,S

)b = A
(2)
T,Sb = A

(2)
T,SAx,

one can conclude that

x = A
2©
T,Sb+ x− A

(2)
T,SAx = A

2©
T,Sb+

(
I − A

(2)
T,SA

)
x.

Thus, the solution x to (5.5) possesses the form (5.6). Since b ∈ R(AA
(2)
T,S), we observe the

identities A 2©
T,Sb = A

(2)
T,SPR

(
AA

(2)
T,S

)b = A
(2)
T,Sb, which confirm the second identity in (5.6).

Certain system of linear equations can be solved using the *g-core-EP inverse.

Theorem 5.3.3. [113] Let A ∈ C
m×n
T,S . Then the general solution to

A
(2)
T,SAx = A

(2)
T,Sb (5.7)

is represented as

x = AT,S
2© b+

(
I − AT,S

2© A
)
y, (5.8)

for arbitrary y ∈ C
n.

Proof. Since A
(2)
T,SAAT,S

2© = A
(2)
T,S, we see that x given by (5.8), is a solution to (5.7):

A
(2)
T,SAx = A

(2)
T,SAAT,S

2© b = A
(2)
T,Sb.

If x is a solution to (5.7), then

AT,S
2© b =

(
A

(2)
T,SA

)†
A

(2)
T,Sb =

(
A

(2)
T,SA

)†
A

(2)
T,SAx = AT,S

2© Ax

implies

x = AT,S
2© b+ x− AT,S

2© Ax = AT,S
2© b+

(
I − AT,S

2© A
)
x.

So, x has the form (5.8).
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Remark 5.3.1. Notice that the equation (5.5) is a special case of the equation (5.7). Under the

assumption b ∈ R(AA
(2)
T,S), we can verify that the general solution (5.8) to (5.7) reduces to the

general solution (5.6) to (5.5). Indeed, since the hypothesis b ∈ R(AA
(2)
T,S) gives b = AA

(2)
T,Su =

AA
(2)
T,S

(
AA

(2)
T,S

)†
b, for some u ∈ C

m, we obtain

AT,S
2© b+

(
I − AT,S

2© A
)
y = A

(2)
T,Sb− A

(2)
T,Sb+

(
A

(2)
T,SA

)†
A

(2)
T,SAA

(2)
T,Su

+

(
I −
(
A

(2)
T,SA

)†
A

(2)
T,SA

)
y

= A
(2)
T,Sb+

(
I −
(
A

(2)
T,SA

)†
A

(2)
T,SA

)
(y −A

(2)
T,Su)

for arbitrary y ∈ C
n. Choosing y = A

(2)
T,Su+ (I − A

(2)
T,SA)z, z ∈ C

n, we obtain

AT,S
2© b+

(
I − AT,S

2© A
)
y = A

(2)
T,Sb+

(
I −
(
A

(2)
T,SA

)†
A

(2)
T,SA

)
(I − A

(2)
T,SA)z

= A
(2)
T,Sb+ (I − A

(2)
T,SA)z.

Thus, {
AT,S

2© b+
(
I − AT,S

2© A
)
y : y ∈ C

n
}
⊆ {A(2)

T,Sb+ (I − A
(2)
T,SA)z : z ∈ C

n}.
To prove the converse inclusion, we observe that

A
(2)
T,Sb+ (I − A

(2)
T,SA)z = AT,S

2© b− AT,S
2© b+ A

(2)
T,Sb+ (I − A

(2)
T,SA)z

= AT,S
2© b−

(
A

(2)
T,SA

)†
A

(2)
T,Sb+ A

(2)
T,SA

(
A

(2)
T,SA

)†
A

(2)
T,Sb

+ (I −A
(2)
T,SA)z

= AT,S
2© b+ (I − A

(2)
T,SA)

(
z −
(
A

(2)
T,SA

)†
A

(2)
T,Sb

)

for arbitrary z ∈ C
n. After the replacement

z =
(
A

(2)
T,SA

)†
A

(2)
T,Sb+

(
I −
(
A

(2)
T,SA

)†
A

(2)
T,SA

)
y, y ∈ C

n,

it can be obtained

A
(2)
T,Sb+ (I − A

(2)
T,SA)z = AT,S

2© b+ (I −A
(2)
T,SA)

(
I −
(
A

(2)
T,SA

)†
A

(2)
T,SA

)
y

= AT,S
2© b+

(
I −
(
A

(2)
T,SA

)†
A

(2)
T,SA

)
y.

Therefore,{
AT,S

2© b+
(
I −AT,S

2© A
)
y : y ∈ C

n
}
=
{
A

(2)
T,Sb+ (I − A

(2)
T,SA)z : z ∈ C

n
}
.

5.4 Summary

The first aim of this chapter is to solve two constrained matrix approximation problem in
Euclidean norm and present their Cramer’s rules based on [111]. Based on the core-EP inverse,
we establish the unique solution of problem (4.2). Further, applying one well-known expression
and one new representation of the core-EP inverse, we obtain two kinds of Cramer’s rules to find
unique solution to (4.2). Using the W -weighted core-EP inverse, we investigate the constrained
matrix approximation problem (4.3). Also, we get two various Cramer’s rules for finding the
solution to (4.3) by means of the one recent proposed formula and one new expression of W -
weighted core-EP inverse. In this way, we solve problems which reduce to the problem proposed
in [159] for complex matrices of index one to complex matrices of arbitrary index. Also, we did
not used the assumptions which appeared in [12, 155].

Numerical comparison of the proposed usage of the core-EP inverse with classical methods
for solving least squares (LS) problems with linear equality constraints show the effectiveness of
the proposed strategy based on the usage of the core-EP inverse in solving specific constrained
least squares problems. Moreover, two applications in solving linear systems and systems of
linear matrix equations are considered. One application investigates particular cases of the con-
sidered constrained optimization problem, while the second is application in solving constrained
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matrix equations. Application in solving constrained matrix equations generalizes already in-
vestigated application of the Drazin inverse in solving constrained matrix equations.

Some of possibilities for further work can be generalizations to more general structures, such
as Hilbert spaces or Banach algebras.

Since composite outer inverses do not involve the core-EP inverse, it seems reasonable to
introduce and study extension of the core-EP inverse for rectangular matrices, using proper
compositions of outer inverses and the Moore-Penorse inverse. Thus, we define the g-core-EP
inverse for rectangular matrices as a wider class of outer inverses including the core-EP inverse.
Several useful characterizations and various representations of the g-core-EP inverse are given
as well as its integral and limit representations. The Moore-Penrose of the g-core-EP inverse is
considered. The *g-core-EP inverse for an arbitrary matrix is investigated too as generalization
of *core-EP inverse for a square matrix. It is verified that some systems of equations can be
solved using the g-core-EP and *g-core-EP inverses.

We really believe that research about the g-core-EP and *g-core-EP inverses, which can be
found in [113], will be very popular in the next years. First, we believe that the generalizations
introduced will initiate future more general research. In addition, we believe that the new
properties and characterizations of the introduced inverses will be an interesting topic for future
research. Several perspectives for further examinations can be pronounced as follows.

1. It will be challenging problem to consider perturbation results on g-core-EP and *g-core-
EP inverses for further research.

2. Iterative methods for computing g-core-EP and *g-core-EP inverses can be interesting
research area.

3. An extension of g-core-EP and *g-core-EP inverses from the matrix case to Hilbert spaces
operators can be considered in future research.

4. The g-core-EP and *g-core-EP inverses of tensors could be studied too.

5.5 Generalizations of OMP, OMP and

MPOMP inverses

In this section we investigate various extensions of the OMP inverses defined by the expression
A

(2),†
R(B),N (C) := A

(2)

R(B),N (C)AA†, MPO inverses A
†,(2)
R(B),N (C) := A†AA

(2)

R(B),N (C) and MPOMP

inverses A
†,(2),†
R(B),N (C) := A†AA

(2)
R(B),N (C)AA†, where A ∈ C

m×n
r , B ∈ C

n×k, C ∈ C
l×m. The

motivation arises from the famous Urquhart representation which was proposed in [150] and
confirmed in [156, Theorem 1.3.3] and [8, Theorem 13, P. 72]. We will use the following part of
this statement which is useful in representations of generalized inverses with predefined range
and/or null space. According to standard notation, (CAB)(1) is a fixed but arbitrary element
of (CAB){1}. The relationship rank(A1) = · · · = rank(Ak) between the matrices A1, . . . , Ak of
appropriate order will be denoted by �A1,...,Ak

, while �
B
A1,...,Ak

stands for rank(A1) = · · · =
rank(Ak) < rank(B). The set of matrices A1, . . . , Ak satisfying �A1,...,Ak

or �
B
A1,...,Ak

will be

denoted by ΘA1,...,Ak
and Θ

B
A1,...,Ak

, respectively.

Proposition 5.5.1. (Urquhart formula).
For arbitrary A ∈ C

m×n
r , B ∈ C

n×k, C ∈ C
l×m, it follows

Φ1 := B(CAB)(1)C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∈ A{2}R(B),∗ ⇐⇒�CAB,B

∈ A{2}∗,N (C) ⇐⇒�CAB,C

= A
(2)

R(B),N (C)
⇐⇒�CAB,B,C

= A
(1,2)
R(B),N (C) ⇐⇒�CAB,B,C,A,

(5.9)

where (CAB)(1) is an arbitrary but fixed inner inverse of CAB.

It is observable that expressions Φ1 := B(CAB)(1)C are outer inverses A
(2)

R(B),∗ with known

only range in the case �CAB,B , outer inverses A
(2)
∗,N (C) with known only kernel in the case

�CAB,C and becomes outer inverses with defined both range and null space A
(2)

R(B),N (C) in
cases �CAB,B,C and �CAB,B,C,A. Now, our extension is clear and based on the replacement of

A
(2)
R(B),N (C) by the more general expression Φ1 inside the expressions included in definitions of

OMP, MPO and MPOMP inverses. Obtained inverses will be termed as Φ1-OMP, Φ1-MPO and
Φ1-MPOMP inverses and marked by the common term Φ1-composite outer inverses. Our general
intention is to show that these generalized inverses belong to classes A

(2)
R(U),∗ and/or A

(2)
∗,N (V ),

where U and V are appropriate matrices. Generalized inverses based on the replacements of
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A
(2)
R(B),N (C) in composite outer inverses by the expressions Φ2 := B(CAB)(2)C ∈ A{2} will be

termed as Φ2-composite outer inverses, and divided into Φ2-OMP, Φ2-MPO and Φ2-MPOMP
inverses. These results are presented in [137].

The Urquhart representation of generalized inverses motivated us to consider generalizations
of OMP, MPO and MPOMP inverses which are based on the replacement of A

(2)
R(B),N (C) by the

more general expression Φ1. In this way, composite outer inverses will be defined using outer
inverses with prescribed range A{2}R(U),∗ and/or null space A{2}∗,N (V ). Our goal will be
investigation of matrices U and V . The set of m× n matrices with rational expressions over C

with unknowns x = {x1, . . . , xk} will be denoted by C(x)m×n. The environment A ∈ C(x)m×n,
B ∈ C(x)n×p, C ∈ C(x)q×m will be assumed in the rest of the manuscript. The situation when
A,B,C are fixed will be marked by {A,B,C} ∈ C(x)q,m,n,p. If A ∈ C(x)m×n is fixed and B,C
are changeable, the notation {B,C} � C(x)q,m,n,p will be used.

For a given A ∈ C(x)m×n, the sets of OMP, MPO and MPOMP inverses are defined,
respectively, by

AΩ† =
{
A

(2)

R(B),N (C)AA†| {B,C} � C(x)q,m,n,p

}
;

A†Ω =
{
A†AA

(2)
R(B),N (C)| {B,C} � C(x)q,m,n,p

}
;

A†Ω† =
{
A†AA

(2)
R(B),N (C)AA†| {B,C} � C(x)q,m,n,p

}
.

Definition 5.5.1. (a) The sets of Φ1-composite outer inverses of A ∈ C(x)m×n include Φ1-
OMP, Φ1-MPO and Φ1-MPOMP inverses which are defined, respectively, by

AΓ† =
{
Φ1AA†| {B,C} � C(x)q,m,n,p

}
;

A†Γ =
{
A†AΦ1| {B,C} � C(x)q,m,n,p

}
;

A†Γ† =
{
A†AΦ1AA†| {B,C} � C(x)q,m,n,p

}
,

where Φ1 := B(CAB)(1)C and (CAB)(1) is a fixed but arbitrary element of (CAB){1}.
(b) The sets of Φ2-composite outer inverses of A ∈ C(x)m×n include Φ2-OMP, Φ2-MPO

and Φ2-MPOMP inverses which are defined, respectively, by

AΓ†
{2} =

{
Φ2AA†| {B,C} � C(x)q,m,n,p

}
;

A
†Γ

{2} =
{
A†AΦ2| {B,C} � C(x)q,m,n,p

}
;

A
†Γ†

{2} =
{
A†AΦ2AA†| {B,C} � C(x)q,m,n,p

}
,

where Φ2 := B(CAB)(2)C and (CAB)(2) is a fixed but arbitrary element of (CAB){2}.

The following sets will be useful in further presentation.

Definition 5.5.2. Outer inverses of A ∈ C(x)m×n with prescribed range and/or kernel are
defined by the following sets:

A{2 : R(B), ∗} =
{
Φ1| {B,C} � C(x)q,m,n,p

∧
�CAB,B

}
;

A{2 : ∗,N (C)} =
{
Φ1| {B,C} � C(x)q,m,n,p

∧
�CAB,C

}
;

A{2 : R(B),N (C)} =
{
Φ1| {B,C} � C(x)q,m,n,p

∧
�CAB,B,C

}
;

A{1, 2 : R(B),N (C)} =
{
Φ1| {B,C} � C(x)q,m,n,p

∧
�CAB,B,C,A

}
.

Notice that the proof of Lemma 5.5.1 is based on Proposition 5.5.1.

Lemma 5.5.1. The sets of outer inverses of A ∈ C(x)m×n with prescribed range and/or kernel
are equal to the following sets:

A{2 : R(B), ∗} =
{
A

(2)
R(B),∗| {B,C} � C(x)q,m,n,p

}
;

A{2 : ∗,N (C)} =
{
A

(2)
∗,N (C)| {B,C} � C(x)q,m,n,p

}
;

A{2 : R(B),N (C)} =
{
A

(2)

R(B),N (C)| {B,C} � C(x)q,m,n,p

}
;

A{1, 2 : R(B),N (C)} =
{
A

(1,2)

R(B),N (C)
| {B,C} � C(x)q,m,n,p

}
.

91



84 CHAPTER 5. GENERALIZATIONS OF COMPOSITE INVERSES

Remark 5.5.1. According to [134], the sets

A{2}R(B),∗ =
{
A

(2)

R(B),∗

}
, {A,B,C} ∈ C(x)q,m,n,p;

A{2}∗,N (C) =
{
A

(2)
∗,N (C)

}
, {A,B,C} ∈ C(x)q,m,n,p;

A{2}R(B),N (C) =
{
A

(2)
R(B),N (C)

}
, {A,B,C} ∈ C(x)q,m,n,p

assume fixed A,B,C, while A{2 : R(B), ∗}, A{2 : ∗,N (C)} and A{2 : R(B),N (C)} assume
only fixed A, but variable B and C.

5.5.1 Extensions of OMP inverses

The replacement ofA
(2)
R(B),N (C) by Φ1 := B(CAB)(1)C in the definition A

(2),†
R(B),N (C) := A

(2)
R(B),N (C)AA†

of the OMP inverse leads to extensions of OMP inverses to expressions of more general form
Φ1AA†. Moreover, there is a proper possibility to use the identity Φ1AA† = B(CAA†AB)(1)CAA†,
which enables direct application of the Urquhart’s representation under proper rank conditions.

Theorem 5.5.1. An arbitrary element X ∈ AΓ† from the Φ1-OMP class of A ∈ C(x)m×n

defined by arbitrary but fixed {A,B,C} ∈ C(x)q,m,n,p satisfies
(1) X ∈ A{2}R(B),∗ ⇐⇒�CAB,B ;

(2) X ∈ A{2}∗,N (CAA†) ⇐⇒ �
C
CAB,CA;

(3) X ∈ A
(2)

∗,N (C)AA† = A{2}∗,N (CAA†) ⇐⇒�CAB,C ;

(4) X = A
(2)

R(B),N (CAA†)
⇐⇒�

C
CAB,B,CA;

(5) X = A
(2)

R(B),N (CAA†)
= A

(2)

R(B),N (C)
AA† ⇐⇒�CAB,B,C ;

(6) X = A
(1,2)

R(B),N (CAA†)
= A

(1,2)
R(B),N (C)AA† ⇐⇒�CAB,B,C,A.

Proof. The proof is based on the identity

X := Φ1AA† = B(CAA†AB)(1)CAA†

and the Urquhart representation. Moreover, the rank relationship �CAA†,CA is applied.

It is useful to deduce corresponding set identities from Theorem 5.5.1. Set identities discov-
ered in Theorem 5.5.2 show that Φ1-OMP inverses are particular outer inverses under certain
rank assumptions.

Theorem 5.5.2. The Φ1-OMP class of A ∈ C(x)m×n satisfies the following set identities:
(1) AΩ† = AΓ† ∩ΘCAB,C,B ;
(2) A{2 : R(B), ∗} = AΓ† ∩ΘCAB,B ;

(3) A{2 : ∗,N (CAA†)} = AΓ† ∩ΘC
CAB,CA;

(4) A{2 : ∗,N (CAA†)} = A{2 : ∗,N (C)}AA† = AΓ† ∩ΘCAB,C ;

(5) A{2 : R(B),N (CAA†)} = AΓ† ∩ΘC
CAB,B,CA;

(6) A{2 : R(B),N (CAA†)} = A{2 : R(B),N (C)}AA† = AΓ† ∩ΘCAB,B,C ;

(7) A{1, 2 : R(B),N (C)}AA† = A{1, 2 : R(B),N (CAA†)} = AΓ† ∩ΘCAB,B,C,A.

Proof. (1) An arbitrary OMP inverse X of A satisfies

X ∈ AΩ† ⇐⇒ ∃{A,B,C} ∈ C(x)q,m,n,p : X = A
(2)

R(B),N (C)
AA†

⇐⇒ ∃{A,B,C} ∈ C(x)q,m,n,p : X = Φ1AA†
∧
�CAB,C,B

⇐⇒ X ∈
{
Φ1AA†| {A,B,C} ∈ C(x)q,m,n,p

∧
�CAB,C,B

}
⇐⇒ X ∈ AΓ† ∩ΘCAB,C,B

.

(3) On the basis of Lemma 5.5.1, an arbitrary X ∈ A{2 : ∗,N (CAA†)} satisfies

X ∈ A{2 : ∗,N (CAA†)} ⇐⇒ ∃{A,B,C} ∈ C(x)q,m,n,p : X = A
(2)

∗,N (CAA†)

⇐⇒ X ∈
{
B(CAA†AB)(1)CAA†| {A,B,C} ∈ C(x)q,m,n,p

∧
�CAB,CA

}
⇐⇒ X ∈

{
Φ1AA†| {A,B,C} ∈ C(x)q,m,n,p

∧
�CAB,CA

}
⇐⇒ X ∈

{
Φ1AA†| {A,B,C} ∈ C(x)q,m,n,p

}
∩ΘCAB,CA

⇐⇒ X ∈ AΓ† ∩ΘCAB,CA
.
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Another statements can be verified analogously.

Necessary and sufficient conditions for X ∈ A
(2)
R(B),∗ are considered in in [132, Theorem

3]. According to [132, Theorem 5], [133] and R(CAA†) = R(CA), it follows that A
(2)

∗,N (CAA†)

always exists.
Corollary 5.5.1 can be verified using these results.

Corollary 5.5.1. The set A{2}∗,N (CAA†) is characterized in the following manner

∅ �= A{2}∗,N (CAA†) =
{
(CA)(1)CAA† + (I − (CA)(1)CA)UCAA†| U ∈ C

n×q
∧
�CA,C

}
= (CA){1}CAA† ∩ΘCA,C

= B(CAB){1}CAA† ∩ΘCAB,CA
.

A careful analysis of Theorem 5.5.1 reveals that an arbitrary X ∈ AΓ† (for arbitrary but
fixed {A,B,C} ∈ C(x)q,m,n,p) belongs to two general classes of generalized inverses, namely
X ∈ A{2}R(B),∗ or X ∈ A{2}∗,N (CAA†). According to the results presented in Theorem 5.5.1,
we state Algorithm 5.5.1 for calculating Φ1-OMP inverses. The underlying fact is that the
matrix equation BUCAB = B is solvable under the conditions�CAB,B , while CABUCA = CA

is solvable in the case�CAB,CA. In both cases, U ⊆ (CAB){1} and BUCAA† is desired output.
In this way, Algorithm 5.5.1 represents a continuation of main idea used in the computational
procedures developed in [132, 133].

Algorithm 5.5.1 Computing Φ1-OMP inverses.

Input: {A,B,C} ∈ C(x)q,m,n,p.
1: If �CAB,B Then
2: Solve BUCAB = B.
3: Compute X := BUCAA† ⊆ A{2}R(B),∗.

End If
4: If �CAB,CA Then
5: Solve CABUCA = CA.
6: Compute X := BUCAA† ⊆ A{2}∗,N (CAA†).

End If
7: Return X.

The {2}-inverse A
(2)

R(B),N (CAA†)
exist in the case of the both restrictions �CAB,B and

�CAB,CA. So, it can be characterized by the results from [132, Theorem 6].

Corollary 5.5.2. (a) The next characterizations of A
(2)

R(B),N (CAA†)
are mutually equivalent to

one another, where {A,B,C} ∈ C(x)q,m,n,p:

(i) A
(2)

R(B),N (CAA†)
exists;

(ii) BUCAB = B and CABUCA = CA for some U ∈ C(x)p×q;

(iii) BUCAB = B and CABV CA = CA for some U,V ∈ C(x)p×q;

(iv) BUAB = B, CAV CA = CA and BU = V CAA† for some U ∈ C
p×m and V ∈ C(x)n×q;

(v) V CAB = B and CABU = CAA† for some U ∈ C
p×m and V ∈ C(x)n×q;

(vi) R(CAB) = R(CA) and N (CAB) = N (B);

(vii) Φ1AB = B and CAΦ1A = CA.

(b) If the claims in (a) are true, then

A
(2)

R(B),N (CAA†)
= Φ1AA†

= BUCAA†,
(5.10)

for arbitrary U ∈ C
p×q satisfying BUCAB = B and CABUCA = CA.

In addition, [135, Theorem 2.1] implies the following characterizations and the existence

conditions of A
(2)

R(B),N (CAA†)
.

Corollary 5.5.3. (a) The following assertions are mutually equivalent for {A,B,C} ∈ C(x)q,m,n,p:

93



86 CHAPTER 5. GENERALIZATIONS OF COMPOSITE INVERSES

(i) A
(2)

R(B),N (CAA†)
exists;

(ii) there exists X ∈ C(x)n×m which satisfies

XAB = B, CAX = CAA†, R(X) ⊆ R(B), N (CAA†) ⊆ N (X);

(iii) there exists X ∈ C(x)n×m which satisfies

XAB = B, CAX = CAA†, X = BB(1)X = X(CAA†)(1)CAA†.

(iv) there exists X ∈ C(x)n×m which satisfies

XAB = B, CAX = CAA†, X ∈ BC
p×nX ∩XC

m×qCAA†;

(v) there exists X ∈ C(x)n×m which satisfies

XAB = B, CAX = CAA†, X = BU = V CAA†,

for some U ∈ C
p×m, V ∈ C

n×q ;

(vi) there exists X ∈ C(x)n×m which satisfies

XAB = B, CAX = CAA†, X = BUCAA†, for some U ∈ C
p×q.

(b) If any of the statements (ii)-(vi) holds, then X = A
(2)

R(B),N (CAA†)
.

In general, Φ1AA† is not an outer inverse of A. One of such cases is �
B,CA
CAB . But if we

replace (CAB)(1) with some (CAB)(2) (or only (CAB)(1,2)) then Φ2AA†, Φ2 := B(CAB)(2)C,
is an outer inverse of A.

Theorem 5.5.3. (a) The following statements are equivalent for {A,B,C} ∈ C(x)q,m,n,p:

(i) X := Φ2AA† ∈ AΓ†
{2} ;

(ii) there is X ∈ C(x)n×m which satisfies

XAX = X, AX = AΦ2AA†, XA = Φ2A;

(iii) there is X ∈ C(x)n×m which satisfies

XAΦ2AA† = X, XA = Φ2A;

(iv) there is X ∈ C(x)n×m which satisfies

XAΦ2AA† = X, XAA∗ = Φ2AA∗;

(v) there is X ∈ C(x)n×m which satisfies

XAΦ2AA† = X, XAA† = Φ2AA†;

(vi) there is X ∈ C(x)n×m which satisfies

Φ2AX = X, AX = AΦ2AA†;

(vii) there is X ∈ C(x)n×m which satisfies

XAX = X, AXA = AΦ2A, AX = AΦ2AA†, XA = Φ2A;

(viii) there is X ∈ C(x)n×m which satisfies

XAA† = X, XA = Φ2A;

(ix) there is X ∈ C(x)n×m which satisfies

XAA† = X, XAA∗ = Φ2AA∗;

(x) there is X ∈ C(x)n×m which satisfies

BB(1)X = X, B(1)X = B(1)Φ2AA†.

(b) If an arbitrary of the statements (ii)-(x) is valid, then X = Φ2AA† is unique.
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Proof. (i) ⇒ (ii): For X = Φ2AA†, notice that AX = AΦ2AA† and XA = Φ2A, which gives

XAX = B
(
(CAB)(2)CAB(CAB)(2)

)
CAA† = Φ2AA† = X.

(ii) ⇒ (iii): We observe that the assumptions XAX = X and AX = AΦ2AA† initiate
X = X(AX) = XAΦ2AA†.

(iii) ⇒ (iv): Multiplying XA = Φ2A by A∗ from the right hand side, it follows XAA∗ =
Φ2AA∗.

(iv) ⇒ (v): Since XAA∗ = Φ2AA∗, it follows

XAA† = (XAA∗)(A†)∗A† = Φ2AA∗(A†)∗A† = Φ2AA†.

(v) ⇒ (i): Applying XAΦ2CAA† = X and XAA† = Φ2AA†, we get

X = (XAA†)AΦ2AA† = Φ2AA†AΦ2AA† = Φ2AA†.

The remaining parts of the proof are verified using a similar approach.

Recall that, by [8], X ∈ A{2} if and only if it is of the form X = (EAF )†, where E and F
are suitable Hermitian idempotents.

Lemma 5.5.2. For {A,B,C} ∈ C(x)q,m,n,p, an arbitrary X := Φ2AA† ∈ A
{2}
Γ†

satisfies

X = B(ECABF )†CAA† = BF (ECABF )†ECAA†, (5.11)

where E and F are Hermitian idempotents.

Proof. It is clear by [8] and based on (CAB)(2) = (ECABF )† = F (ECABF )† = (ECABF )†E.

The next results are obtained by applying Theorem 5.5.1 and Lemma 5.5.2.

Corollary 5.5.4. An arbitrary element X ∈ A
{2}
Γ†

defined by arbitrary but fixed {A,B,C} ∈
C(x)q,m,n,p and represented by (5.11) satisfies
(1) X ∈ A{2}R(BF ),∗ ⇐⇒ �ECABF,BF ;

(2) X ∈ A{2}∗,N (ECAA†) ⇐⇒�
EC
ECABF,ECA;

(3) X ∈ A
(2)

∗,N (EC)
AA† = A{2}∗,N (ECAA†) ⇐⇒�ECABF,EC;

(4) X = A
(2)

R(BF ),N (ECAA†)
⇐⇒ �

EC
ECABF,BF,ECA;

(5) X = A
(2)

R(BF ),N (ECAA†)
= A

(2)
R(BF ),N (EC)AA† ⇐⇒�ECABF,BF,EC;

(6) X = A
(1,2)

R(BF ),N (ECAA†)
= A

(1,2)

R(BF ),N (EC)
AA† ⇐⇒�ECABF,BF,EC,A,

where E and F are Hermitian idempotents involved in (5.11).

5.5.2 Extensions of MPO inverses

Also, it is possible to consider extension of MPO inverses of more general form A†AΦ1. Under
the rank conditions�CAB,B,C , it follows A†AΦ1 = A†AA

(2)

R(B),N (C)
. Moreover, there is a proper

possibility to use the identity A†AΦ1 = A†AB(CAA†AB)(1)C, which enables direct application
of the Urquhart’s representation under proper rank conditions �

B
CAB,AB .

Theorem 5.5.4. An arbitrary element X ∈ A†Γ from the Φ1-MPO class of A ∈ C(x)m×n

defined by arbitrary but fixed {A,B,C} ∈ C(x)q,m,n,p satisfies
(1) X ∈ A{2}∗,N (C) ⇐⇒�CAB,C ;

(2) X ∈ A{2}R(A†AB),∗ ⇐⇒�
B
CAB,AB;

(3) X ∈A†AA
(2)
R(B),∗ = A{2}R(A†AB),∗ ⇐⇒�CAB,B ;

(4) X = A
(2)

R(A†AB),N (C)
⇐⇒�

B
CAB,AB,C ;

(5) X = A
(2)

R(A†AB),N (C)
= A†AA

(2)
R(B),N (C) ⇐⇒�CAB,C,B ;

(6) X = A
(1,2)

R(A†AB),N (C)
= A†AA

(1,2)
R(B),N (C) ⇐⇒�CAB,C,B,A.

Proof. The proof follows from

A†AB(CAB)(1)C = A†AB(CAA†AB)(1)C

in conjunction with the Urquhart formula and the rank identity �A†AB,AB .

Theorem 5.5.5 reveals that the Φ1-MPO class is a subset of outer inverses.
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Theorem 5.5.5. The Φ1-MPO class of A ∈ C(x)m×n satisfies the following set identities:
(1) A†Ω = A†Γ ∩ΘCAB,C,B ;
(2) A{2 : ∗,N (C)} = A†Γ ∩ΘCAB,C ;

(3) A{2 : R(A†AB), ∗} = A†Γ ∩ΘB
CAB,AB ;

(4) A†AA{2 : R(B), ∗} = A{2 : R(A†AB), ∗} = A†Γ ∩ΘCAB,B;

(5) A{2 : R(A†AB),N (C)} = A†Γ ∩ΘB
CAB,AB,C ;

(6) A{2 : R(A†AB),N (C)} = A†A · A{2 : R(B),N (C)} = A†Γ ∩ΘCAB,C,B ;

(7) A†AA{1, 2 : R(B),N (C)} = A{1, 2 : R(B),N (CAA†)} = A†Γ ∩ΘCAB,C,B,A.

Proof. (3) An arbitrary X ∈ A{2 : R(A†AB), ∗} satisfies

X ∈ A{2 : R(A†AB), ∗} ⇐⇒ ∃{A,B,C} ∈ C(x)q,m,n,p : X = A
(2)

R(A†AB),∗

⇐⇒ X ∈
{
A†AB(CAB)(1)C| {A,B,C} ∈ C(x)q,m,n,p

∧
�CAB,AB

}
⇐⇒ X ∈

{
A†AΦ1| {A,B,C} ∈ C(x)q,m,n,p

}
∩ΘCAB,AB

⇐⇒ X ∈ A†Γ ∩ΘCAB,AB
.

Verification of remaining statements is analogous.

By [132, Theorem 3] and N (AB) = N (A†AB), we observe that the set A{2}R(A†AB),∗ is
not empty. The verification of Corollary 5.5.5 is based on these results.

Corollary 5.5.5. The set A{2}R(A†AB),∗ is not empty and satisfies

∅ �= A{2}R(A†AB),∗ =
{
A†AB(AB)(1) + A†ABU(I −AB(AB)(1)) : U ∈ C

p×m
∧
�AB,B

}
= A†AB(AB){1} ∩ΘAB,B

= A†AB(CAB){1}C ∩ΘCAB,AB
.

.

A detailed analysis of Theorem 5.5.4 reveals thatX ∈ A†Γ for arbitrary but fixed {A,B,C} ∈
C(x)q,m,n,p belongs to two general classes of generalized inverses, precisely X ∈ A{2}R(A†AB),∗

or X ∈ A{2}∗,N (C). Algorithm 5.5.2 for computing Φ1-MPO inverses is stated in view of
the results presented in Theorem 5.5.4. The motivation is the fact that the matrix equation
ABUCAB = AB is solvable under the conditions �CAB,AB and CABUC = C is solvable in

the case �CAB,A. In both cases, U ∈ (CAB){1} and BUCAA† is desired output. In this way,
Algorithm 5.5.2 is a continuation of computational procedures developed in [132, 133].

Algorithm 5.5.2 Computing Φ1-MPO inverses.

Input: {A,B,C} ∈ C(x)q,m,n,p.
1: If �CAB,AB Then
2: Solve ABUCAB = AB.
3: Compute X := A†ABUC ⊆ A{2}R(A†AB),∗.

End If
4: If �CAB,C Then
5: Solve CABUC = C.
6: Compute X := A†ABUC ⊆ A{2}∗,N (C).

End If
7: Return X.

The existence and representations of A
(2)
∗,N (C) can be derived in the same way as in [132,

Theorem 5] and [133]. We present equivalent conditions for the existence of A
(2)

R(A†AB),N (C)

using [132, Theorem 6].

Corollary 5.5.6. (a) The next assertions are mutually equivalent for {A,B,C} ∈ C(x)q,m,n,p:

(i) A
(2)

R(A†AB),N (C)
exists;

(ii) ABUCAB = AB and CABUC = C for some U ∈ C(x)p×q;

(iii) ABUCAB = AB and CABV C = C for some U,V ∈ C(x)p×q;

(iv) ABUAB = AB, CAV C = C and A†ABU = V C for some U ∈ C(x)p×m and V ∈
C(x)n×q;
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(v) V CAB = A†AB and CABU = C for some U ∈ C(x)p×m and V ∈ C(x)n×q;

(vi) R(CAB) = R(C) and N (CAB) = N (AB);

(vii) AΦ1AB = AB and CAΦ1 = C.

(b) If the conditions in (a) hold, it follows

A
(2)

R(A†AB),N (C)
= A†AΦ1

= A†ABUC,
(5.12)

for arbitrary U ∈ C
p×q satisfying ABUCAB = AB and CABUC = C.

[135, Theorem 2.1] implies more characterizations for the existence of A
(2)

R(A†AB),N (C)
.

Corollary 5.5.7. (a) The following statements are equivalent for {A,B,C} ∈ C(x)q,m,n,p:

(i) A
(2)

R(A†AB),N (C)
exists;

(ii) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = C, R(X) ⊆ R(A†AB), N (C) ⊆ N (X);

(iii) there exists X ∈ C(x)n×m satisfying

XAB = BA†A, CAX = C, X = A†AB(A†AB)(1)X = XC(1)C.

(iv) there exists X ∈ C(x)n×m which satisfies

XAB = BA†A, CAX = C, X ∈ A†ABC
p×nX ∩XC

m×qC;

(v) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = C, X = A†ABU = V C,

for some U ∈ C
p×m, V ∈ C

n×q ;

(vi) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = C, X = A†ABUC, for some U ∈ C
p×q .

(b) If the statements (ii)-(vi) are valid, then X = A
(2)

R(A†AB),N (C)
.

Now, we replace (CAB)(1) with (CAB)(2) in the expression A†AΦ1 and consider character-
izations for X = A†AΦ2 to hold. Theorem 5.5.6 can be proved as Theorem 5.5.3.

Theorem 5.5.6. (a) The next statements are equivalent for {A,B,C} ∈ C(x)q,m,n,p:

(i) X := A†AΦ2 ∈ A
†Γ

{2} ;

(ii) there is a solution X ∈ C(x)n×m to the matrix system

XAX = X, AX = AΦ2, XA = A†AΦ2A;

(iii) there is a solution X ∈ C(x)n×m to

A†AΦ2AX = X, AX = AΦ2;

(iv) there is a solution X ∈ C(x)n×m to

A†AΦ2CAX = X, A∗AX = A∗AΦ2;

(v) there is a solution X ∈ C
n×m to

A†AΦ2AX = X, A†AX = A†AΦ2;

(vi) there is a solution X ∈ C(x)n×m to

XAΦ2 = X, XA = A†AΦ2A;

(vii) there is a solution X ∈ C(x)n×m to

XAX = X, AXA = AΦ2A, AX = AΦ2, XA = A†AΦ2A;
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(viii) there is a solution X ∈ C(x)n×m to

A†AX = X, AX = AΦ2;

(ix) there is a solution X ∈ C(x)n×m to

A†AX = X, A∗AX = A∗AΦ2;

(x) there is a solution X ∈ C(x)n×m to

XC(1)C = X, XC(1) = A†AΦ2C
(1).

(b) If any of the statements (ii)-(x) is confirmed, then X = A†AΦ2 is unique.

To consider the relation between X ∈ A
†Γ

{2} and X ∈ A†Γ, we need the next auxiliary

Lemma 5.5.3.

Lemma 5.5.3. An arbitrary X := A†AΦ2 ∈ A
†Γ

{2} satisfies

X = A†AB(ECABF )†C = A†ABF (ECABF )†EC, (5.13)

where E and F are Hermitian idempotents.

By Theorem 5.5.1 and Lemma 5.5.3, we verify the following characterizations of X ∈ A
†Γ

{2} .

Corollary 5.5.8. An arbitrary element X ∈ A
†Γ

{2} defined by arbitrary but fixed {A,B,C} ∈
C(x)q,m,n,p and represented by (5.13) satisfies
(1) X ∈ A{2}∗,N (EC) ⇐⇒�ECABF,EC;

(2) X ∈ A{2}R(A†ABF ),∗ ⇐⇒�
BF
ECABF,ABF ;

(3) X ∈A†AA
(2)

R(BF ),∗ = A{2}R(A†ABF ),∗ ⇐⇒ �ECABF,BF ;

(4) X = A
(2)

R(A†ABF ),N (EC)
⇐⇒ �

BF
CAB,AB,C ;

(5) X = A
(2)

R(A†ABF ),N (EC)
= A†AA

(2)

R(BF ),N (EC)
⇐⇒�ECABF,EC,BF ;

(6) X = A
(1,2)

R(A†ABF ),N (EC)
= A†AA

(1,2)

R(BF ),N (EC) ⇐⇒�ECABF,EC,BF,A,

where E and F are Hermitian idempotents involved in (5.11).

5.5.3 Extensions of MPOMP inverses

MPOMP inverses can be extended in more general form A†AΦ1AA†. Moreover, there is the pos-
sibility to use the identity A†AΦ1AA† = A†AB(CAA†AA†AB)(1)CAA†, which enables direct
application of the Urquhart’s representation under proper rank conditions.

Theorem 5.5.7. An arbitrary element X ∈ A†Γ† from the Φ1-MPOMP class of A ∈ C(x)m×n

determined by arbitrary but fixed {A,B,C} ∈ C(x)q,m,n,p satisfies
(1) X ∈ A{2}R(A†AB),∗ ⇐⇒�

B
CAB,AB;

(2) X ∈ A{2}∗,N (CAA†) ⇐⇒ �
C
CAB,CA;

(3) X = A
(2)

R(A†AB),N (CAA†)
⇐⇒�

B
CAB,AB,CA ∧�C

CAB,AB,CA;

(4) X = A
(2)

R(A†AB),N (CAA†)
= A†AA

(2)
R(B),N (C)AA† ⇐⇒�CAB,B,C ;

(5) X = A
(1,2)

R(A†AB),N (CAA†)
= A†AA

(1,2)
R(B),N (C)AA† ⇐⇒�CAB,B,C,A;

(6) X =A
(1,2)

R(A†AB),N (CAA†)
⇐⇒ �CAB,AB,CA,A.

Proof. The proof follows from

A†AB(CAB)(1)C AA† = A†AB(CAA†AA†AB)(1)CAA†

and the Urquhart representation in conjunction with assumptions�A†AB,AB and�CAA†,CA.

Corollary 5.5.9. The Φ1-MPOMP class of A ∈ C(x)m×n satisfies the next set identities:
(1) A†Ω† = A†Γ† ∩ΘCAB,C,B ;

(2) A{2 : R(A†AB), ∗} = A†Γ† ∩ΘB
CAB,AB ;

(3) A{2 : ∗,N (CAA†)} = A†Γ† ∩ΘC
CAB,CA;

(4) A{2 : R(A†AB),N (CAA†)} = A†Γ† ∩ΘB
CAB,AB,CA ∩ΘC

CAB,AB,CA;

(5) A{2 : R(A†AB),N (CAA†)} = A†A ·A{2 : R(B),N (C)}AA† = A†Γ† ∩ΘCAB,B,C ;

(6) A{1, 2 : R(A†AB),N (CAA†)} = A†A ·A{1, 2 : R(B),N (C)}AA† = A†Γ† ∩ΘCAB,B,C,A;

(7) A{1, 2 : R(A†AB),N (CAA†)} = A†Γ† ∩ΘCAB,AB,CA,A.
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Investigation of Theorem 5.5.7 reveals that X ∈†Γ† belongs to two general classes of gen-
eralized inverses, namely X ∈ A{2}R(A†AB),∗ or X ∈ A{2}∗,N (CAA†). Algorithm 5.5.3 for
computing Φ1-MPOMP inverses is stated on the basis of the results presented in Theorem 5.5.7
and previous analysis.

Algorithm 5.5.3 Computing Φ1-MPOMP inverses.

Input: {A,B,C} ∈ C(x)q,m,n,p.
1: If �CAB,AB Then
2: Solve ABUCAB = AB.
3: Compute X := A†ABUCAA† ⊆ A{2}R(A†AB),∗.

End If
4: If �CAB,CA Then
5: Solve CABUCA = CA.
6: Compute X := A†ABUCAA† ⊆ A{2}∗,N (CAA†).

End If
7: Return X.

We consider the existence and representations of A
(2)

R(A†AB),N (CAA†)
in the next result by

[132, Theorem 6].

Corollary 5.5.10. (a) The following statements are mutually equivalent for {A,B,C} ∈
C(x)q,m,n,p:

(i) A
(2)

R(A†AB),N (CAA†)
exists;

(ii) ABUCAB = AB and CABUCA = CA for some U ∈ C(x)p×q;

(iii) ABUCAB = AB and CABV CA = CA for certain U, V ∈ C(x)p×q;

(iv) ABUAB = AB, CAV CA = CA and A†ABU = V CAA† for some U ∈ C(x)p×m and
V ∈ C(x)n×q;

(v) V CAB = A†AB and CABU = CAA† for some U ∈ C(x)p×m and V ∈ C(x)n×q;

(vi) R(CAB) = R(CA) and N (CAB) = N (AB);

(vii) AΦ1AB = AB and CAΦ1A = CA.

(b) If the conditions in (a) are fulfilled, then

A
(2)

R(A†AB),N (C)
= A†AΦ1AA†

= A†ABUCAA†,
(5.14)

for arbitrary U ∈ C(x)p×q satisfying ABUCAB = AB and CABUCA = CA.

By [135, Theorem 2.1], we obtain the next result related to A
(2)

R(A†AB),N (CAA†)
.

Corollary 5.5.11. (a) The subsequent claims are equivalent for {A,B,C} ∈ C(x)q,m,n,p:

(i) A
(2)

R(A†AB),N (CAA†)
exists;

(ii) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = CAA†, R(X) ⊆ R(A†AB), N (CAA†) ⊆ N (X);

(iii) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = CAA†, X = A†AB(A†AB)(1)X = X(CAA†)(1)CAA†.

(iv) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = CAA†, X ∈ A†ABC
p×nX ∩XC

m×qCAA†;

(vi) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = CAA†, X = A†ABU = V CAA†,

for some U ∈ C
p×m, V ∈ C

n×q ;

(vii) there exists X ∈ C(x)n×m which satisfies

XAB = A†AB, CAX = CAA†, X = A†ABUCAA†, for some U ∈ C
p×q .
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(b) If any of the statements (ii)-(vi) is valid, then X = A
(2)

R(A†AB),N (CAA†)
.

As Theorem 5.5.3, we characterize X = A†AΦ2AA† in Theorem 5.5.8.

Theorem 5.5.8. (a) The subsequent assertions are mutually equivalent for {A,B,C} ∈ C(x)q,m,n,p

and X ∈ C(x)n×m:

(i) X := A†AΦ2AA† ∈ A
†Γ†

{2} ;

(ii) there is a solution X to

XAX = X, AX = AΦ2AA†, XA = A†AΦ2A;

(iii) there is a solution X to

XAΦ2AA† = X, XA = A†AΦ2A;

(iv) there is a solution X to

XAΦ2AA† = X, XAA∗ = A†AΦ2AA∗;

(v) there is a solution X to

XAΦ2AA† = X, XAA† = A†AΦ2AA†;

(vi) there is a solution X to

A†AΦ2AX = X, AX = AΦ2AA†;

(vii) there is a solution X to

XAX = X, AXA = AΦ2A, AX = AΦ2AA†, XA = A†AΦ2A;

(viii) there is a solution X ∈ C(x)n×m to

XAA† = X, XA = A†AΦ2A;

(ix) there is a solution X to

XAA† = X, XAA∗ = A†AΦ2AA∗;

(x) there is a solution X to

A†AX = X, AX = AΦ2AA†;

(xi) there is a solution X to

A†AX = X, A∗AX = A∗AΦ2AA†;

(xii) there is a solution X to

A†AΦ2AX = X, A∗AX = A∗AΦ2AA†;

(xiii) there is a solution X to

A†AΦ2AX = X, A†AX = A†AΦ2AA†.

(b) If the statements (ii)-(xiii) hold, then X = A†AΦ2AA† is unique.

Now, we investigate conditions which ensure that X ∈ A
†Γ†

{2} becomes X ∈ A†Γ† .

Lemma 5.5.4. An arbitrary X := A†AΦ2AA† ∈ A
†Γ†

{2} satisfies

X = A†AB(ECABF )†CAA† = A†ABF (ECABF )†ECAA†, (5.15)

where E and F are Hermitian idempotents.

Theorem 5.5.7 and Lemma 5.5.4 imply the next corollary.
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Table 5.1: Proposed generalizations of composite inverses.

Composite outer inverses Generalizations

Name Definition Φ1-composite inverses Φ2-composite inverses

OMP A
(2),†
R(B),N (C) := A

(2)
R(B),N (C)AA† Φ1AA† Φ2AA†

MPO A
†,(2)
R(B),N (C)

:= A†AA
(2)

R(B),N (C)
A†AΦ1 A†AΦ2

MPOMP A
†,(2),†
R(B),N (C) := A†AA

(2)
R(B),N (C)AA† A†AΦ1AA† A†AΦ2AA†

Corollary 5.5.12. An arbitrary element X ∈ A
†Γ†

{2} defined by arbitrary but fixed {A,B,C} ∈
C(x)q,m,n,p and represented by (5.15) satisfies
(1) X ∈ A{2}R(A†ABF ),∗ ⇐⇒�

BF
ECABF,ABF ;

(2) X ∈ A{2}∗,N (ECAA†) ⇐⇒�
EC
ECABF,ECA;

(3) X = A
(2)

R(A†ABF ),N (ECAA†)
⇐⇒�

BF
ECABF,ABF,ECA ∧�EC

ECABF,ABF,ECA;

(4) X = A
(2)

R(A†ABF ),N (ECAA†)
= A†AA

(2)

R(BF ),N (EC)
AA† ⇐⇒�ECABF,BF,EC;

(5) X = A
(1,2)

R(A†ABF ),N (ECAA†)
= A†AA

(1,2)

R(BF ),N (EC)AA† ⇐⇒�ECABF,BF,EC,A;

(6) X =A
(1,2)

R(A†ABF ),N (ECAA†)
⇐⇒�ECABF,ABF,ECA,A.

Considered extensions of composite outer inverses are illustrated in Table 5.1.

Remark 5.5.2. (a) Extensions of DMP, MPD, CMP, MPCEP, *CEPMP can be defined ana-
logically to the general approach for Φ1-OMP, Φ1-MPO and Φ1-MPOMP classes.

(b) It is important to mention that the solutions U of the matrix equations considered in Al-
gorithms 5.5.1,5.5.2 and 5.5.3 are given in general symbolic form, which implies U ⊆ (CAB){1}.

(c) For square matrices, several particular cases of Φ1-composite outer inverses are summa-
rized in Table 5.2.

Table 5.2: Special cases of Φ1-composite outer inverses.

Φ1-composite outer inverses Restrictions Composite outer inverses Ref.

A(A∗A2)(1)A∗ ind(A)=1 A
(2),†
R(A),N (A∗) = A#© = A#AA† [2]

A∗(A2A∗)(1)A ind(A)=1 A
†,(2)
R(A∗),N (A) = A#© = A†AA# [2]

Ak(A2k)(1)AkA† ind(A)=k A
(2),†

R(Ak),N (AkA†)
= AD,† = ADAA† [86]

A†Ak(A2k)(1)Ak ind(A)=k A
†,(2)

R(A†Ak),N (Ak)
= A†,D = A†AAD [86]

A†Ak(A2k−1)(1)AkA† ind(A)=k A
†,(2),†

R(A†Ak),N (AkA†)
= Ac,† = A†AADAA† [88]

A†Ak((Ak)∗Ak)(1)(Ak)∗ ind(A)=k A
†,(2)

R(A†Ak),N ((Ak)∗)
= A†, †© = A†AA †© [19]

(Ak)∗(Ak(Ak)∗)(1)AkA† ind(A)=k A
†,(2)

R((Ak)∗),N (AkA†)
= A †©,† = A †©AA† [19]

5.6 Examples

In order to explain proposed generalizations, let us consider the following examples.

Example 5.6.1. Consider the input matrix

A =

⎡
⎢⎢⎢⎢⎣

t+ 1 t t t t+ 1
t t− 1 t t t
t t t+ 1 t t
t t t t− 1 t

t+ 1 t t t t+ 1

⎤
⎥⎥⎥⎥⎦
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and two associate matrices

B=

⎡
⎢⎢⎢⎢⎣

2t+ 1 t t
t 2t− 1 t
t t 2t+ 1
t t t

2t+ 1 t t

⎤
⎥⎥⎥⎥⎦, C=

⎡
⎣ t2 + 1 t2 t2 t2 t2 + 1

t2 t2 − 1 t2 t2 t2

t2 t2 t2 + 1 t2 t2

⎤
⎦.

It can be verified that rank(CAB) = rank(B) = rank(C) = 3 < 4 = rank(A), which guarantees

the existence of A
(2)

R(B),N (C)
. Symbolic calculation in package Mathematica gives a common

solution to the matrix equations CABUCA = CA, CABUC = C and BUCAB = B in the
unique form

U = (CAB)−1 =⎡
⎢⎢⎢⎣

−36t5−18t4+6t3+3t2+1
−63t6−21t5+41t4+t3+10t2+12t+4

t(42t4+57t3+8t2+19t+2)
−63t6−21t5+41t4+t3+10t2+12t+4

− t(6t4+39t3−10t2−5t+6)
−63t6−21t5+41t4+t3+10t2+12t+4

−63t4−21t3+5t2+t
63t5−42t4+t3−2t2−8t−4

2(63t4+21t3+22t2+10t+2)
63t5−42t4+t3−2t2−8t−4

− 7t2(9t2+3t−2)
63t5−42t4+t3−2t2−8t−4

t(21t4+30t3−8t2+2t+3)
(t+1)(63t5−42t4+t3−2t2−8t−4)

− t2(77t3+42t2+11t+22)
(t+1)(63t5−42t4+t3−2t2−8t−4)

4(14t5+3t4−4t3−1)
(t+1)(63t5−42t4+t3−2t2−8t−4)

.

⎤
⎥⎥⎥⎦.

The OMP inverse A
(2),†
R(B),N (C) := A

(2)
R(B),N (C)AA† of A is defined by

A
(2)
R(B),N (C)AA† = BUCAA† = B(CAB)−1CAA†,

which gives

A
(2),†
R(B),N (C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10t5+6t4+3t3−t2+t+1
−63t5+42t4−t3+2t2+8t+4

t(15t4+t3+6t2−2)
63t5−42t4+t3−2t2−8t−4

t(−15t4+13t3−8t2+4t+2)
63t5−42t4+t3−2t2−8t−4

t(−2t4+3t3+8t2−3t−2)
63t5−42t4+t3−2t2−8t−4

−66t5+13t4−25t3+2t2+12t+4
63t5−42t4+t3−2t2−8t−4

t(3t4+t3+16t2−8t−4)
63t5−42t4+t3−2t2−8t−4

t(−16t4+13t3−6t2+3t+2)
63t5−42t4+t3−2t2−8t−4

t(39t4−7t3+8t2−4)
63t5−42t4+t3−2t2−8t−4

−24t5+7t4+15t3−6t2+4t+4
−63t5+42t4−t3+2t2+8t+4

t(2t4−3t3+t2−5t+1)
−63t5+42t4−t3+2t2+8t+4

− t(3t4+29t3+6t2+18t+4)
63t5−42t4+t3−2t2−8t−4

t(3t4+t3−2t2+10t−4)
63t5−42t4+t3−2t2−8t−4

−10t5+6t4+3t3−t2+t+1
−63t5+42t4−t3+2t2+8t+4

t(15t4+t3+6t2−2)
63t5−42t4+t3−2t2−8t−4

t(−15t4+13t3−8t2+4t+2)
63t5−42t4+t3−2t2−8t−4

t2(−20t3+6t2+3t−1)
63t5−42t4+t3−2t2−8t−4

−10t5+6t4+3t3−t2+t+1
−63t5+42t4−t3+2t2+8t+4

t2(67t3−9t2−18t−4)
63t5−42t4+t3−2t2−8t−4

t(−2t4+3t3+8t2−3t−2)
63t5−42t4+t3−2t2−8t−4

t2(−31t3+13t2+2t−4)
63t5−42t4+t3−2t2−8t−4

t(−16t4+13t3−6t2+3t+2)
63t5−42t4+t3−2t2−8t−4

t3(4t2+33t−1)
63t5−42t4+t3−2t2−8t−4

t(2t4−3t3+t2−5t+1)
−63t5+42t4−t3+2t2+8t+4

t2(−20t3+6t2+3t−1)
63t5−42t4+t3−2t2−8t−4

−10t5+6t4+3t3−t2+t+1
−63t5+42t4−t3+2t2+8t+4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The MPO inverse A
†,(2)
R(B),N (C)

:= A†AA
(2)

R(B),N (C)
of A is equal to

A†AA
(2)

R(B),N (C)
= A†AB(CAB)−1C,

which producesA
(2),†
R(B),N (C) = A

†,(2)
R(B),N (C). Further calculation gives A

†,(2),†
R(B),N (C) = A

(2),†
R(B),N (C) =

A
†,(2)
R(B),N (C).

Example 5.6.2. Choose the same matrices A,B,C as in Example 5.6.1 in the case t = −1. In
this case rank(CAB) = 2 < 3 = rank(C). According to Urquhart formula, the OMP, MPO and
MPOMP inverses are not defined. But, in this case one can verify rank(CAB) = 2 = rank(B).
According to Proposition 5.5.1, it arises that B(CAB)†C ∈ A{2}R(B),∗ is defined, where

(CAB)† =

⎡
⎣ − 27

58
16
29

21
116

71
116

− 41
58

− 13
58

− 27
58

16
29

21
116

⎤
⎦ .

So, it is possible to consider the following generalization of the OMP inverse

X = B(CAB)†CAA† =

⎡
⎢⎢⎢⎢⎣

3
29

21
116

− 41
116

− 25
116

3
29

− 14
29

− 69
116

85
116

49
116

− 14
29

3
29

21
116

− 41
116

− 25
116

3
29

3
29

21
116

− 41
116

− 25
116

3
29

3
29

21
116

− 41
116

− 25
116

3
29

⎤
⎥⎥⎥⎥⎦ ∈ A

(2)
R(B),∗AA†.

Similarly, a generalization of the MPO inverseA†AA
(2)

R(B),N (C) is defined byA†AB(CAB)†C,

while generalization of the MPOMP inverseA†AA
(2)
R(B),N (C)AA† is defined byA†AB(CAB)†CAA†.
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Most general form of Φ1-OMP inverses is Φ1AA†. In order to find (CAB)(1), observe the
general solution to the matrix equation BUCAB = B, which is given by

U =

⎡
⎣ u1,1 u1,2 u1,3

u2,1
3u2,1

2
− 13

8
1− 2u2,1

u3,1
1
2
(3u1,1 − 2u1,2 + 3u3,1 + 5) −2u1,1 − u1,3 − 2u3,1 − 3

2

⎤
⎦ ⊆ (CAB){1}.

Then

AA† = BUCAA† ⊆ A{2 : R(B), ∗} =⎡
⎢⎢⎢⎢⎣

− 3
8
(4u1,1 + 4u2,1 + 4u3,1 + 1) u1,1 + u2,1 + u3,1 + 1

2
1
8
(12u1,1 + 12u2,1 + 12u3,1 + 1)

1
8
(−12u1,1 − 36u2,1 − 12u3,1 + 7) u1,1 + 3u2,1 + u3,1 − 3

2
1
8
(12u1,1 + 36u2,1 + 12u3,1 − 5)

− 3
8
(4u1,1 + 4u2,1 + 4u3,1 + 1) u1,1 + u2,1 + u3,1 + 1

2
1
8
(12u1,1 + 12u2,1 + 12u3,1 + 1)

− 3
8
(4u1,1 + 4u2,1 + 4u3,1 + 1) u1,1 + u2,1 + u3,1 + 1

2
1
8
(12u1,1 + 12u2,1 + 12u3,1 + 1)

− 3
8
(4u1,1 + 4u2,1 + 4u3,1 + 1) u1,1 + u2,1 + u3,1 + 1

2
1
8
(12u1,1 + 12u2,1 + 12u3,1 + 1)

1
8
(−4u1,1 − 4u2,1 − 4u3,1 − 3) − 3

8
(4u1,1 + 4u2,1 + 4u3,1 + 1)

1
8
(−4u1,1 − 12u2,1 − 4u3,1 + 7) 1

8
(−12u1,1 − 36u2,1 − 12u3,1 + 7)

1
8
(−4u1,1 − 4u2,1 − 4u3,1 − 3) − 3

8
(4u1,1 + 4u2,1 + 4u3,1 + 1)

1
8
(−4u1,1 − 4u2,1 − 4u3,1 − 3) − 3

8
(4u1,1 + 4u2,1 + 4u3,1 + 1)

1
8
(−4u1,1 − 4u2,1 − 4u3,1 − 3) − 3

8
(4u1,1 + 4u2,1 + 4u3,1 + 1)

⎤
⎥⎥⎥⎥⎦ .

It is important to mention that U ⊆ (CAB){1} becomes (CAB)† under particular settings{
u1,1 → −27

58
, u1,2 → 16

29
, u1,3 → 21

116
, u2,1 → 71

116
, u3,1 → −27

58

}
.

Example 5.6.3. Let us observe the two-variable matrix

A =

⎡
⎣ 1

b
a 0

0 1
b

a
0 0 0

⎤
⎦ , B=

⎡
⎣ 1 a 0

0 1 a
0 0 0

⎤
⎦ , C=

⎡
⎣ 1

b
a 0

1
b

a 0
0 0 0

⎤
⎦.

Since rank(CAB) = 1 = rank(C) < 2 = rank(B), corresponding OMP, MPO and MPOMP
inverses are not defined. But, on the basis of rank(CAB) = 1 = rank(C) and according to
Algorithm 5.5.2, it arises that CABUC = C is solvable and the set A†ABUC ⊆ A{2 : ∗,N (C)}
is defined. The solution U ⊆ (CAB){1} to CABUC = C is

U =

⎡
⎢⎣ u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 − 2bu3,1a
2+2bu2,1a+u2,1a+2bu2,2 a+u2,2a−b2+u1,1+u1,2

2a2b
u3,3

⎤
⎥⎦ . (5.16)

Then

A†ABUC ⊆ A{2 : ∗,N (CAA†)} =⎡
⎢⎢⎢⎢⎣

a2(b2+u1,1+u1,2+au2,1+au2,2)b2+2(u1,1+u1,2+a(u2,1+u2,2))
2(a4b5+a2b3+b)

−−a4(b2+u1,1+u1,2+au2,1+au2,2)b4−b2+u1,1+u1,2+au2,1+au2,2

2b2(b4a5+b2a3+a)

− 2b2u2,1a
3+2b2u2,2a

3+u2,1a+u2,2a−b2+(2a2b2+1)u1,1+(2a2b2+1)u1,2

2(a4b5+a2b3+b)

a(a2(b2+u1,1+u1,2+au2,1+au2,2)b2+2(u1,1+u1,2+a(u2,1+u2,2)))
2(a4b4+a2b2+1)

0

−−a4(b2+u1,1+u1,2+au2,1+au2,2)b4−b2+u1,1+u1,2+au2,1+au2,2

2(a4b5+a2b3+b)
0

− a(2b2u2,1a
3+2b2u2,2a

3+u2,1a+u2,2a−b2+(2a2b2+1)u1,1+(2a2b2+1)u1,2)
2(a4b4+a2b2+1)

0

⎤
⎥⎥⎥⎥⎦ .

(5.17)

On the other hand, Algorithm 5.5.1 detects the situation�CAB,CA and solves CABUCA = CA.

Its solution U is given as in (5.16). The output is given by X := BUCAA† ⊆ A{2}∗,N (CAA†),
which is equal to

B(CAB){1}CAA† =

⎡
⎢⎣

u1,1+u1,2+a(u2,1+u2,2)
b

a (u1,1 + u1,2 + a (u2,1 + u2,2)) 0

−−b2+u1,1+u1,2+au2,1+au2,2

2ab2
−−b2+u1,1+u1,2+au2,1+au2,2

2b
0

0 0 0

⎤
⎥⎦ .

Since rank(CAB) = 1 = rank(CA), according to Algorithm 5.5.1, it arises that CABUC =
CA is solvable with the solution U defined in (5.16). Then X := BUCAA† ⊆ A{2}∗,N (CAA†) is
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equal to

BUCAA† =

⎡
⎢⎣

u1,1+u1,2+a(u2,1+u2,2)
b

a (u1,1 + u1,2 + a (u2,1 + u2,2)) 0

−−b2+u1,1+u1,2+au2,1+au2,2

2ab2
−−b2+u1,1+u1,2+au2,1+au2,2

2b
0

0 0 0

⎤
⎥⎦ .

Finally, Algorithm 5.5.3 detects the case �CAB,CA, solves CABUCA = CA and generates

U defined in (5.16). The output of Algorithm 5.5.3 is given by X := A†ABUCAA† ⊆ A{2 :
∗,N (CAA†)}, which is equal to the output (7.12).

Example 5.6.4. Consider

A =

⎡
⎢⎢⎣

0.0982798 −0.529283 0.328422 0.557778 −0.032553
0.131677 −0.8022 0.454439 0.131041 −0.856559
0.0127279 1.36991 −0.897724 1.30206 −0.153377
0.171995 0.277825 −0.360948 1.34927 −0.0922307

⎤
⎥⎥⎦ ,

B=

⎡
⎢⎢⎢⎢⎣

−0.603559 0.272327 0.464822
0.645163 0.87561 0.849444
−0.861373 0.370456 0.283891
−0.83329 0.958362 0.0983674
0.351969 0.0731028 0.151112

⎤
⎥⎥⎥⎥⎦ ,

C =

⎡
⎣ 0.442855 0.199782 −0.199495 0.566626

−0.21934 −0.0512642 0.252624 −0.214142
−0.153748 −0.0999656 −0.0294663 −0.239401

⎤
⎦.

Since rank(CAB) = 2 = rank(C) < 3 = rank(B), according to Urquhart formula, A
(2)

R(B),N (C)

does not exist, so that the OMP, MPO and MPOMP inverses are not defined and according to
Proposition 5.5.1,

B(CAB)†C =

⎡
⎢⎢⎢⎢⎣

0.145627 0.103134 0.055161 0.238537
−0.278847 0.02053 0.597607 −0.152721
0.244146 0.14312 −0.00360018 0.358374
0.256173 0.200789 0.159503 0.44662
−0.124237 −0.0332741 0.129421 −0.127202

⎤
⎥⎥⎥⎥⎦

is defined and satisfies B(CAB)†C ∈ A
(2)

∗,N (C). On the basis of �CAB,C and Theorem 5.5.1, it
arises that

X := B(CAB)†CAA†

=

⎡
⎢⎢⎢⎢⎣

0.145627 0.103134 0.055161 0.238537
−0.278847 0.02053 0.597607 −0.152721
0.244146 0.14312 −0.00360018 0.358374
0.256173 0.200789 0.159503 0.44662
−0.124237 −0.0332741 0.129421 −0.127202

⎤
⎥⎥⎥⎥⎦

satisfies X ∈ AΓ† .

Moreover, it is possible to find the set of outer inverses with the prescribed range equal to
B(CAB){1}CAA† = A

(2)
∗,N (C)AA†. The solution U ⊆ (CAB){1} to CABUCA = CA is

U=

⎡
⎣ u1,1 u1,2

u2,1 −1.25208u1,1 + 1.2974u1,2 + 8.659 ∗ 10−17u1,3 + 0.9651u2,1 − 0.0814033
u3,1 3.08017u1,1 − 3.19164u1,2 + 6.961 ∗ 10−17u1,3 + 1.472 ∗ 10−16u2,1 + 0.96507u3,1 + 3.6979

u1,3

−1.9508u1,1 − 3.0997 ∗ 10−17u1,2 + 1.2974u1,3 + 1.5036u2,1 − 2.5572
4.79896u1,1 − 5.4502 ∗ 10−17u1,2 − 3.19164u1,3 + 6.2776 ∗ 10−17u2,1 + 1.5036u3,1 + 1.84287

⎤
⎦.

(5.18)
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Then

BUCAA† =⎡
⎢⎢⎢⎢⎣
−0.7678u1,1 + 0.3802u1,2 + 0.2666u1,3 − 0.3968 −0.3464u1,1 + 0.0889u1,2 + 0.1733u1,3 − 0.1030
−0.4118u1,1 + 0.2040u1,2 + 0.143u1,3 − 0.569786 −0.1858u1,1 + 0.0477u1,2 + 0.0930u1,3 − 0.09003
−0.5699u1,1 + 0.2822u1,2 + 0.1978u1,3 − 0.1584 −0.2571u1,1 + 0.0660u1,2 + 0.1287u1,3 − 0.0099
0.0426u1,1 − 0.0211u1,2 − 0.0148u1,3 + 0.2862 0.0192u1,1 − 0.0049u1,2 − 0.0096u1,3 + 0.212218
−0.0157u1,1 + 0.0078u1,2 + 0.005u1,3 − 0.1353 −0.0071u1,1 + 0.00182u1,2 + 0.0035u1,3 − 0.0375

0.3459u1,1 − 0.438u1,2 + 0.0511u1,3 + 0.424 −0.9824u1,1 + 0.3713u1,2 + 0.415u1,3 − 0.4017
0.1855u1,1 − 0.2349u1,2 + 0.027u1,3 + 0.795 −0.5269u1,1 + 0.1991u1,2 + 0.2226u1,3 − 0.496
0.2567u1,1 − 0.325u1,2 + 0.0379u1,3 + 0.27009 −0.72915u1,1 + 0.276u1,2 + 0.308u1,3 − 0.117
−0.0192u1,1 + 0.02428u1,2 − 0.0028u1,3 + 0.1391 0.0545u1,1 − 0.0206u1,2 − 0.023u1,3 + 0.482
0.0071u1,1 − 0.00896u1,2 + 0.001u1,3 + 0.13697 −0.02u1,1 + 0.00765u1,2 + 0.0085u1,3 − 0.1403

⎤
⎥⎥⎥⎥⎦

⊆ B(CAB){1}CAA† ⊆ A{2 : ∗,N (CAA†)}.

On the other hand, Algorithm 5.5.2 requires solution of CABUC = C, which general form
is the same as in (5.18). Then the MPO subclass of the form A†ABUC ⊆ A{2 : ∗,N (C)} is
defined by⎡
⎢⎢⎢⎢⎣
0.1186u1,1 − 0.0587u1,2 − 0.04u1,3 + 0.1347 0.0535u1,1 − 0.0137u1,2 − 0.02677u1,3 + 0.019
−0.1074u1,1 + 0.053u1,2 + 0.0373u1,3 − 0.3872 −0.048u1,1 + 0.0124u1,2 + 0.0242u1,3 − 0.0481
−0.21006u1,1 + 0.104u1,2 + 0.0729u1,3 + 0.0573 −0.095u1,1 + 0.0243u1,2 + 0.0474u1,3 + 0.0397
−0.0348u1,1 + 0.0172u1,2 + 0.01208u1,3 + 0.2399 −0.0157u1,1 + 0.004u1,2 + 0.00786u1,3 + 0.2016
0.0144635u1,1 − 0.00716u1,2 − 0.005u1,3 − 0.117 0.0065u1,1 − 0.00167u1,2 − 0.0033u1,3 − 0.0333

−0.05u1,1 + 0.06766u1,2 − 0.00789u1,3 − 0.19495 0.1518u1,1 − 0.05736u1,2 − 0.064u1,3 + 0.114
0.048363u1,1 − 0.061u1,2 + 0.0071u1,3 + 0.5828 −0.137u1,1 + 0.0519u1,2 + 0.058u1,3 − 0.3189
0.0946u1,1 − 0.1198u1,2 + 0.014u1,3 + 0.01888 −0.269u1,1 + 0.1016u1,2 + 0.114u1,3 + 0.0926
0.0157u1,1 − 0.01985u1,2 + 0.00232u1,3 + 0.193 −0.04u1,1 + 0.0168u1,2 + 0.0188u1,3 + 0.4371
−0.0065u1,1 + 0.008u1,2 − 0.00096u1,3 + 0.1159 0.0185u1,1 − 0.007u1,2 − 0.0078u1,3 − 0.1227

⎤
⎥⎥⎥⎥⎦.

Finally, Algorithm 5.5.3 requires solution of CABUCA = CA, which general form is the
same as in (5.18). Then A†ABUCAA† produces the subset of Φ1-MPOMP (identical with the
Φ1-MPO) class.

5.7 Extensions of the generalized CEP inverse

There are different generalizations of the CEP inverse in literature. In [4, 40], the extension
of the CEP inverse was given for rectangular matrices, in [97, 104, 106] for bounded linear
Hilbert space operators, in [31, 42, 187] for elements of rings and in [128] for tensors. One recent
generalization of the CEP inverse by means of the outer inverse was presented in Subsection
5.1.1 for rectangular matrices.

For B ∈ C
n×k, C ∈ C

l×m and A ∈ C
m×n
R(B),N (C), the generalized CEP (or GCEP) inverse of

A is expressed by

A
2©
R(B),N (C) := A

(2)
R(B),N (C)

(
AA

(2)
R(B),N (C)

)†
.

It was shown that A 2©
R(B),N (C)

presents the unique solution to the matrix system [113]

XAX = X, AA
(2)
R(B),N (C)(AA

(2)
R(B),N (C))

† = AX

and A
(2)
R(B),N (C)(AA

(2)
R(B),N (C))

†A = XA.

The dual generalized CEP (or *GCEP) inverse of A is given by

A
R(B),N (C)
2© :=

(
A

(2)

R(B),N (C)
A
)†

A
(2)

R(B),N (C)
,

which is the unique solution to

XAX = X,
(
A

(2)

R(B),N (C)
A
)†

A
(2)

R(B),N (C)
A = XA

and

A
(
A

(2)

R(B),N (C)
A
)†

A
(2)

R(B),N (C)
= AX.

Notice that GCEP (or *GCEP) inverse coincides with the CEP (dual core) inverse when m = n

and A
(2)
R(B),N (C) = AD. The gMP inverse and the dual gMP (or *gMP) inverse of A ∈ C

n×n
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are defined in [147] by the expressions A
 :=
(
A †©A

)†
A †© and A
 := A †© (AA †©)†, respectively.

Clearly, the gMP or *gMP inverse are appearances of A
2©
R(B),N (C) and A

R(B),N (C)
2© , respectively,

in the case A
(2)

R(B),N (C)
= A †© and A

(2)

R(B),N (C)
= A †©.

The main aim of this section is to present the most general forms of the GCEP, *GCEP,
CEP and *CEP inverses. Motivated by the very famous Urquhart expression of outer inverses,
the extensions of the notions for the GCEP and *GCEP inverses will be introduced in our
research.

Remark that, under additional assumptions, the expression Φ1 := B(CAB)(1)C is equal

to outer inverses A
(2)

R(B),∗, A
(2)

∗,N (C) and A
(2)

R(B),N (C). The Urquhart representations (5.9) in-

spired us to propose and consider Φ1-extensions of GCEP and *GCEP inverses which are based
on the replacement of A

(2)
R(B),N (C) by the more general expression Φ1 = B(CAB)(1)C. As a

consequence, Φ1-extensions of GCEP inverse (Φ1-GCEP inverses) as well as Φ1-extensions of
*GCEP inverse (Φ1-*GCEP inverses) will be introduced using outer inverses with predefined

range A{2}R(B),∗ and/or null space A{2}∗,N (C). Moreover, the existence of A
(2)
R(B),N (C) is re-

stricted by the constraint �CAB,B,C , which is not satisfied for all choices B and C, while Φ1

exists in all cases.
Further, it will be useful to replace the term A

(2)
R(B),N (C) in the definitions of the GCEP and

*GCEP by the more general expressions Φ2 := B(CAB)(2)C and Φ ∈ C
n×m. In this way, we

obtain generalizations of the GCEP and *GCEP inverses, termed as Φ2-GCEP and Φ2-*GCEP
inverses or Φ-GCEP and Φ-*GCEP inverses. The results of these section are proved in [115].

5.7.1 Φ1-GCEP inverse

In this subsection, we suppose that A ∈ C
m×n, B ∈ C

n×k, C ∈ C
l×m and (CAB)(1) ∈

(CAB){1} is a fixed but arbitrary. In the expression of the GCEP inverse A
2©
R(B),N (C) =

A
(2)
R(B),N (C)

(
AA

(2)
R(B),N (C)

)†
changing the outer inverse A

(2)
R(B),N (C) with Φ1 = B(CAB)(1)C,

we present Φ1-GCEP inverse with the more general form Φ1(AΦ1)
†.

Definition 5.7.1. The Φ1-GCEP inverse of A is defined by

A
2©,(1)
B,C := B(CAB)(1)C

(
AB(CAB)(1)C

)†
= Φ1(AΦ1)

†. (5.19)

Theorem 5.7.1. The Φ1-GCEP inverse of A, defined by (5.19), satisfies the following proper-
ties:
(1) A

2©,(1)
B,C ∈ A{2, 3};

(2) �CAB,B ⇐⇒ A
2©,(1)
B,C = A

(2)
R(B),∗

(
AA

(2)
R(B),∗

)†
= A

(2)

R(B),N
((

AA
(2)
R(B),∗

)∗);

(3) �CAB,C ⇐⇒ A
2©,(1)
B,C = A

(2)

∗,N (C)

(
AA

(2)

∗,N (C)

)†
= A

(2)

∗,N
((

AA
(2)
∗,N(C)

)∗);

(4) �CAB,B,C ⇐⇒ A
2©,(1)
B,C = A 2©

R(B),N (C) = A
(2)

R(B),N
((

AA
(2)
R(B),N(C)

)∗);

(5) �CAB,B,C,A ⇐⇒ A
2©,(1)
B,C = A

(1,2)
R(B),N (C)

(
AA

(1,2)
R(B),N (C)

)†
= A

(1,2)

R(B),N
((

AA
(1,2)
R(B),N(C)

)∗).

Proof. The statement (1) follows from basic properties of the Moore-Penrose inverse. Parts
(2)-(5) follow on the basis of Proposition 5.5.1 and [113, Lemma 2.1(iii)].

The Φ1-GCEP inverse can be characterized in the following way.

Theorem 5.7.2. For X ∈ C
n×m, the next claims are mutually equivalent:

(i) X = Φ1(AΦ1)
†;

(ii) XAX = X, AX = AΦ1 (AΦ1)
† and XA = Φ1 (AΦ1)

† A;

(iii) AX = AΦ1 (AΦ1)
† and X = Φ1 (AΦ1)

† AX;

(iv) A†AX = A†AΦ1 (AΦ1)
† and X = Φ1 (AΦ1)

† AX;

(v) A∗AX = A∗AΦ1 (AΦ1)
† and X = Φ1 (AΦ1)

† AX;

(vi) (AΦ1)
† AX = (AΦ1)

† and Φ1 (AΦ1)
† AX = X;

(vii) (AΦ1)
∗ AX = (AΦ1)

∗ and Φ1 (AΦ1)
† AX = X;

(viii) XA = Φ1 (AΦ1)
† A and XAΦ1 (AΦ1)

† = X;
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(ix) XAA∗ = Φ1 (AΦ1)
† AA∗ and XAΦ1 (AΦ1)

† = X;

(x) BB(1)X = X and B(1)X = B(1)Φ1 (AΦ1)
†, where B(1) ∈ B{1};

(xi) XAA† = X and XA = Φ1 (AΦ1)
† A.

Proof. (i) ⇒ (ii)–(xi): Using (5.19), this part can be proved.

(iii) ⇒ (i): By AX = AΦ1 (AΦ1)
† and X = Φ1 (AΦ1)

† AX, we get

X = Φ1 (AΦ1)
† (AX) = Φ1 (AΦ1)

† AΦ1 (AΦ1)
† = Φ1 (AΦ1)

† .

Analogously, the rest can be verified.

5.7.2 Φ2-GCEP inverse

We suppose that A ∈ C
m×n, B ∈ C

n×k, C ∈ C
l×m and (CAB)(2) ∈ (CAB){2} is a fixed but

arbitrary. Replacing A
(2)
R(B),N (C) with Φ2 = B(CAB)(2)C in the definition of the GCEP inverse,

we present a new generalization of GCEP inverse with the more general form Φ2(AΦ2)
† =

B(CAB)(2)C
(
AB(CAB)(2)C

)†
.

Definition 5.7.2. The Φ2-GCEP inverse of A is defined by

A
2©,(2)
B,C := B(CAB)(2)C

(
AB(CAB)(2)C

)†
= Φ2(AΦ2)

†. (5.20)

Corollary 5.7.1. The Φ2-GCEP inverse of A, defined by (5.20), satisfies:
(1) There exist suitable Hermitian idempotents P and Q, such that

A
2©,(2)
B,C = B(PCABQ)†C

(
AB(PCABQ)†C

)†
= BQ(PCABQ)†PC

(
ABQ(PCABQ)†PC

)†
;

(5.21)

(2) A
2©,(2)
B,C = A

(2)

R(BQ),∗

(
AA

(2)

R(BQ),∗

)†
⇐⇒�PCABQ,BQ;

(3) A
2©,(2)
B,C = A

(2)

∗,N (PC)

(
AA

(2)

∗,N (C)

)†
⇐⇒�PCAB,PC ;

(4) A
2©,(2)
B,C = A

(2)
R(BQ),N (PC)

(
AA

(2)
R(BQ),N (PC)

)†
= A 2©

R(BQ),N (PC) ⇐⇒�PCABQ,BQ,PC ;

(5) A
2©,(2)
B,C = A

(1,2)
R(BQ),N (PC)

(
AA

(1,2)
R(BQ),N (PC)

)†
⇐⇒�PCABQ,BQ,PC,A.

Proof. According to [8], Y ∈ (CAB){2} if and only if Y = (PCABQ)†, where P and Q
are suitable Hermitian idempotents. Therefore, (CAB)(2) = (PCABQ)† = Q(PCABQ)† =
(PCABQ)†P which implies (5.21). The rest is a consequence of Theorem 5.7.1.

As in Theorem 5.7.2, we can obtain characterizations for the Φ2-GCEP inverse changing Φ1

with Φ2. Some additional equivalent conditions for Φ2-GCEP inverse are presented in Theorem
5.7.3.

Theorem 5.7.3. For X ∈ C
n×m, the next claims are mutually equivalent:

(i) X = A
2©,(2)
B,C ;

(ii) Φ2AX = X and AX = AΦ2 (AΦ2)
†;

(iii) Φ2AX = X and A†AX = A†AΦ2 (AΦ2)
†;

(iv) Φ2AX = X and A∗AX = A∗AΦ2 (AΦ2)
†.

Proof. (i) ⇒ (ii): Since X = Φ2 (AΦ2)
†, we have Φ2AX = Φ2AΦ2 (AΦ2)

† = X and AX =
AΦ2 (AΦ2)

†.

(ii) ⇒ (i): From Φ2AX = X and AX = AΦ2 (AΦ2)
†, we observe that X = Φ2AΦ2 (AΦ2)

† =
Φ2 (AΦ2)

† .

The equivalences (ii) ⇔ (iii) ⇔ (iv) are evident by properties of the Moore-Penrose in-
verse.
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5.7.3 Φ-GCEP inverse

Consider A ∈ C
m×n and Φ ∈ C

n×s. Using Φ ∈ C
n×s instead of A

(2)

R(B),N (C)
in the GCEP

inverse, we give the most general Φ-GCEP inverse of A.

Definition 5.7.3. Consider A ∈ C
m×n and Φ ∈ C

n×s. The Φ-GCEP inverse of A is defined
by

A
2©,Φ := Φ(AΦ)†. (5.22)

Let B ∈ C
n×k, C ∈ C

l×m. Three important particular cases for Φ-GCEP inverses of A are
the choices Φ = B(CAB)(1)C, Φ = B(CAB)(2)C and Φ = A

(2)
R(B),N (C), which lead to already

presented extensions A 2©,Φ = A
2©,(1)
B,C , A 2©,Φ = A

2©,(2)
B,C , and A 2©,Φ = A

2©
B,C , respectively.

The Φ-GCEP inverse can be characterized as in Theorem 5.7.2 stating Φ instead of Φ1 in
the statements (i)-(ix) and (xi).

Representations, characterizations and projectors determined by the Φ-GCEP inverse are
investigated in Lemma 5.7.1. The set of right inverses of A is denoted by A−1

{R} = {X| AX = I}.

Lemma 5.7.1. The following statements hold:

(i) AA 2©,Φ is the orthogonal projector onto R(AΦ);

(ii) A 2©,ΦA is a projector onto R(Φ(AΦ)∗) along N ((AΦ)∗A);

(iii) A 2©,Φ = A
(2,3)

R(Φ(AΦ)∗),N ((AΦ)∗)
;

(iv) A 2©,Φ = A
(2,3)

R(Φ),N ((AΦ)∗) ⇐⇒�AΦ,Φ;

(v) A 2©,Φ ∈ A{1, 2, 3} ⇐⇒�AΦ,A;

(vi) A 2©,Φ ∈ A{2, 3};
(vii) A 2©,Φ ∈ A{2, 3}s ⇐⇒ Φ ∈ C

n×s
s and �AΦ,Φ;

(viii) A 2©,Φ ∈ A−1
{R} ⇐⇒ Φ ∈ C

n×m
m and �AΦ,Φ.

Proof. (i) From (5.22), it follows AA 2©,Φ = AΦ(AΦ)† is the orthogonal projector onto R(AΦ).
(ii) Evidently, A 2©,ΦA is a projector by the equality A 2©,ΦAA 2©,Φ = A 2©,Φ. Because

R(A 2©,ΦA) = R(Φ(AΦ)†A) ⊆ R(Φ(AΦ)†) = R(Φ(AΦ)∗)

and
R(Φ(AΦ)∗) = R(Φ(AΦ)†AΦ(AΦ)†) ⊆ R(Φ(AΦ)†A) = R(A

2©,ΦA),

we observe that R(A 2©,ΦA) = R(Φ(AΦ)∗). Similarly, we check

N (A
2©,ΦA) = N (Φ(AΦ)†A) = N ((AΦ)†A) = N ((AΦ)∗A).

(iii) It follows by parts (i) and (ii).
(v) This statement follows from AΦ(AΦ)†A = A ⇐⇒ rank(AΦ) = rank(A) [8].

As a consequence of Lemma 5.7.1, we describe projectors involving the Φ1-GCEP inverse
or Φ2-GCEP inverse.

Corollary 5.7.2. The following statements hold:

(i) AA
2©,(1)
B,C is the orthogonal projector onto R(AB(CAB)(1)C);

(ii) A
2©,(1)
B,C A is a projector onto R(B(CAB)(1)C(AB(CAB)(1)C)∗) along

N ((AB(CAB)(1)C)∗A);

(iii) A
2©,(1)
B,C = A

(2)

R(B(CAB)(1)C(AB(CAB)(1)C)∗),N ((AB(CAB)(1)C)∗)
;

(iv) AA
2©,(2)
B,C is the orthogonal projector onto R(AB(CAB)(2));

(v) A
2©,(2)
B,C A is a projector onto R(B(CAB)(2)C((CAB)(2)C)∗) along

N ((AB(CAB)(2))∗A);

(vi) A
2©,(2)
B,C = A

(2)

R(B(CAB)(2)C((CAB)(2)C)∗),N ((AB(CAB)(2))∗)
.

Proof. This result follows taking Φ = Φ1 = B(CAB)(1)C or Φ = Φ2 = B(CAB)(2)C in Lemma
5.7.1.

We also can introduce the Φ-GCEP inverse based on a geometrical point of view.
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Theorem 5.7.4. The matrix X := A 2©,Φ is the unique solution to the restricted equation

AX = PR(AΦ) and R(X) ⊆ R(Φ(AΦ)∗). (5.23)

Proof. Lemma 5.7.1 implies that A 2©,Φ satisfies (5.23).
For two matrices X,X1 ∈ C

n×m which satisfy (5.23) and H = X −X1, firstly note that
AH = AX − AX1 = PR(AΦ) − PR(AΦ) = 0.
Therefore, R(H) ⊆ N (A) ⊆ N (Φ(AΦ)∗A), that is, Φ(AΦ)∗AU = 0. By R(X) ⊆ R(Φ(AΦ)∗)
and R(X1) ⊆ R(Φ(AΦ)∗), we deduce that

R(H) ⊆ R(Φ(AΦ)∗) = R(ΦΦ∗A∗) = R(ΦΦ∗A∗A) = R(Φ(AΦ)∗A).

Hence, U = Φ(AΦ)∗AV , for some V ∈ C
n×m, and

H = Φ(AΦ)†A (Φ(AΦ)∗AV ) = Φ(AΦ)†AH

= Φ(AΦ)†
(
(AΦ)†

)∗
(AΦ)∗AH

= Φ(AΦ)†
(
(AΦ)†

)∗
(AΦ)†A (Φ(AΦ)∗AH)

= 0.

The conclusion is X = X1 and so A 2©,Φ is the unique solution to (5.23).

Theorem 5.7.4 yields the following properties for Φ1-GCEP and Φ2-GCEP inverses.

Corollary 5.7.3. The matrix

(i) X := A
2©,(1)
B,C is the unique solution to the restricted equation

AX = PR(AB(CAB)(1)C) and R(X) ⊆ R
(
B(CAB)(1)C(AB(CAB)(1)C)∗

)
;

(ii) X := A
2©,(2)
B,C is the unique solution to the restricted equation

AX = PR(AB(CAB)(2)) and R(X) ⊆ R
(
B(CAB)(2)C((CAB)(2)C)∗

)
.

5.8 Extensions of dual generalized CEP inverses

In this section, the definitions of the Φ1-*GCEP and Φ2-*GCEP inverses are introduced to
extend the notation of the *GCEP inverse. The results of this section are given without proofs
because they can be verified similarly as the corresponding results in Section 5.7.

5.8.1 Φ1-*GCEP inverse

Let A ∈ C
m×n, B ∈ C

n×k, C ∈ C
l×m and (CAB)(1) ∈ (CAB){1} be a fixed but arbitrary.

Firstly, we consider the Φ1-*GCEP inverse as an extension of the *GCEP inverse obtained
replacing A

(2)

R(B),N (C)
with Φ1 in the definition for *GCEP inverse.

Definition 5.8.1. The Φ1-*GCEP inverse of A is defined by

AB,C
2©,(1) :=

(
B(CAB)(1)CA

)†
B(CAB)(1)C = (Φ1A)† Φ1. (5.24)

Theorem 5.8.1. The Φ1-*GCEP inverse AB,C
2©,(1) satisfies

(1) AB,C
2©,(1) ∈ A{2};

(2) �CAB,B ⇐⇒ AB,C
2©,(1) =

(
A

(2)
R(B),∗A

)†
A

(2)
R(B),∗ = A

(2)

R
((

A
(2)
R(B),∗

A
)∗)

,∗
;

(3) �CAB,C ⇐⇒ AB,C
2©,(1) =

(
A

(2)
∗,N (C)A

)†
A

(2)
∗,N (C) = A

(2)

R
((

A
(2)
∗,N(C)

A
)∗)

,N (C)
;

(4) �CAB,B,C ⇐⇒ AB,C
2©,(1)

= A
R(B),N (C)
2© = A

(2)

R
((

A
(2)

R(B),N(C)
A
)∗)

,N (C)
;

(5) �CAB,B,C,A ⇐⇒ AB,C
2©,(1) =

(
A

(1,2)
R(B),N (C)A

)†
A

(1,2)
R(B),N (C) = A

(1,2)

R
((

A
(2)
R(B),N(C)

A
)∗)

,N (C)
.

Theorem 5.8.2 includes characterizations of Φ1-g*-CEP inverse and can be shown as Theo-
rem 5.7.2.
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Theorem 5.8.2. For X ∈ C
n×m, the next claims are mutually equivalent:

(i) X is represented as in (5.24);

(ii) XAX = X, AX = A (Φ1A)† Φ1 and XA = (Φ1A)† Φ1A;

(iii) AX = A (Φ1A)† Φ1 and X = (Φ1A)† Φ1AX;

(iv) A∗AX = A∗A (Φ1A)† Φ1 and X = (Φ1A)† Φ1AX;

(v) XA (Φ1A)† = (Φ1A)† and (Φ1A)† Φ1AX = X;

(vi) XA (Φ1A)∗ = (Φ1A)∗ and (Φ1A)† Φ1AX = X;

(vii) XA = (Φ1A)† Φ1A and XA (Φ1A)† Φ1 = X;

(viii) XAA† = (Φ1A)† Φ1AA† and XA (Φ1A)† Φ1 = X;

(ix) XAA∗ = (Φ1A)† Φ1AA∗ and XA (Φ1A)† Φ1 = X;

(x) X = XC(1)C and XC(1) = (Φ1A)† Φ1C
(1), where C(1) ∈ C{1};

(xi) A†AX = X and AX = A (Φ1A)† Φ1.

5.8.2 Φ2-*GCEP inverse

In this subsection, we suppose thatA ∈ C
m×n, B ∈ C

n×k, C ∈ C
l×m and (CAB)(2) ∈ (CAB){2}

be a fixed but arbitrary. The Φ2-*GCEP inverse will be defined changing A
(2)
R(B),N (C) with Φ2

in the definition for *GCEP inverse.

Definition 5.8.2. The Φ2-*GCEP inverse of A is defined by

AB,C
2©,(2) :=

(
B(CAB)(2)CA

)†
B(CAB)(2)C = (Φ2A)† Φ2. (5.25)

Corollary 5.8.1. The Φ2-*GCEP inverse of A satisfies:
(1) There exist suitable Hermitian idempotents P and Q such that

AB,C
2©,(2) =

(
B(PCABQ)†CA

)†
B(PCABQ)†C

=
(
BQ(PCABQ)†PCA

)†
BQ(PCABQ)†PC;

(5.26)

(2) AB,C
2©,(2)

=
(
A

(2)

R(BQ),∗A
)†

A
(2)

R(BQ),∗ ⇐⇒�PCABQ,BQ;

(3) AB,C
2©,(2)

=
(
A

(2)

∗,N (PC)
A
)†

A
(2)

∗,N (PC)
⇐⇒�PCABQ,PC ;

(4) AB,C
2©,(2) =

(
A

(2)
R(BQ),N (PC)A

)†
A

(2)
R(BQ),N (PC) = A

R(BQ),N (PC)
2© ⇐⇒�PCABQ,BQ,PC ;

(5) AB,C
2©,(2) =

(
A

(1,2)
R(BQ),N (PC)A

)†
A

(1,2)
R(BQ),N (PC) ⇐⇒�PCABQ,BQ,PC,A.

The Φ2-*GCEP inverse can be characterized as in Theorem 5.8.2 (with Φ2 instead of Φ1)
and Theorem 5.8.3.

Theorem 5.8.3. For X ∈ C
n×m, the following claims are mutually equivalent:

(i) X = AB,C
2©,(2);

(ii) XAΦ2 = X and XA = (Φ2A)† Φ2A;

(iii) XAΦ2 = X and XAA† = (Φ2A)† Φ2AA†;

(iv) XAΦ2 = X and XAA∗ = (Φ2A)† Φ2AA∗.

5.8.3 Φ-*GCEP inverse

Suppose that A ∈ C
m×n, Φ ∈ C

s×m. The most general form of *GCEP inverse (ΦA)†Φ can be

obtained replacing A
(2)
R(B),N (C) in the definition of *GCEP inverse with Φ.

Definition 5.8.3. The Φ-*GCEP inverse of A is defined by

A 2©,Φ := (ΦA)†Φ. (5.27)

110



5.8. EXTENSIONS OF DUAL GENERALIZED CEP INVERSES 103

Let B ∈ C
n×k, C ∈ C

l×m. Three important particular cases for Φ-*GCEP inverses of A are
the choices Φ = B(CAB)(1)C, Φ = B(CAB)(2)C and Φ = A

(2)
R(B),N (C), which lead to already

considered extensions A 2©,Φ = AB,C
2©,(1), A 2©,Φ = AB,C

2©,(2), and A 2©,Φ = AB,C
2© , respectively.

The Φ-*GCEP inverse is characterized by statements (i)-(ix) and (xi) of Theorem 5.8.2
taking Φ instead of Φ2.

Representations, characterizations and projectors related to the Φ-*GCEP inverse analo-
gously as in Lemma 5.7.1. The set of left inverses of A is denoted by A−1

{L} = {X| XA = I}.

Lemma 5.8.1. The following statements hold:

(i) AA 2©,Φ is a projector onto R(A(ΦA)∗) along N ((ΦA)∗Φ);

(ii) A 2©,ΦA is the orthogonal projector onto R((ΦA)∗);

(iii) A 2©,Φ = A
(2,4)

R((ΦA)∗),N ((ΦA)∗Φ);

(iv) A 2©,Φ = A
(2,4)

R((ΦA)∗),N (Φ)
⇐⇒�ΦA,Φ;

(v) A 2©,Φ ∈ A{1, 2, 4} ⇐⇒�ΦA,A;

(vi) A 2©,Φ ∈ A{2, 4};
(vii) A 2©,Φ ∈ A{2, 4}s ⇐⇒ Φ ∈ C

s×m
s

∧
�ΦA,Φ;

(viii) A 2©,Φ ∈ A−1
{L} ⇐⇒ Φ ∈ C

n×m
n

∧
�ΦA,Φ.

Consequently, we obtain the following results related with projectors determined by the
Φ1-*GCEP and Φ2-*GCEP inverses.

Corollary 5.8.2. The following statements hold:

(i) AAB,C
2©,(1)

is a projector onto R
(
A(B(CAB)(1)CA)∗

)
along

N
(
(B(CAB)(1)CA)∗B(CAB)(1)C

)
;

(ii) AB,C
2©,(1)A is the orthogonal projector onto R

(
(B(CAB)(1)CA)∗

)
;

(iii) AB,C
2©,(1) = A

(2)

R((B(CAB)(1)CA)∗),N((B(CAB)(1)CA)∗B(CAB)(1)C)
;

(iv) AAB,C
2©,(2) is a projector onto R(A((CAB)(2)CA)∗) along

N
((

B(CAB)(2)
)∗

B(CAB)(2)C
)
;

(v) AB,C
2©,(2)

A is the orthogonal projector onto R
(
((CAB)(2)CA)∗

)
;

(vi) AB,C
2©,(2) = A

(2)

R(((CAB)(2)CA)∗),N((B(CAB)(2))∗B(CAB)(2)C)
.

From a geometrical approach, the Φ-*GCEP inverse can be characterized as follows.

Theorem 5.8.4. The unique solution to the restricted equation

AX = PR(A(ΦA)∗),N ((ΦA)∗Φ) and R(X) ⊆ R(A∗)

is the matrix X := A 2©,Φ.

We can characterize the Φ1-*GCEP and Φ2-*GCEP inverses using Theorem 5.8.4.

Corollary 5.8.3. The matrix

(i) X := AB,C
2©,(1) presents unique solution of restricted equation

AX = PR(A(B(CAB)(1)CA)∗),N((B(CAB)(1)CA)∗B(CAB)(1)C) and R(X) ⊆ R(A∗);

(ii) X := AB,C
2©,(2) presents unique solution of restricted equation

AX = PR(A((CAB)(2)CA)∗),N((B(CAB)(2))∗B(CAB)(2)C) and R(X) ⊆ R(A∗).
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5.9 Algorithms and examples

Algorithm 5.5.1 is aimed to calculating Φ1-GCEP inverse and Φ1-*GCEP generalized inverses.
The underlying fact is that the matrix equation LMEB : BUCAB = B is solvable under the
conditions �CAB,B , while LMEC : CABUC = C is solvable in the case �CAB,CA. If these con-
ditions are not satisfied, then the equation LMECAB : CABUCAB = CAB is always solvable.
If U is a general solution obtained by a computer algebra system (for example using Mathe-
matica standard function Solve [173]), then the general solution to all three matrix equations
LMEB,LMEC and LMECAB satisfies U ⊆ (CAB){1}, so that Φ1 := BUC ⊆ B(CAB){1}C,
and Φ1 (AΦ1)

† or (Φ1A)† Φ1 is the output. In the case when a general solution requires a
great CPU time, then a representative particular solution U to LMEB or LMEC or LMECAB

can be generated using Mathematica function FindInstance [173]. In all three cases, it follows
U ∈ (CAB){1}, so that Φ1 := BUC ∈ B(CAB){1}C and again Φ1 (AΦ1)

† or (Φ1A)† Φ1 is
desired output. In this way, Algorithm 5.5.1 represents a continuation and extension of the
main idea used in the computational procedures developed in [132, 133].

Algorithm 5.9.1 Computing Φ1-GCEP inverse and Φ1-*GCEP inverse.

1: Input: A ∈ C(x)m×n, B ∈ C(x)n×p, C ∈ C(x)q×m.
2: if �

B,C
CAB then

3: Solve CABUCAB = CAB.
4: Compute Φ1 := BUC.
5: else if �CAB,B then
6: Solve BUCAB = B.
7: Compute Φ1 := BUC.
8: else if �CAB,C then
9: Solve CABUC = C.
10: Compute Φ1 := BUC.
11: end if
12: Compute X1 := Φ1 (AΦ1)

†.
13: Compute X2 := (Φ1A)† Φ1.
14: Output: X1 and X2.

Algorithm 5.9.2 is aimed to calculating Φ2-GCEP inverse and Φ2-*GCEP generalized in-
verses. Main idea is to solve the matrix equation V CABV = V symbolically, which gives
V ⊆ (CAB){2}. Then Φ2 := BV C ⊆ B(CAB){2}C and Φ2 (AΦ2)

† or (Φ2A)† Φ2 is de-
sired output. If the general solution is too complicated, then V can be extracted as partic-
ular solution given by Mathematica function FindInstance. Then V ∈ (CAB){2}, so that
Φ2 := BV C ⊆ B(CAB){2}C and Φ2 (AΦ2)

† or (Φ2A)† Φ2 is the output.

Algorithm 5.9.2 Computing Φ2-GCEP inverse and Φ2-*GCEP inverse.

1: Input: A ∈ C(x)m×n, B ∈ C(x)n×p, C ∈ C(x)q×m.
2: Solve V CABV = V .
3: Compute Φ2 := BV C.
4: Compute X1 := Φ2 (AΦ2)

†.
5: Compute X2 := (Φ2A)† Φ2.
6: Output: X1 and X2.

Example 5.9.1. Consider

A =

⎡
⎢⎢⎢⎢⎣

4 3 3 3 4
3 2 3 3 3
3 3 4 3 3
3 3 3 2 3
4 3 3 3 4

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

7 3 3
3 5 3
3 3 7
3 3 3
7 3 3

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎣ 10 9 9 9 10

9 8 9 9 9
9 9 10 9 9

⎤
⎦ .

Solution to the matrix equation CABUC = C is

U =

⎡
⎢⎢⎣

313
1486

− 951
2972

135
1486

− 2811
5944

1475
1486

− 693
1486

459
2972

− 1413
2972

221
743

⎤
⎥⎥⎦ ∈ A{1}
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and

Φ1 = BUC =

⎡
⎢⎢⎢⎢⎢⎢⎣

467
2972

1941
5944

− 1383
5944

− 2151
5944

467
2972

− 15
2972

− 7801
5944

579
5944

7515
5944

− 15
2972

− 741
2972

4557
5944

2449
5944

− 3231
5944

− 741
2972

− 57
2972

− 1707
5944

417
5944

1809
5944

− 57
2972

467
2972

1941
5944

− 1383
5944

− 2151
5944

467
2972

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Now,

A
2©,(1)
B,C = B(CAB)(1)C

(
AB(CAB)(1)C

)†
= Φ1(AΦ1)

†

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8303
59750

429
1195

− 7998
29875

− 9273
29875

8303
59750

3441
59750

− 1702
1195

6519
29875

32469
29875

3441
59750

− 3309
11950

195
239

2144
5975

− 2781
5975

− 3309
11950

− 51
11950

− 75
239

591
5975

1566
5975

− 51
11950

8303
59750

429
1195

− 7998
29875

− 9273
29875

8303
59750

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

AB,C
2©,(1) =

(
B(CAB)(1)CA

)†
B(CAB)(1)C = (Φ1A)† Φ1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

22936
140221

− 8439
280442

− 64101
280442

− 8811
280442

22936
140221

− 2775
140221

− 69493
140221

12342
140221

71154
140221

− 2775
140221

− 33243
140221

12324
140221

58867
140221

11970
140221

− 33243
140221

− 4776
140221

75342
140221

8508
140221

− 64449
140221

− 4776
140221

22936
140221

− 8439
280442

− 64101
280442

− 8811
280442

22936
140221

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It can be verified that rank(CAB) = rank(B) = rank(C) = 3 < 4 = rank(A), which guarantees

the existence of A
(2)

R(B),N (C)
. Therefore, Φ1-GCEP inverse A

2©,(1)
B,C = B(CAB)(1)C

(
AB(CAB)(1)C

)†
=

Φ1(AΦ1)
† coincides with the GCEP inverse A

2©
R(B),N (C) and Φ1-*GCEP inverse A

2©,(1)
B,C =

(Φ1A)†Φ1 coincides with the *GCEP inverse A
R(B),N (C)
2© .

On the other hand, one solution to the matrix equation V CABV = V is

V =

⎡
⎢⎢⎣

0 − 951
2972

0

− 461675
706593

0 − 693
1486

− 532413
2040278

− 889425
1020139

0

⎤
⎥⎥⎦ ∈ (CAB){2}.

Then

Φ2 = BV C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 108296223295
1293536252

− 24616820658
323384063

− 106557786747
1293536252

− 104748054669
1293536252

− 108296223295
1293536252

− 363471496661
3880608756

− 27823383897
323384063

− 118934870991
1293536252

− 115918650861
1293536252

− 363471496661
3880608756

− 147497778499
1293536252

− 33365782908
323384063

− 144409142583
1293536252

− 142599410505
1293536252

− 147497778499
1293536252

− 93395312419
1293536252

− 21305507130
323384063

− 91656875871
1293536252

− 89847143793
1293536252

− 93395312419
1293536252

− 108296223295
1293536252

− 24616820658
323384063

− 106557786747
1293536252

− 104748054669
1293536252

− 108296223295
1293536252

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, the Φ2-GCEP inverse of A is equal to

A
2©,(2)
B,C = B(CAB)(2)C

(
AB(CAB)(2)C

)†
= Φ2(AΦ2)

†

=

⎡
⎢⎢⎢⎢⎣

8303
59750

429
1195

− 7998
29875

− 9273
29875

8303
59750

3441
59750

− 1702
1195

6519
29875

32469
29875

3441
59750

− 3309
11950

195
239

2144
5975

− 2781
5975

− 3309
11950

− 51
11950

− 75
239

591
5975

1566
5975

− 51
11950

8303
59750

429
1195

− 7998
29875

− 9273
29875

8303
59750

⎤
⎥⎥⎥⎥⎦

and the Φ2-*GCEP inverse of A is

AB,C
2©,(2) =

(
B(CAB)(2)CA

)†
B(CAB)(2)C = (Φ2A)† Φ2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

22936
140221

− 8439
280442

− 64101
280442

− 8811
280442

22936
140221

− 2775
140221

− 69493
140221

12342
140221

71154
140221

− 2775
140221

− 33243
140221

12324
140221

58867
140221

11970
140221

− 33243
140221

− 4776
140221

75342
140221

8508
140221

− 64449
140221

− 4776
140221

22936
140221

− 8439
280442

− 64101
280442

− 8811
280442

22936
140221

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Example 5.9.2. Consider A,B,C defined by

A =

⎡
⎢⎢⎢⎢⎣

0 −1 −1 −1 0
−1 −2 −1 −1 −1
−1 −1 0 −1 −1
−1 −1 −1 −2 −1
0 −1 −1 −1 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

−1 −1 −1
−1 −3 −1
−1 −1 −1
−1 −1 −1
−1 −1 −1

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎣ 2 1 1 1 2

1 0 1 1 1
1 1 2 1 1

⎤
⎦ .

Ranks of these matrices satisfy rank(CAB) = rank(B) = 2 < rank(C) = 3 < 4 = rank(A), which

implies that A
(2)

R(B),N (C)
does not exist. Therefore, GCEP inverse A 2©

R(B),N (C)
as well as *GCEP

inverse A
R(B),N (C)
2© do not make sense. But, it is possible to define Φ1-GCEP inverse A

2©,(1)
B,C =

B(CAB)(1)C
(
AB(CAB)(1)C

)†
= Φ1(AΦ1)

† and Φ1-*GCEP inverse A
2©,(1)
B,C = (Φ1A)†Φ1 of A.

Due to rank(CAB) = rank(C), the matrix equation CABUC = C is consistent. Using the
particular solution

U =

⎡
⎣ 0 0 0

0 − 13
8

1
0 5

2
− 3

2

⎤
⎦ ∈ A{1},

it is obtained

Φ1 = BUC =

⎡
⎢⎢⎢⎢⎣

− 3
8

1
2

1
8

− 3
8

− 3
8

7
8

− 3
2

− 5
8

7
8

7
8

− 3
8

1
2

1
8

− 3
8

− 3
8

− 3
8

1
2

1
8

− 3
8

− 3
8

− 3
8

1
2

1
8

− 3
8

− 3
8

⎤
⎥⎥⎥⎥⎦ .

Now,

A
2©,(1)
B,C = B(CAB)(1)C

(
AB(CAB)(1)C

)†
= Φ1(AΦ1)

† =

⎡
⎢⎢⎢⎢⎣

1
16

1
8

− 1
16

− 5
16

1
16

− 9
32

− 9
16

1
32

21
32

− 9
32

1
16

1
8

− 1
16

− 5
16

1
16

1
16

1
8

− 1
16

− 5
16

1
16

1
16

1
8

− 1
16

− 5
16

1
16

⎤
⎥⎥⎥⎥⎦

and

AB,C
2©,(1) =

(
B(CAB)(1)CA

)†
B(CAB)(1)C = (Φ1A)† Φ1 =

⎡
⎢⎢⎢⎢⎣

2
17

− 50
187

− 28
187

2
17

2
17

1
17

− 42
187

− 31
187

1
17

1
17

− 3
17

41
187

8
187

− 3
17

− 3
17

− 4
17

49
187

5
187

− 4
17

− 4
17

2
17

− 50
187

− 28
187

2
17

2
17

⎤
⎥⎥⎥⎥⎦ .

In order to calculate the Φ2-GCEP inverse of A, we will explore the solution to the matrix
equation V CABV = V which is equal to

V =

⎡
⎣ 0 0 0

0 0 − 7
6

− 5
3

0 0

⎤
⎦ ∈ (CAB){2}.

Then

Φ2 = BV C =

⎡
⎢⎢⎢⎢⎣

9
2

17
6

4 17
6

9
2

41
6

31
6

26
3

31
6

41
6

9
2

17
6

4 17
6

9
2

9
2

17
6

4 17
6

9
2

9
2

17
6

4 17
6

9
2

⎤
⎥⎥⎥⎥⎦ .

Now, the Φ2-GCEP inverse of A is equal to

A
2©,(2)
B,C = B(CAB)(2)C

(
AB(CAB)(2)C

)†
= Φ2(AΦ2)

†=

⎡
⎢⎢⎢⎢⎣

1
16

1
8

− 1
16

− 5
16

1
16

− 9
32

− 9
16

1
32

21
32

− 9
32

1
16

1
8

− 1
16

− 5
16

1
16

1
16

1
8

− 1
16

− 5
16

1
16

1
16

1
8

− 1
16

− 5
16

1
16

⎤
⎥⎥⎥⎥⎦
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and the Φ2-*GCEP inverse of A is

AB,C
2©,(2) =

(
B(CAB)(2)CA

)†
B(CAB)(2)C = (Φ2A)† Φ2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

22936
140221

− 8439
280442

− 64101
280442

− 8811
280442

22936
140221

− 2775
140221

− 69493
140221

12342
140221

71154
140221

− 2775
140221

− 33243
140221

12324
140221

58867
140221

11970
140221

− 33243
140221

− 4776
140221

75342
140221

8508
140221

− 64449
140221

− 4776
140221

22936
140221

− 8439
280442

− 64101
280442

− 8811
280442

22936
140221

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Example 5.9.3. Let

A =

⎡
⎣ 4 3 0

2 1 1
6 4 1

⎤
⎦ , B =

⎡
⎣ 1 0 1

0 1 3
2 0 1

⎤
⎦ , C =

⎡
⎣ 0 1 3

0 0 1
2 1 2

⎤
⎦ .

Ranks of these matrices satisfy rank(CAB) = rank(A) = 2 < rank(B) = rank(C) = 3, which

implies that A
(2)

R(B),N (C) does not exist. Again, it is possible to define Φ1-GCEP inverse

A
2©,(1)
B,C = B(CAB)(1)C

(
AB(CAB)(1)C

)†
= Φ1(AΦ1)

†

and Φ1-*GCEP inverse A
2©,(1)
B,C = (Φ1A)†Φ1 of A.

Due to rank(CAB) < rank(B) = rank(C), only the equation CABABUC = CAB is con-
sistent with the general solution

U =

⎡
⎣ u1,1 u1,2 u1,3

u2,1
7
5
(28u1,1 + 4u1,2 − 5 (u2,1 + 2)) 1

5
(−28u1,1 + 28u1,3 + 5u2,1 + 19)

u3,1 − 56u1,1

5
− 8u1,2

5
− 7u3,1 + 3 1

5
(8u1,1 − 8u1,3 + 5u3,1 − 4)

⎤
⎦ ⊆ A{1},

which initiates

Φ1 = BUC

=

⎡
⎣ 2

5
(8u1,1 − 3u1,3 + 5u3,1 − 4) 1

5
(13u1,1 − 3u1,3 + 10u3,1 − 4)

2
5
(−4u1,1 + 4u1,3 + 5u2,1 + 15u3,1 + 7) 1

5
(−4u1,1 + 4u1,3 + 10u2,1 + 30u3,1 + 7)

2
5
(8u1,1 + 2u1,3 + 5u3,1 − 4) 2

5
(9u1,1 + u1,3 + 5u3,1 − 2)

1
5
(−25u1,1 − 3u1,2 − 6u1,3 − 10u3,1 + 7)

4u1,1 +
4u1,2

5
+

8u1,3

5
− 2u2,1 − 6u3,1 − 11

5
1
5
(−10u1,1 + 2u1,2 + 4u1,3 − 10u3,1 + 7)

⎤
⎦ .

Finally,

A
2©,(1)
B,C = B(CAB)(1)C

(
AB(CAB)(1)C

)†
= Φ1(AΦ1)

†

and

AB,C
2©,(1) =

(
B(CAB)(1)CA

)†
B(CAB)(1)C = (Φ1A)† Φ1

are computed in symbolic form. These forms are not presented because of available space.

In order to calculate the Φ2-GCEP inverse of A, we will explore the solution to the matrix
equation V CABV = V which is equal to

V =

⎡
⎣ 0 0 0

−2 0 0
0 0 − 27

70

⎤
⎦ ∈ (CAB){2}.

Then

Φ2 = BV C =

⎡
⎣ − 27

35
− 27

70
− 27

35

− 81
35

− 221
70

− 291
35

− 27
35

− 27
70

− 27
35

⎤
⎦ .

Now, the Φ2-GCEP inverse of A is equal to

A
2©,(2)
B,C = B(CAB)(2)C

(
AB(CAB)(2)C

)†
= Φ2(AΦ2)

† =

⎡
⎣ − 1

3
7
15

2
15

2
3

− 11
15

− 1
15

− 1
3

7
15

2
15

⎤
⎦

and the Φ2-*GCEP inverse of A is

AB,C
2©,(2) =

(
B(CAB)(2)CA

)†
B(CAB)(2)C = (Φ2A)† Φ2 =

⎡
⎣ − 20

203
8

203
34
203

104
203

− 1
203

− 55
203

− 34
29

2
29

23
29

⎤
⎦ .
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5.10 Applicability of Φ-GCEP and Φ-*GCEP inverses

Some applications of the proposed Φ-GCEP and Φ-*GCEP inverses in finding solutions to several
linear vector equations are presented in subsequent results. These applications show that general
solutions of considered problems involve some of Φ-GCEP and Φ-*GCEP inverses.

An application of Φ-GCEP inverse in solving linear systems is presented in Theorem 5.10.1.

Theorem 5.10.1. For A ∈ C
m×n, Φ ∈ C

n×m and b ∈ C
m, the general solution to

(AΦ)∗Ax = (AΦ)∗b (5.28)

is expressed as

x = A
2©,Φb+

(
I − A

2©,ΦA
)
y, (5.29)

for arbitrary y ∈ C
n.

Proof. Let x have the form (5.29). Since

(AΦ)∗Ax = (AΦ)∗AA
2©,Φb+ (AΦ)∗A

(
I − A

2©,ΦA
)
y

= (AΦ)∗AΦ(AΦ)†b+ (AΦ)∗A
(
I −Φ(AΦ)†A

)
y

= (AΦ)∗b,

we deduce that x solves (5.28).
If x is a solution to (5.28), it follows

A
2©,ΦAx = Φ(AΦ)†Ax = Φ(AΦ)†

(
(AΦ)†

)∗
(AΦ)∗Ax

= Φ(AΦ)†
(
(AΦ)†

)∗
(AΦ)∗b

= Φ(AΦ)†b = A
2©,Φb.

Hence,

x = A
2©,Φb+ x− A

2©,ΦAx = A
2©,Φb+

(
I − A

2©,ΦA
)
x,

i.e., x is the form (5.29).

Consequently, Theorem 5.10.1 gives the solvability of the following equations.

Corollary 5.10.1. Let A ∈ C
m×n, B ∈ C

n×k, C ∈ C
l×m and b ∈ C

m.

(i) For a fixed but arbitrary element (CAB)(1) ∈ (CAB){1}, the general solution to(
AB(CAB)(1)C

)∗
Ax =

(
AB(CAB)(1)C

)∗
b

is expressed as

x = A
2©,(1)
B,C b+

(
I − A

2©,(1)
B,C A

)
y,

for any y ∈ C
n.

(ii) For a fixed but arbitrary element (CAB)(2) ∈ (CAB){2}, the general solution to(
AB(CAB)(2)C

)∗
Ax =

(
AB(CAB)(2)C

)∗
b

is expressed as

x = A
2©,(2)
B,C b+

(
I − A

2©,(1)
B,C A

)
y,

for any y ∈ C
n.

Proof. Choosing Φ = Φ1 = B(CAB)(1)C or Φ = Φ2 = B(CAB)(2)C in Theorem 5.10.1, we
verify this result.

Utilizing the Φ-*GCEP inverse, we establish the general solutions of the next equations as
in Theorem 5.10.1 and Corollary 5.10.1.

Theorem 5.10.2. For A ∈ C
m×n, Φ ∈ C

n×m and b ∈ C
m, the general solution to

(ΦA)∗ΦAx = (ΦA)∗Φb

is expressed as
x = A 2©,Φb+ (I − A 2©,ΦA) y,

for any y ∈ C
n.

116



5.11. SUMMARY 109

Corollary 5.10.2. Let A ∈ C
m×n, B ∈ C

n×k, C ∈ C
l×m and b ∈ C

m.

(i) For a fixed but arbitrary element (CAB)(1) ∈ (CAB){1}, the general solution to(
B(CAB)(1)CA

)∗
B(CAB)(1)CAx =

(
B(CAB)(1)CA

)∗
B(CAB)(1)Cb

is expressed as

x = AB,C
2©,(1)b+

(
I − AB,C

2©,(1)A
)
y,

for arbitrary y ∈ C
n.

(ii) For a fixed but arbitrary element (CAB)(2) ∈ (CAB){2}, the general solution to

(B(CAB)(2)CA)∗B(CAB)(2)CAx = (B(CAB)(2)CA)∗B(CAB)(2)Cb

is expressed as

x = AB,C
2©,(2)b+

(
I − AB,C

2©,(1)A
)
y,

for arbitrary y ∈ C
n.

5.11 Summary

In this chapter we investigate extensions of the OMP inverses A
(2),†
R(B),N (C) := A

(2)
R(B),N (C)AA†,

MPO inverses A
†,(2)
R(B),N (C) := A†AA

(2)

R(B),N (C) and MPOMP inverses defined by A
†,(2),†
R(B),N (C) :=

A†AA
(2)
R(B),N (C)AA†, where A ∈ C

m×n
r , B ∈ C

n×k, C ∈ C
l×m [137]. The extension is based on

the replacement of A
(2)

R(B),N (C) involved in the definitions of OMP, MPO and MPOMP classes

by the more general expressions Φ1 := B(CAB)(1)C, whose existence is unconditionally guar-
anteed. The term Φ1-composite outer inverses will be used to point to obtained generalizations
of OMP, MPO and MPOMP inverses. In this way, composite inverses with limited area of def-
initeness are extended to more general classes which are defined in all cases. Main properties,
characterizations and representations of obtained Φ1-composite outer inverses are investigated.
Conditions which enable that Φ1-composite outer inverses reduce to particular outer inverses
with given image and kernel are investigated. Algorithms for numeric and symbolic computation
of Φ1-composite outer inverses are proposed. Corresponding algorithms for calculating the core,
core-EP, *core-EP, DMP, MPD, the CMP, MPCEP and *CEPMP inverses can be developed in
special cases.

It is important to mention that theoretical analysis and algorithms proposed in [132, 133]
investigated the cases �CAB,B and �CAB,C . The extension in there proposed algorithms are
investigation of the more general cases �CAB,CA and �CAB,AB .

In addition, Φ2-composite outer inverses arising from the replacements of the termA
(2)

R(B),N (C)

in composite outer inverses by the expressions Φ2 := B(CAB)(2)C ∈ A{2} are investigated.
The initiated further research can include extension of weighted composite outer inverses

from [112] on the basis of there proposed principle. Also, extension of obtained results to tensor
case will be a challenging topic.

The three kinds of extensions of the GCEP and CEP inverses are presented as the next goal
of this investigation based on [113]. These extension are based on the replacement of A

(2)
R(B),N (C)

contained in the definition of GCEP inverse by the more general expressions whose existence
is unconditionally guaranteed. In particular, utilizing Φ1 := B(CAB)(1)C, Φ2 := B(CAB)(2)C

and Φ ∈ C
n×m, respectively, instead of A

(2)
R(B),N (C), the Φ1-GCEP, Φ2-GCEP and Φ-GCEP

inverses are defined. Under some additional assumptions, these new inverses reduce to the
GCEP and CEP inverses and present more general classes which are defined in all cases.

Furthermore, we introduce extensions the *GCEP and *CEP inverses which are marked as
Φ1-*GCEP, Φ2-*GCEP and Φ-*GCEP inverses.

Corresponding algorithms are derived and illustrative examples are presented. Some appli-
cations of the proposed Φ-GCEP and Φ-*GCEP inverses in finding solutions to several linear
vector equations are presented.

Numerous options for selecting suitable expressions Φ remained open. Each of future ap-
propriate choices will lead to new classes of generalized inverses, which would be an inspiring
topic for future research. Moreover, this chapter calculates inner and outer inversions using an
approach based on solving matrix equations. Of course, this is just one of the options for the
development of effective computational algorithms. Any of the methods for calculating inner
and outer inverses can be used in the development of efficient, or even more efficient algorithms.
Each of these approaches can be used in future research. One perspective for future research
may be the extension of the obtained results to the tensor case. This would open the possibility
of generalizing the results obtained in the paper [141].
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Chapter 6

Outer-star and star-outer
matrices

Motivated by the DMP inverse and the fact that the conjugate transpose A∗ of a given square
matrix A and its Moore–Penrose inverse A† have certain same properties (for example R(A†) =
R(A∗) and N(A†) = N(A∗)), the Drazin-star matrix of A was presented in [95] as a new class
of square matrices in the following manner

AD,∗ = ADAA∗.

For A ∈ C
n×n and ind(A) = k, the Drazin-star matrix AD,∗ of A is the unique solution of the

following system of equations

X(A†)∗X = X, AkX = AkA∗ and X(A†)∗ = ADA. (6.1)

Notice that the Drazin-star matrix of A (or the Drazin-star inverse of (A†)∗)) is a new class of
the outer inverse of (A†)∗ because it is different from each of the Drazin inverse, Moore–Penrose
inverse, DMP inverse and MPD inverse of (A†)∗ [95, Example 2.2]. The star-Drazin matrix of
A is also defined in [95] as

A∗,D = A∗AAD.

Our contribution in this chapter is to proposed two new classes of rectangular matrices in
order to solve particular types of matrix equations and generalize the notion of the composite
outer inverses, Drazin-star and star-Drazin matrices.

Inspired by similar characterizations of the conjugate transpose of a given rectangular matrix
A and its Moore–Penrose inverse A†, we present the outer-star matrix in terms of the outer
inverse A

(2)
T,S and its conjugate transpose A∗. In particular, the outer-star matrix is introduced

replacing A† with A∗ in the definition of the OMP inverse of A. Because the Drazin inverse is a
particular case of the outer inverse, the outer-star matrix becomes the Drazin-star matrix when
A

(2)
T,S = AD. Hence, we define a new wider class of rectangular matrix.

The second intention is to propose the notion of the star-outer matrix which covers the star-
Drazin matrix. Various characterizations of the outer-star and star-outer matrices are developed
by algebraic and geometrical point of view. Different representations of outer-star and star-outer
matrices such as integral representations and limit representations are proved. The results of
this chapter are given in [98].

6.1 Characterizations of outer-star and
star-outer matrices

In the beginning of this section, we propose two new classes of rectangular matrices to solve
certain types of matrix equations and generalize the notions of Drazin-star and star-Drazin
matrices. The defined matrices are proper combinations of outer inverse and the conjugate
transpose of a given matrix.

Theorem 6.1.1. Let A ∈ C
m×n
T,S .

(a) The system of equations

X(A†)∗X = X, AX = AA
(2)
T,SAA∗ and X(A†)∗ = A

(2)
T,SA (6.2)

is consistent and its unique solution is X = A
(2)
T,SAA∗.
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(b) The system of equations

X(A†)∗X = X, XA = A∗AA
(2)
T,SA and (A†)∗X = AA

(2)
T,S

is consistent and its unique solution is X = A∗AA
(2)
T,S.

Proof. (a) Set X = A
(2)
T,SAA∗. Then AX = AA

(2)
T,SAA∗,

X(A†)∗ = A
(2)
T,SAA∗(A†)∗ = A

(2)
T,SAA†A = A

(2)
T,SA

and
X(A†)∗X = A

(2)
T,SAX = (A

(2)
T,SAA

(2)
T,S)AA∗ = A

(2)
T,SAA∗ = X

imply that X = A
(2)
T,SAA∗ satisfies the system (6.2).

Suppose that (6.2) holds for two matrices X and X1, that is, X(A†)∗X = X, X1(A
†)∗X1 =

X1, AX = AA
(2)
T,SAA∗ = AX1 and X(A†)∗ = A

(2)
T,SA = X1(A

†)∗. Thus, by

X = (X(A†)∗)X = A
(2)
T,S(AX) = (A

(2)
T,SA)X1 = X1(A

†)∗X1 = X1,

the system of equations (6.2) has a unique solution.
The part (b) can be checked in an analogy way.

Definition 6.1.1. Let A ∈ C
m×n
T,S .

(a) The (T, S)-outer-star matrix of A (or the (T, S)-outer-star inverse of (A†)∗) is defined as

A
(2,∗)
T,S = A

(2)
T,SAA∗.

(b) The star-(T, S)-outer matrix of A (or the star-(T, S)-outer inverse of (A†)∗) is defined as

A
(∗,2)
T,S = A∗AA

(2)
T,S.

Several particular cases of outer-star and star-outer matrices are listed now.

(i) For m = n, ind(A) = k and A
(2)
T,S := AD, the system (6.2) reduces to

X(A†)∗X = X, AX = AADAA∗ and X(A†)∗ = ADA. (6.3)

Applying Theorem 6.1.1, the matrix X := ADAA∗ = AD,∗ is the unique solution to (6.3).
Thus, the (T, S)-outer-star matrix of A becomes the Drazin-star matrix of A in the case

A
(2)
T,S := AD. By properties of the Drazin inverse, notice that (6.3) implies (6.1). In this

case, notice that the star-(T, S)-outer matrix of A coincides with the star-Drazin matrix
X := A∗AAD = A∗,D, which is, by Theorem 6.1.1, the unique solution to the system

X(A†)∗X = X, XA = A∗AADA and (A†)∗X = AAD.

(ii) When m = n, ind(A) = 1 and A
(2)
T,S := A#, the system (6.2) is converted into the system

X(A†)∗X = X, AX = AA∗, X(A†)∗ = A#A,

which has the unique solution X = A#AA∗ = A#,∗ by Theorem 6.1.1. Thus, the (T, S)-
outer-star matrix of A is equal to the group-star matrix of A. Also, the star-(T, S)-outer
matrix of A reduces to the star-group matrix X := A∗AA# = A∗,# in this case and it is
uniquely determined solution to the system

X(A†)∗X = X, XA = A∗A and (A†)∗X = AA#.

(iii) If m = n, ind(A) = k and A
(2)
T,S := A †©, the core–EP-star matrix A †©,∗ = A †©AA∗ is the

unique solution to the matrix system [146]

X(A†)∗X = X, AX = AA
†©AA∗ and X(A†)∗ = A

†©A;

and the star-core–EP matrix A∗, †© = A∗AA †© is the unique solution to [146]

X(A†)∗X = X, XA = A∗AA
†©A and (A†)∗X = AA

†©.

In general, the outer-star and star-outer matrices are not generalized inverses of a given
matrix A, but they are outer inverses of (A†)∗. We now establish ranges and null spaces of
outer-star and star-outer matrices, and projections determined by them.
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Lemma 6.1.1. Let A ∈ C
m×n
T,S . Then:

(i) (A†)∗A
(2,∗)
T,S is a projector onto R((A†)∗A

(2)
T,S) along N (A

(2)
T,SAA∗);

(ii) A
(2,∗)
T,S (A†)∗ is a projector onto T along N (A

(2)
T,SA);

(iii) A
(2,∗)
T,S = [(A†)∗]

(2)

T,N (A
(2)
T,S

AA∗)
;

(iv) (A†)∗A
(∗,2)
T,S is a projector onto R(AA

(2)
T,S) along S;

(v) A
(∗,2)
T,S (A†)∗ is a projector onto R(A∗AA

(2)
T,S) along N (A

(2)
T,S(A

†)∗);

(vi) A
(∗,2)
T,S = [(A†)∗]

(2)

R(A∗AA
(2)
T,S

),S
.

Proof. (i) Because A
(2,∗)
T,S (A†)∗A

(2,∗)
T,S = A

(2,∗)
T,S , we deduce that (A†)∗A

(2,∗)
T,S is a projector. The

equality (A†)∗A
(2,∗)
T,S = (A†)∗A

(2)
T,SAA∗ implies R((A†)∗A

(2,∗)
T,S ) ⊆ R((A†)∗A

(2)
T,S) and

R((A†)∗A
(2)
T,S) = R((A†)∗A

(2)
T,SAA†AA

(2)
T,S)

= R((A†)∗A
(2)
T,SAA∗(A†)∗A

(2)
T,S)

⊆ R((A†)∗A
(2,∗)
T,S ).

Hence, R((A†)∗A
(2,∗)
T,S ) = R((A†)∗A

(2)
T,S). We also observe that N (A

(2)
T,SAA∗) = N (A

(2,∗)
T,S ) =

N (A
(2,∗)
T,S (A†)∗).

(ii) From A
(2,∗)
T,S (A†)∗ = A

(2)
T,SA, we get R(A

(2,∗)
T,S (A†)∗) = R(A

(2)
T,SA) = R(A

(2)
T,S) = T and

N (A
(2,∗)
T,S (A†)∗) = N (A

(2)
T,SA).

(iii) By R(A
(2,∗)
T,S ) = R(A

(2,∗)
T,S (A†)∗) = T and N (A

(2,∗)
T,S ) = N ((A†)∗A

(2,∗)
T,S ) = N (A

(2)
T,SAA∗),

this part follows.
The parts (iv)–(vi) can be proved analogously.

Lemma 6.1.1 gives the following consequence related to the Drazin-star and star-Drazin
inverses.

Corollary 6.1.1. [95] Let A ∈ C
n×n and ind(A) = k. Then:

(i) (A†)∗AD,∗ is a projector onto R((A†)∗AD) along N (ADA∗);

(ii) AD,∗(A†)∗ is a projector onto R(Ak) along N (Ak);

(iii) AD,∗ = [(A†)∗]
(2)

R(Ak),N (ADA∗)
;

(iv) (A†)∗A∗,D is a projector onto R(Ak) along N (Ak);

(v) A∗,D(A†)∗ is a projector onto R(A∗AD) along N (AD(A†)∗);

(vi) A∗,D = [(A†)∗]
(2)

R(A∗AD),N (Ak)
.

Theorem 6.1.2 contains a list of equivalent conditions for a rectangular matrix to be an
outer-star matrix.

Theorem 6.1.2. Let A ∈ C
m×n
T,S . For X ∈ C

n×m, the following statements are equivalent:

(i) X is the (T, S)-outer-star matrix of A;

(ii) X satisfies the equations

X(A†)∗X = X, (A†)∗X(A†)∗ = (A†)∗A
(2)
T,SA,

AX = AA
(2)
T,SAA∗ and X(A†)∗ = A

(2)
T,SA;

(iii) X satisfies the equations

A
(2)
T,SAX = X and AX = AA

(2)
T,SAA∗;

(iv) X satisfies the equations

A
(2)
T,SAXAA† = X and AX(A†)∗ = AA

(2)
T,SA;

(v) X satisfies the equations

A
(2)
T,SAX = X and (A†)∗X = (A†)∗A

(2)
T,SAA∗;

120



6.1. CHARACTERIZATIONS OF OUTER-STAR MATRICES 113

(vi) X satisfies the equations

XAA† = X and X(A†)∗ = A
(2)
T,SA;

(vii) X satisfies the equations

X(A†)∗A
(2)
T,SAA∗ = X and X(A†)∗A

(2)
T,S = A

(2)
T,S;

(viii) X satisfies the equations

XAA† = X and X(A†)∗A† = A
(2),†
T,S ;

(ix) X satisfies the equations

XAA† = X and XA = A
(2)
T,SAA∗A;

(x) X satisfies equations

X(A†)∗A
(2)
T,SAX = X, (A†)∗A

(2)
T,SAX = (A†)∗A

(2)
T,SAA∗

and X(A†)∗A
(2)
T,SA = A

(2)
T,SA;

(xi) X satisfies the equations

X(A†)∗A
(2)
T,SAX = X, (A†)∗A

(2)
T,SAX(A†)∗A

(2)
T,SA = (A†)∗A

(2)
T,SA,

(A†)∗A
(2)
T,SAX = (A†)∗A

(2)
T,SAA∗ and X(A†)∗A

(2)
T,SA = A

(2)
T,SA;

(xii) X satisfies the equations

A
(2)
T,SAX = X and (A†)∗A

(2)
T,SAX = (A†)∗A

(2)
T,SAA∗;

(xiii) X satisfies the equations

X(A†)∗A
(2)
T,SAA∗ = X and X(A†)∗A

(2)
T,SA = A

(2)
T,SA.

Proof. (i) ⇒ (ii): The equality X = A
(2)
T,SAA∗ yields

(A†)∗X(A†)∗ = (A†)∗A
(2)
T,SAA∗(A†)∗ = (A†)∗A

(2)
T,SAA†A = (A†)∗A

(2)
T,SA.

The rest follows by Theorem 6.1.1.
(ii) ⇒ (iii): It is clear by X = (X(A†)∗)X = A

(2)
T,SAX.

(iii) ⇒ (iv): From the assumptions A
(2)
T,SAX = X and AX = AA

(2)
T,SAA∗, we obtain

A
(2)
T,S(AX)AA† = A

(2)
T,SAA

(2)
T,SA(A∗AA†) = A

(2)
T,S(AA

(2)
T,SAA∗) = A

(2)
T,SAX = X

and
(AX)(A†)∗ = AA

(2)
T,SAA∗(A†)∗ = AA

(2)
T,SAA†A = AA

(2)
T,SA.

(iv) ⇒ (i): Using A
(2)
T,SAXAA† = X and AX(A†)∗ = AA

(2)
T,SA, we get

X = A
(2)
T,SAXAA† = A

(2)
T,S(AX(A†)∗)A∗ = A

(2)
T,SAA

(2)
T,SAA∗ = A

(2)
T,SAA∗.

(i) ⇒ (v)–(vi): Applying X = A
(2)
T,SAA∗, we have (A†)∗X = (A†)∗A

(2)
T,SAA∗ and

XAA† = A
(2)
T,SAA∗AA† = A

(2)
T,SAA∗ = X.

The equalities A
(2)
T,SAX = X and X(A†)∗ = A

(2)
T,SA are evident by previous proved equivalences

between statements (i)–(iv).

(v) ⇒ (i): The assumptions A
(2)
T,SAX = X and (A†)∗X = (A†)∗A

(2)
T,SAA∗ give

X = A
(2)
T,SAX = A

(2)
T,SAA∗((A†)∗X) = A

(2)
T,SAA∗(A†)∗A

(2)
T,SAA∗ = A

(2)
T,SAA∗.

We similarly can prove the rest.

Choosing T and S to be the range and null space of some matrices B ∈ C
n×k and C ∈ C

l×m,
respectively, we get characterizations of (R(B),N (C))-outer-star matrix A

(2)
R(B),N (C)AA∗.
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Theorem 6.1.3. Let A ∈ C
m×n be of rank r, B ∈ C

n×k and C ∈ C
l×m. If A

(2)
R(B),N (C) exists

(or rank(CAB) = rank(B) = rank(C)), then, for X ∈ C
n×m, the following statements are

equivalent:

(i) X is the (R(B),N (C))-outer-star matrix of A;

(ii) X satisfies the equations

CAX = CAA∗ and A
(2)

R(B),N (C)
AX = X;

(iii) X satisfies the equations

CAX(A†)∗ = CA and A
(2)

R(B),N (C)
AXAA† = X;

(iv) X satisfies the equations

CAXAA† = CAA∗ and A
(2)

R(B),N (C)
AXAA† = X;

(v) X satisfies the equations

X(A†)∗B = B and X(A†)∗A
(2)

R(B),N (C)
AA∗ = X;

(vi) X satisfies the equations

AX(A†)∗B = AB and A
(2)

R(B),N (C)
AX(A†)∗A

(2)

R(B),N (C)
AA∗ = X;

(vii) X satisfies the equations

A∗AX(A†)∗B = A∗AB and A
(2)

R(B),N (C)
AX(A†)∗A

(2)

R(B),N (C)
AA∗ = X.

Proof. Firstly, from R(A
(2)
R(B),N (C)) = R(B), we conclude identities A

(2)
R(B),N(C)AB = B and

A
(2)

R(B),N (C)
= BB(1)A

(2)

R(B),N (C)
, for B(1) ∈ B{1}. Further, N (A

(2)

R(B),N (C)
) = N (C) implies

CAA
(2)
R(B),N (C) = C and A

(2)
R(B),N (C) = A

(2)
R(B),N (C)C

(1)C, for C(1) ∈ C{1}.
(i) ⇒ (ii): Using X = A

(2)

R(B),N (C)AA∗, we get CAX = (CAA
(2)

R(B),N (C))AA∗ = CAA∗ and

A
(2)
R(B),N (C)AX = A

(2)
R(B),N (C)AA

(2)
R(B),N (C)AA∗ = A

(2)
R(B),N (C)AA∗ = X.

(ii) ⇒ (i): Since CAX = CAA∗ and A
(2)
R(B),N (C)AX = X, then

X = A
(2)
R(B),N (C)AX = A

(2)
R(B),N (C)C

(1)(CAX)

= (A
(2)

R(B),N (C)C
(1)C)AA∗ = A

(2)

R(B),N (C)AA∗.

(i) ⇒ (iii): The hypothesis X = A
(2)
R(B),N(C)AA∗ gives CAX(A†)∗ = CAA∗(A†)∗ = CA and

A
(2)
R(B),N (C)AXAA† = XAA† = A

(2)
R(B),N (C)AA∗AA† = A

(2)
R(B),N (C)AA∗ = X.

(iii) ⇒ (iv): This part is evident.

(iv) ⇒ (i): By the assumptions CAXAA† = CAA∗ and A
(2)
R(B),N (C)AXAA† = X, we

observe that

X = A
(2)

R(B),N (C)AXAA† = A
(2)

R(B),N (C)C
(1)(CAXAA†)

= (A
(2)
R(B),N (C)C

(1)C)AA∗ = A
(2)
R(B),N (C)AA∗.

(i) ⇒ (v): Because X = A
(2)
R(B),N (C)AA∗ and A

(2)
R(B),N (C)AB = B, we see that

X(A†)∗B = A
(2)

R(B),N (C)
AA∗(A†)∗B = A

(2)

R(B),N (C)
AB = B

and

X(A†)∗A
(2)

R(B),N (C)
AA∗ = A

(2)

R(B),N (C)
AA∗(A†)∗A

(2)

R(B),N (C)
AA∗

= A
(2)
R(B),N (C)AA∗ = X.

(v) ⇒ (i): Applying A
(2)
R(B),N (C) = BB(1)A

(2)
R(B),N (C) and X(A†)∗B = B, we have

A
(2)
R(B),N (C) = BB(1)A

(2)
R(B),N (C) = X(A†)∗(BB(1)A

(2)
R(B),N (C)) = X(A†)∗A

(2)
R(B),N (C).
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Therefore, by X(A†)∗A
(2)
R(B),N (C)AA∗ = X, X = (X(A†)∗A

(2)
R(B),N (C))AA∗ = A

(2)
R(B),N (C)AA∗.

(i)⇒ (vi): FromX = A
(2)

R(B),N (C)
AA∗ and A

(2)

R(B),N (C)
AB = B, it follows AX(A†)∗B = AB

and
A

(2)

R(B),N (C)AX(A†)∗A
(2)

R(B),N (C)AA∗

= A
(2)
R(B),N (C)AA

(2)
R(B),N (C)AA∗(A†)∗A

(2)
R(B),N (C)AA∗

= A
(2)

R(B),N (C)AA∗ = X.

(vi) ⇒ (vii): It is obvious.

(vii) ⇒ (i): By A
(2)

R(B),N (C)AX(A†)∗A
(2)

R(B),N (C)AA∗ = X and A∗AX(A†)∗B = A∗AB, we
get

X = A
(2)

R(B),N (C)
AX(A†)∗A

(2)

R(B),N (C)
AA∗

= A
(2)
R(B),N (C)(A

†)∗(A∗AX(A†)∗B)B(1)A
(2)
R(B),N (C)AA∗

= A
(2)

R(B),N (C)
(A†)∗A∗A(BB(1)A

(2)

R(B),N (C)
)AA∗

= A
(2)
R(B),N (C)AA

(2)
R(B),N (C)AA∗

= A
(2)
R(B),N (C)AA∗.

Consequently, we get necessary and sufficient conditions for a square matrix to be the
Drazin-star matrix.

Corollary 6.1.2. [95] Let A ∈ C
n×n and ind(A) = k. The following statements are equivalent:

(i) X ∈ C
n×n is the Drazin-star matrix of A;

(ii) X satisfies equations

X(A†)∗X = X, (A†)∗X(A†)∗ = (A†)∗ADA,

AkX = AkA∗ and X(A†)∗ = ADA;

(iii) X satisfies equations
ADAX = X and AkX = AkA∗;

(iv) X satisfies equations

ADAXAA† = X and AkX(A†)∗ = Ak;

(v) X satisfies equations
ADAX = X and AX = AADAA∗;

(vi) X satisfies equations

ADAX = X and (A†)∗X = (A†)∗ADAA∗;

(vii) X satisfies equations
XAA† = X and X(A†)∗ = ADA;

(viii) X satisfies equations

X(A†)∗AADA∗ = X and X(A†)∗Ak = Ak;

(ix) X satisfies equations

XAA† = X and X(A†)∗A† = AD,†;

(x) X satisfies equations
XAA† = X and XA = ADAA∗A;

(xi) X satisfies equations

X(A†)∗ADAX = X, (A†)∗ADAX = (A†)∗ADAA∗

and X(A†)∗ADA = ADA;

(xii) X satisfies equations

X(A†)∗ADAX = X, (A†)∗ADAX(A†)∗ADA = (A†)∗ADA,

(A†)∗ADAX = (A†)∗ADAA∗ and X(A†)∗ADA = ADA;
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(xiii) X satisfies equations

ADAX = X and (A†)∗ADAX = (A†)∗ADAA∗;

(xiv) X satisfies equations

X(A†)∗AADA∗ = X and X(A†)∗ADA = ADA.

The following result concerning necessary and sufficient conditions for a rectangular matrix
to be the star-outer matrix of a given matrix, can be verified similarly as Theorem 6.1.2.

Theorem 6.1.4. Let A ∈ C
m×n
T,S . For X ∈ C

n×m, the following statements are equivalent:

(i) X is the star-(T, S)-outer matrix of A;

(ii) X satisfies the equations

X(A†)∗X = X, (A†)∗X(A†)∗ = AA
(2)
T,S(A

†)∗,

XA = A∗AA
(2)
T,SA and (A†)∗X = AA

(2)
T,S;

(iii) X satisfies the equations

XAA
(2)
T,S = X and XA = A∗AA

(2)
T,SA;

(iv) X satisfies the equations

A†AXAA
(2)
T,S = X and (A†)∗XA = AA

(2)
T,SA;

(v) X satisfies the equations

XAA
(2)
T,S = X and X(A†)∗ = A∗AA

(2)
T,S(A

†)∗;

(vi) X satisfies the equations

A†AX = X and (A†)∗X = AA
(2)
T,S;

(vii) X satisfies the equations

A∗AA
(2)
T,S(A

†)∗X = X and A
(2)
T,S(A

†)∗X = A
(2)
T,S;

(viii) X satisfies the equations

A†AX = X and A†(A†)∗X = A
†,(2)
T,S ;

(ix) X satisfies the equations

A†AX = X and AX = AA∗AA
(2)
T,S;

(x) X satisfies the equations

XAA
(2)
T,S(A

†)∗X = X, AA
(2)
T,S(A

†)∗X = AA
(2)
T,S

and XAA
(2)
T,S(A

†)∗ = A∗AA
(2)
T,S(A

†)∗;

(xi) X satisfies the equations

XAA
(2)
T,S(A

†)∗X = X, AA
(2)
T,S(A

†)∗XAA
(2)
T,S(A

†)∗ = AA
(2)
T,S(A

†)∗,

AA
(2)
T,S(A

†)∗X = AA
(2)
T,S and XAA

(2)
T,S(A

†)∗ = A∗AA
(2)
T,S(A

†)∗;

(xii) X satisfies the equations

XAA
(2)
T,S = X and XAA

(2)
T,S(A

†)∗ = A∗AA
(2)
T,S(A

†)∗;

(xiii) X satisfies the equations

A∗AA
(2)
T,S(A

†)∗X = X and AA
(2)
T,S(A

†)∗X = AA
(2)
T,S.

The star-(R(B),N (C))-outer matrix A∗AA
(2)
R(B),N (C) can be characterized in the next way.
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Theorem 6.1.5. Let A ∈ C
m×n be of rank r, B ∈ C

n×k and C ∈ C
l×m. If A

(2)
R(B),N (C) exists,

then, for X ∈ C
n×m, the following statements are equivalent:

(i) X is the star-(R(B),N (C))-outer matrix of A;

(ii) X satisfies the equations

XAB = A∗AB and XAA
(2)

R(B),N (C)
= X;

(iii) X satisfies the equations

(A†)∗XAB = AB and A†AXAA
(2)
R(B),N (C) = X;

(iv) X satisfies the equations

A†AXAB = A∗AB and A†AXAA
(2)
R(B),N (C) = X;

(v) X satisfies the equations

C(A†)∗X = C and A∗AA
(2)

R(B),N (C)(A
†)∗X = X;

(vi) X satisfies the equations

C(A†)∗XA = CA and A
(2)

R(B),N (C)
(A†)∗XAA∗ = X;

(vii) X satisfies the equations

C(A†)∗XAA∗ = CAA∗ and A
(2)
R(B),N (C)(A

†)∗XAA∗ = X.

The next characterizations of the star-Drazin matrix follow as consequences.

Corollary 6.1.3. [95] Let A ∈ C
n×n and ind(A) = k. The following statements are equivalent:

(i) X ∈ C
n×n is the star-Drazin matrix of A;

(ii) X satisfies equations

X(A†)∗X = X, (A†)∗X(A†)∗ = ADA(A†)∗,

XAk = A∗Ak and (A†)∗X = ADA;

(iii) X satisfies equations
XAAD = X and XAk = A∗Ak;

(iv) X satisfies equations

A†AXAAD = X and (A†)∗XAk = Ak;

(v) X satisfies equations
XAAD = X and XA = A∗AADA;

(vi) X satisfies equations

XAAD = X and X(A†)∗ = A∗AAD(A†)∗;

(vii) X satisfies equations
A†AX = X and (A†)∗X = ADA;

(viii) X satisfies equations

A∗AAD(A†)∗X = X and Ak(A†)∗X = Ak;

(ix) X satisfies equations

A†AX = X and A†(A†)∗X = A†,D;

(x) X satisfies equations
A†AX = X and AX = AA∗AAD;

(xi) X satisfies equations

XADA(A†)∗X = X, ADA(A†)∗X = ADA

and XADA(A†)∗ = A∗ADA(A†)∗;
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(xii) X satisfies equations

XADA(A†)∗X = X, ADA(A†)∗XADA(A†)∗ = ADA(A†)∗,

ADA(A†)∗X = ADA and XADA(A†)∗ = A∗ADA(A†)∗;

(xiii) X satisfies equations

XAAD = X and XADA(A†)∗ = A∗ADA(A†)∗;

(xiv) X satisfies equations

A∗AAD(A†)∗X = X and ADA(A†)∗X = ADA.

Beside previous algebraic point of view, the outer-star and star-outer matrices can be pre-
sented from a geometrical point of view. We see that both algebraic and geometrical approaches
are equivalent by Theorem 6.1.1 and Theorem 6.1.6.

Theorem 6.1.6. Let A ∈ C
m×n
T,S .

(a) The system of conditions

(A†)∗X = P
R((A†)∗A

(2)
T,S

),N (A
(2)
T,S

AA∗)
and R(X) ⊆ T (6.4)

is consistent and it has a unique solution X = A
(2,∗)
T,S .

(b) The system of conditions

(A†)∗X = P
R(AA

(2)
T,S

),S
and R(X) ⊆ R(A∗)

is consistent and it has a unique solution X = A
(∗,2)
T,S .

Proof. (a) By Lemma 6.1.1(i), we know that (A†)∗A
(2,∗)
T,S = P

R((A†)∗A
(2)
T,S

),N (A
(2)
T,S

AA∗)
. The

equality A
(2,∗)
T,S = A

(2)
T,SAA∗ gives R(A

(2,∗)
T,S ) ⊆ R(A

(2)
T,S) = T . Hence, (6.4) holds for X = A

(2,∗)
T,S .

Assume that two matrices X and X1 satisfy (6.4). We conclude, from (A†)∗(X − X1) =
P
R((A†)∗A

(2)
T,S

),N (A
(2)
T,S

AA∗)
− P

R((A†)∗A
(2)
T,S

),N (A
(2)
T,S

AA∗)
= 0, that R(X − X1) ⊆ N ((A†)∗) =

N (A) ⊆ N (A
(2)
T,SA). Since R(X) ⊆ T = R(A

(2)
T,S) = R(A

(2)
T,SA) and R(X1) ⊆ R(A

(2)
T,SA), we

have R(X −X1) ⊆ R(A
(2)
T,SA)∩N (A

(2)
T,SA) = {0}. So, X = X1, which implies that A

(2,∗)
T,S is the

unique solution to (6.4).
Similarly, we can verify part (b).

In the following result, we characterize the Drazin-star and star-Drazin matrices from a
geometrical point of view.

Corollary 6.1.4. Let A ∈ C
n×n and ind(A) = k.

(a) The system of conditions

(A†)∗X = PR((A†)∗AD),N (ADA∗) and R(X) ⊆ R(Ak)

is consistent and it has the unique solution X = AD,∗.

(b) The system of conditions

(A†)∗X = PR(Ak),N (Ak) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A∗,D.

By Theorem 6.1.2 and Theorem 6.1.4, we observe that the outer-star and star-outer matrices
are not inner inverses of (A†)∗. Several necessary and sufficient conditions for the outer-star
and star-outer matrices to be inner inverses of (A†)∗, are given now. Also, we present some
relations between the outer-star and star-outer matrices and different well known generalized
inverses which can be verified easily.

Lemma 6.1.2. Let A ∈ C
m×n
T,S . Then:

(i) N (A) = N (A
(2)
T,SA) ⇔ (A†)∗A

(2,∗)
T,S (A†)∗ = (A†)∗ ⇔ A†AA

(2)
T,SA = A†A ⇔ AA

(2)
T,SA = A

⇔ AA
(2)
T,SAA† = AA† ⇔ (A†)∗A

(∗,2)
T,S (A†)∗ = (A†)∗ ⇔ R(A) = R(AA

(2)
T,S);

(ii) AA
(2,∗)
T,S = AA

(2)
T,S ⇔ A

(2,∗)
T,S = A

(2)
T,S;
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(iii) A
(2,∗)
T,S A = A

(2)
T,SA ⇔ A

(2,∗)
T,S = A

(2),†
T,S ;

(iv) A
(2,∗)
T,S A = A†A ⇔ A

(2,∗)
T,S = A†;

(v) AA
(2,∗)
T,S = AA† ⇔ AA

(2,∗)
T,S A = A;

(vi) A
(2,∗)
T,S = A∗ ⇔ A

(2)
T,SA = A†A ⇔ A

(2),†
T,S = A†;

(vii) A
(∗,2)
T,S A = A

(2)
T,SA ⇔ A

(∗,2)
T,S = A

(2)
T,S;

(viii) AA
(∗,2)
T,S = AA

(2)
T,S ⇔ A

(∗,2)
T,S = A

†,(2)
T,S ;

(ix) AA
(∗,2)
T,S = AA† ⇔ A

(∗,2)
T,S = A†;

(x) A
(∗,2)
T,S A = A†A ⇔ AA

(∗,2)
T,S A = A;

(xi) A
(∗,2)
T,S = A∗ ⇔ AA

(2)
T,S = AA† ⇔ A

†,(2)
T,S = A†;

(x) A
(2,∗)
T,S = 0 ⇔ A

(2)
T,S = 0 ⇔ A

(∗,2)
T,S = 0.

We have the next relations between various well-known generalized inverses and the Drazin-
star and star-Drazin matrices.

Corollary 6.1.5. Let A ∈ C
n×n and ind(A) = k. Then:

(i) (A†)∗AD,∗(A†)∗ = (A†)∗ iff A†AADA = A†A iff AADA = A iff AADAA† = AA† iff
(A†)∗A∗,D(A†)∗ = (A†)∗;

(ii) AkAD,∗Ak = Ak iff AkA∗Ak = Ak iff AkA∗,DAk = Ak;

(iii) AAD,∗ = AAD iff AD,∗ = AD;

(iv) AD,∗A = AAD iff AD,∗ = AD,†;

(v) AD,∗A = A†A iff AD,∗ = A†;

(vi) AAD,∗ = AA† iff AAD,∗A = A;

(vii) AD,∗ = A∗ iff AD,† = A†;

(viii) A∗,DA = AAD iff A∗,D = AD;

(ix) AA∗,D = AAD iff A∗,D = A†,D;

(x) AA∗,D = AA† iff A∗,D = A†;

(xi) A∗,DA = A†A iff AA∗,DA = A;

(xii) A∗,D = A∗ iff A†,D = A†.

Kurata [71] gave maximal classes of matrices Q and S which are inner inverses of A and
for which QAS coincides with the core inverse of A. Maximal classes of matrices determining
the DMP inverse can be found in [39]. We can develop maximal classes of complex matrices
providing the most general form to represent the outer-star matrix. Remark that Theorem 6.1.7
recovers [95, Theorem 2.5] concerning the Drazin-star matrix.

Theorem 6.1.7. Let A ∈ C
m×n
T,S and Q ∈ C

n×m. Then the following statements are equivalent:

(i) A
(2,∗)
T,S = QAA∗;

(ii) QA = A
(2)
T,SA;

(iii) AQA = AA
(2)
T,SA and R(QA) = T ;

(iv) Q = A
(2)
T,S + Z(I − AA†), for arbitrary Z ∈ C

n×m.

Proof. (i) ⇒ (ii): Since A
(2,∗)
T,S = QAA∗ = A

(2)
T,SAA∗, we get

QA = QAA†A = (QAA∗)(A†)∗ = A
(2,∗)
T,S (A†)∗ = A

(2)
T,SAA∗(A†)∗ = A

(2)
T,SA.

(ii)⇒ (iii): The hypothesisQA = A
(2)
T,SA implies AQA = AA

(2)
T,SA andR(QA) = R(A

(2)
T,SA) =

R(A
(2)
T,S) = T .

(iii) ⇒ (i): By R(QA) = T = R(A
(2)
T,SA) and AQA = AA

(2)
T,SA, we deduce that QA =

A
(2)
T,SAQA and

QAA∗ = A
(2)
T,S(AQA)A∗ = (A

(2)
T,SAA

(2)
T,S)AA∗ = A

(2)
T,SAA∗ = A

(2,∗)
T,S .
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(ii) ⇒ (iv): Notice that all solutions of the equation QA = A
(2)
T,SA are get as a sum of

a particular solution of QA = A
(2)
T,SA and the general solution of the homogeneous equation

QA = 0. For arbitrary Z ∈ C
n×m, by [8, p. 52], the general solution of QA = A

(2)
T,SA is

represented as
Q = A

(2)
T,S + Z(I − AA†).

(iv) ⇒ (i): Because Q = A
(2)
T,S + Z(I − AA†), we have QAA∗ = A

(2)
T,SAA∗ = A

(2,∗)
T,S .

Theorem 6.1.7 gives [95, Theorem 2.5] related to the Drazin-star matrix.

Corollary 6.1.6. Let A,U ∈ C
n×n and ind(A) = k. Then the following statements are equiv-

alent:

(i) AD,∗ = UAA∗;

(ii) UA = ADA;

(iii) AUA = AADA and R(UA) = R(Ak);

(iv) U = AD + Z(I − AA†), for arbitrary Z ∈ C
n×n.

Maximal classes for which the expression for star-outer matrix still holds, can be obtained
similarly as Theorem 6.1.7.

Theorem 6.1.8. Let A ∈ C
m×n
T,S and Q ∈ C

n×m. Then the following statements are equivalent:

(i) A
(∗,2)
T,S = A∗AQ;

(ii) AQ = AA
(2)
T,S;

(iii) AQA = AA
(2)
T,SA and N(AQ) = N(Ak);

(iv) Q = A
(2)
T,S + (I − A†A)Z, for arbitrary Z ∈ C

n×n.

Corollary 6.1.7. Let A,U ∈ C
n×n and ind(A) = k. Then the following statements are equiv-

alent:

(i) A∗,D = A∗AU ;

(ii) AU = AAD;

(iii) AUA = AADA and N (AU) = N (Ak);

(iv) U = AD + (I − A†A)Z, for arbitrary Z ∈ C
n×n.

6.2 Representations of outer-star and star-outer ma-

trices

In this section, we present various representations of outer-star and star-outer matrices.
Firstly, we investigate expressions for the outer-star and star-outer matrices in terms of

corresponding group inverses based on the following result.

Lemma 6.2.1. [161] Let A ∈ C
m×n
T,S . Suppose that G ∈ C

n×m such that R(G) = T and

N (G) = S. If A has an outer inverse A
(2)
T,S, then ind(AG) = ind(GA) = 1 and

A
(2)
T,S = (GA)#G = G(AG)#.

Theorem 6.2.1. If A and G satisfy the conditions of Lemma 6.2.1, then

A
(2,∗)
T,S = (GA)#GAA∗ = PT,N (GA)A

∗

and
A

(∗,2)
T,S = A∗AG(AG)# = A∗PR(AG),S .

Proof. Because R(G) = T = R(A
(2)
T,S) and N (G) = S = N (A

(2)
T,S), it is well known that

G = A
(2)
T,SAG and G = GAA

(2)
T,S, which imply N (AG) = N (G) = S and R(GA) = R(G) = T .

By Lemma 6.2.1 and properties of the group inverse, we obtain

A
(2,∗)
T,S = (GA)#GAA∗ = PR(GA),N (GA)A

∗ = PT,N (GA)A
∗

and
A

(∗,2)
T,S = A∗AG(AG)# = A∗PR(AG),N (AG) = A∗PR(AG),S .
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Remark that, by [129], if A and G satisfy the conditions of Lemma 6.2.1 and G = EF is a

full-rank decomposition of G, then FAE is invertible and A
(2)
T,S = E(FAE)−1F = A

(2)

R(F ),N (E)
,

which implies A
(2,∗)
T,S = E(FAE)−1FAA∗ and A

(∗,2)
T,S = A∗AE(FAE)−1F.

As a consequence of Theorem 6.2.1, we obtain new representations for the Drazin-star and
star-Drazin matrices.

Corollary 6.2.1. If A ∈ C
n×n and ind(A) = k, then

AD,∗ = (Al)#AlA∗ = PR(Ak),N (Ak)A
∗

and
A∗,D = A∗Al(Al)# = A∗PR(Ak),N (Ak),

for l ≥ k.

Proof. If G = Al for l ≥ k in Theorem 6.2.1, we get

AD,∗ = (Al+1)#Al+1A∗ = PR(Al+1),N (Al+1)A
∗ = PR(Al),N (Al)A

∗ = (Al)#AlA∗

and similarly A∗,D = A∗Al(Al)# = A∗PR(Al),N (Al).

We establish the general integral representations for outer-star and star-outer matrices in
the next results.

Theorem 6.2.2. If A and G satisfy the conditions of Lemma 6.2.1, then

A
(2,∗)
T,S =

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗GAA∗ dt

and

A
(∗,2)
T,S =

∞∫
0

A∗A exp
[−G(GAG)∗GAt

]
G(GAG)∗G dt.

Proof. Using [165, Theorem 2.2], we have

A
(2)
T,S =

∞∫
0

exp
[−G(GAG)∗GAt

]
G(GAG)∗G dt

The rest follows by the definitions of the (T, S)-outer-star and star-(T, S)-outer matrices.

Theorem 6.2.3. Let A ∈ C
m×n
T,S .

(i) If G1 ∈ C
n×m such that R(G1) = T and N (G1) = N (A

(2)
T,SAA∗), then

A
(2,∗)
T,S =

∞∫
0

exp
[−G1(G1(A

†)∗G1)
∗G1(A

†)∗t
]
G1(G1(A

†)∗G1)
∗G1 dt.

(ii) If G2 ∈ C
n×m such that R(G2) = R(A∗AA

(2)
T,S) and N (G2) = S, then

A
†,(2)
T,S =

∞∫
0

exp
[−G2(G2(A

†)∗G2)
∗G2(A

†)∗t
]
G2(G2(A

†)∗G2)
∗G2 dt.

Proof. (i) We have that A
(2,∗)
T,S = [(A†)∗]

(2)

T,N (A
(2)
T,S

AA∗)
by Lemma 6.1.1(iii). Using [165, Theorem

2.2], we deduce that (i) is satisfied.
In a same way, we check part (ii).

We also study a limit representation for outer-star and star-outer matrices.

Theorem 6.2.4. Let A ∈ C
m×n be of rank r, B ∈ C

n×s be of rank s and C ∈ C
s×m be of rank

s. If A
(2)

R(B),N (C) exists, then

A
(2,∗)
R(B),N (C) = lim

t→0
B(tI + CAB)−1CAA∗

and
A

(∗,2)
R(B),N (C)

= lim
t→0

A∗AB(tI + CAB)−1C.
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Proof. According to [76, Theorem 7], notice that

A
(2)
T,S = lim

t→0
B(tI + CAB)−1C.

We can easily complete the proof.

Corollary 6.2.2. Let A ∈ C
m×n be of rank r, B ∈ C

n×s be of rank s and C ∈ C
s×m be of rank

s. Suppose that A
(2)

R(B),N (C)
exists (or rank(CAB) = rank(B) = rank(C)).

(i) If rank(CABC) = rank(CA), then

A
(2,∗)
R(B),N (C) = BB

(1,2)

R(C),N (CA)A
∗.

(ii) If rank(BCAB) = rank(AB), then

A
(∗,2)
R(B),N (C) = A∗C

(1,2)

R(AB),N (B)C.

Proof. (i) Since rank(CAB) = rank(C) = rank(B) = s, we obtain

rank(CA) ≤ rank(C) = rank(CAB) ≤ rank(CA),

which gives rank(CA) = rank(C). Further, from R(CA) ⊆ R(C), we have R(CA) = R(C). By

rank(CABC) = rank(CA) = rank(C) = rank(B), we deduce thatB
(2)
R(CA),N (CA) = B

(1,2)
R(C),N (CA)

exists. Following [161], we observe that

B
(2)
R(CA),N (CA) = lim

t→0
(tI + CAB)−1 CA.

Applying Theorem 6.2.4, it follows

A
(2,∗)
R(B),N (C) = lim

t→0
B(tI + CAB)−1CAA∗ = BB

(2)
R(CA),N (CA)A

∗ = BB
(1,2)
R(C),N (CA)A

∗.

Analogously, we show part (ii).

Theorem 6.2.5. Let A ∈ C
m×n
T,S .

(i) If B1 ∈ C
n×s
s and C1 ∈ C

s×m
s such that R(B1) = T and N (C1) = N(A

(2)
T,SAA∗), then

A
(2,∗)
T,S = lim

t→0
B1(tI + C1(A

†)∗B1)
−1C1.

(ii) If B2 ∈ C
n×s
s and C2 ∈ C

s×m
s such that R(B2) = R(A∗AA

(2)
T,S) and N (C2) = S, then

A
(2,∗)
T,S = lim

t→0
B2(tI + C2(A

†)∗B2)
−1C2.

Proof. By Lemma 6.1.1 and [76, Theorem 7], the proof is clear.

We investigate a relation between the outer-star matrix and a corresponding nonsingular
bordered matrix.

Theorem 6.2.6. Let A ∈ C
m×n
T,S . Suppose that U and V ∗ are full column rank matrices such

that

R(I −AA
(2,∗)
T,S ) ⊆ R(U) ⊆ N (A

(2,∗)
T,S ) and T ⊆ N (V ) ⊆ N (I − A

(2,∗)
T,S A).

Then the bordered matrix

M =

[
A U
V 0

]

is nonsingular and

M−1 =

[
A

(2,∗)
T,S (I − A

(2,∗)
T,S A)V †

U†(I − AA
(2,∗)
T,S ) −U†(A−AA

(2,∗)
T,S A)V †

]
. (6.5)
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Proof. From R(A
(2,∗)
T,S ) = T ⊆ N (V ), we conclude that V A

(2,∗)
T,S = 0. Because R(I −AA

(2,∗)
T,S ) ⊆

R(U) = R(UU†) = N (I−UU†), we have (I−UU†)(I−AA
(2,∗)
T,S ) = 0 which gives I−AA

(2,∗)
T,S =

UU†(I − AA
(2,∗)
T,S ). Let N be the right hand side of (6.5). Then

MN =

[
AA

(2,∗)
T,S + UU†(I − AA

(2,∗)
T,S ) A(I − A

(2,∗)
T,S A)V † − UU†(I −AA

(2,∗)
T,S )AV †

V A
(2,∗)
T,S V (I − A

(2,∗)
T,S A)V †

]

=

[
AA

(2,∗)
T,S + I − AA

(2,∗)
T,S (I −AA

(2,∗)
T,S )AV † − (I − AA

(2,∗)
T,S )AV †

0 V V †

]

=

[
I 0
0 I

]
= I.

Hence, M is nonsingular and M−1 = N .

In the special case when A
(2,∗)
T,S = AD,∗ in Theorem 6.2.6, we obtain a relation between the

Drazin-star matrix and a corresponding nonsingular bordered matrix.

Corollary 6.2.3. Let A ∈ C
n×n and ind(A) = k. Suppose that U and V ∗ are full column rank

matrices such that

R(I − AAD,∗) ⊆ R(U) ⊆ N (AkA∗) and R(Ak) ⊆ N (V ) ⊆ N (I − AD,∗A).

Then the bordered matrix

M =

[
A U
V 0

]
is nonsingular and

M−1 =

[
AD,∗ (I − AD,∗A)V †

U†(I − AAD,∗) −U†(A−AAD,∗A)V †

]
.

Proof. For A
(2,∗)
T,S = AD,∗ in Theorem 6.2.6, we get this result by R(AD) = R(Ak) and

N (AD,∗) = N (AkA∗) [95, Lemma 2.1].

Replacing the block A in matrix M of Theorem 6.2.6 by (A†)∗, we can show the next result
in a similar manner as Theorem 6.2.6.

Theorem 6.2.7. Let A ∈ C
m×n
T,S . Suppose that U and V ∗ are full column rank matrices such

that
R(U) = N (A

(2,∗)
T,S ) and T = N (V ).

Then the bordered matrix

M =

[
(A†)∗ U
V 0

]
is nonsingular and

M−1 =

[
A

(2,∗)
T,S (I − A

(2)
T,SA)V †

U†(I − (A†)∗A
(2,∗)
T,S ) −U†((A†)∗ − (A†)∗A

(2)
T,SA)V †

]
.

As a consequence of Theorem 6.2.7, we can get a corresponding result for the Drazin-star
matrix.

Corollary 6.2.4. Let A ∈ C
n×n and ind(A) = k. Suppose that U and V ∗ are full column rank

matrices such that
R(U) = N (AkA∗) and R(Ak) = N (V ).

Then the bordered matrix

M =

[
(A†)∗ U
V 0

]
is nonsingular and

M−1 =

[
AD,∗ (I − ADA)V †

U†(I − (A†)∗AD,∗) −U†((A†)∗ − (A†)∗ADA)V †

]
.

Analogously, we can show the following results related to star-outer and star-Drazin matri-
ces.
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Theorem 6.2.8. Let A ∈ C
m×n
T,S .

(i) Suppose that U and V ∗ are full column rank matrices such that

R(I − AA
(∗,2)
T,S ) ⊆ R(U) ⊆ S and R(A

(2,∗)
T,S ) ⊆ N (V ) ⊆ N (I − A

(∗,2)
T,S A).

Then the bordered matrix

M =

[
A U
V 0

]
is nonsingular and

M−1 =

[
A

(∗,2)
T,S (I − A

(∗,2)
T,S A)V †

U†(I −AA
(∗,2)
T,S ) −U†(A− AA

(∗,2)
T,S A)V †

]
.

(ii) Suppose that U and V ∗ are full column rank matrices such that

R(U) = S and R(A
(2,∗)
T,S ) = N (V ).

Then the bordered matrix

M =

[
(A†)∗ U
V 0

]
is nonsingular and

M−1 =

[
A

(∗,2)
T,S (I − A

(∗,2)
T,S (A†)∗)V †

U†(I − AA
(2)
T,S) −U†((A†)∗ − AA

(2)
T,S(A

†)∗)V †

]
.

Corollary 6.2.5. Let A ∈ C
n×n and ind(A) = k.

(i) Suppose that U and V ∗ are full column rank matrices such that

R(I − AA∗,D) ⊆ R(U) ⊆ N (Ak) and R(A∗Ak) ⊆ N (V ) ⊆ N (I − A∗,DA).

Then the bordered matrix

M =

[
A U
V 0

]
is nonsingular and

M−1 =

[
A∗,D (I − A∗,DA)V †

U†(I − AA∗,D) −U†(A− AA∗,DA)V †

]
.

(ii) Suppose that U and V ∗ are full column rank matrices such that

R(U) = N (Ak) and R(A∗Ak) = N (V ).

Then the bordered matrix

M =

[
(A†)∗ U
V 0

]
is nonsingular and

M−1 =

[
A∗,D (I − A∗,D(A†)∗)V †

U†(I − ADA) −U†((A†)∗ − ADA(A†)∗)V †

]
.

6.3 Representations of Drazin-star and
star-Drazin matrices

Using the Hartwig-Spindelböck decomposition, we present the canonical form of the Drazin-star
and star-Drazin matrices. The Hartwig-Spindelböck decomposition [49] of any matrix A ∈ C

n×n

of rank r is given by

A = U

[
ΣK ΣL
0 0

]
U∗, (6.6)

where U ∈ C
n×n is unitary, Σ = diag(σ1Ir1 , σ2Ir2 , . . . , σtIrt) is a diagonal matrix of the nonzero

singular values of A, σ1 > σ2 > · · · > σt > 0, r1+ r2 + · · ·+ rt = r, K ∈ C
r×r and L ∈ C

r×(n−r)

satisfy

KK∗ + LL∗ = Ir.
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Theorem 6.3.1. Let A ∈ C
n×n be represented as in (6.6). Then

AD,∗ = U

[
(ΣK)DΣΣ∗ 0

0 0

]
U∗

and

A∗,D = U

[
(ΣK)∗,D (ΣK)∗(ΣK)DΣL

(ΣL)∗(ΣK)DΣK (ΣL)∗(ΣK)DΣL

]
U∗.

Proof. By [86], we have

AD = U

[
(ΣK)D [(ΣK)D]2ΣL

0 0

]
U∗.

Therefore,

AD,∗ = ADAA∗ = U

[
(ΣK)DΣK (ΣK)DΣL

0 0

]
U∗U

[
K∗Σ∗ 0
L∗Σ∗ 0

]
U∗

= U

[
(ΣK)DΣΣ∗ 0

0 0

]
U∗.

The second formula can be verified in a similar manner.

Applying Theorem 6.3.1, we obtain a necessary and sufficient condition for AD,∗ to be EP.

Corollary 6.3.1. Let A ∈ C
n×n be represented as in (6.6). Then AD,∗ is EP if and only if

(ΣK)DΣΣ∗ is EP.

We present the expressions for the Drazin-star and star-Drazin matrices by means of the
Schur’s triangularization factorization: let A ∈ C

n×n and ind(A) = k. Then there exists a
unitary matrix U ∈ C

n×n such that

A = U

[
A1 A2

0 A3

]
U∗, (6.7)

where A1 is nonsingular upper-triangular matrix, rank(A1) = rank(Ak) and A3 is nilpotent of
index k.

Theorem 6.3.2. Let A ∈ C
n×n and ind(A) = k. If A is represented as in (6.7), then

AD,∗ = U

[
A∗

1 +A1DA∗
2 A1DA∗

3

0 0

]
U∗

and

A∗,D = U

[
A∗

1 A∗
1A1D

A∗
2 A∗

2A1D

]
U∗,

where D =
k−1∑
i=0

Ai−k−1
1 A2A

k−1−i
3 .

Proof. According to [35, Theorem 2.5], we have

AD = U

[
A−1

1 D
0 0

]
U∗, AAD = U

[
I A1D
0 0

]
U∗

and

A = U

[
A∗

1 0
A∗

2 A∗
3

]
U∗,

which give this result.

Using an integral representation for the Drazin inverse of a complex square matrix, which
does not require any restriction on its eigenvalues and it is proved in [15], the integral represen-
tations for the Drazin-star and star-Drazin matrices are presented now.

Theorem 6.3.3. Let A ∈ C
n×n and ind(A) = k. Then

AD,∗ =

∫ ∞

0

exp
[− tAk(A2k+1)∗Ak+1

]
Ak(A2k+1)∗Ak+1A∗ dt

and

A∗,D =

∫ ∞

0

A∗A exp
[− tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗Ak dt.
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Proof. It follows by [15, Theorem 2.1]:

AD =

∫ ∞

0

exp
[− tAk(A2k+1)∗Ak+1

]
Ak(A2k+1)∗Ak dt.

We give the limit representations for the Drazin-star and star-Drazin matrices by the limit
representation of the Drazin inverse established in [90].

Theorem 6.3.4. Let A ∈ C
n×n and ind(A) = k ≤ l. Then

AD,∗ = lim
λ→0

(Al+1 + λI)−1Al+1A∗

and
A∗,D = lim

λ→0
A∗Al+1(Al+1 + λI)−1.

Proof. We show this expressions applying the following limit expression from [90]:

AD = lim
λ→0

(Al+1 + λI)−1Al.

Also, we develop representations of the Drazin-star and star-Drazin matrices based on the
full-rank decomposition of a given matrix.

Lemma 6.3.1. [8] Let A ∈ C
n×n with ind(A) = k. If A = B1G1 is a full-rank decomposition

and GiBi = Bi+1Gi+1 are also full-rank decompositions, i = 1, 2, . . . , k − 1. Then the following
statements hold:

(i) GkBk is invertible;

(ii) Ak = B1B2 . . . BkGk . . . G2G1;

(iii) AD = B1B2 . . . Bk(GkBk)
−k−1Gk . . . G2G1;

(iv) A† = G∗
1(G1G

∗
1)

−1(B∗
1B1)

−1B∗
1 .

In particular, for k = 1, then G1B1 is invertible and A# = B1(G1B1)
−2G1.

Theorem 6.3.5. Let A ∈ C
n×n with ind(A) = k and the full-rank decomposition of A as in

Lemma 6.3.1. Then

AD,∗ = B1B2 . . . Bk(GkBk)
−kGk . . . G2G1G

∗
1B

∗
1

and
A∗,D = G∗

1B
∗
1B1B2 . . . Bk(GkBk)

−kGk . . . G2G1.

Proof. Applying Lemma 6.3.1 and

ADA = B1B2 . . . Bk(GkBk)
−k−1Gk . . . G2G1B1G1

= B1B2 . . . Bk(GkBk)
−k−1Gk . . . G2B2G2G1

= B1B2 . . . Bk(GkBk)
−k−1GkBkGk . . . G2G1

= B1B2 . . . Bk(GkBk)
−kGk . . . G2G1

the proof can be completed.

6.4 Group-star and star-group matrices

Applying results of previous sections, we introduce and characterize new classes of a square
matrix of index one.

In the case that A
(2)
T,S = A# in Theorem 6.1.1, we obtain the following result.

Corollary 6.4.1. Let A ∈ C
n×n and ind(A) = 1.

(a) The system of equations

X(A†)∗X = X, AX = AA∗ and X(A†)∗ = A#A

is consistent and its unique solution is X = A#AA∗.
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(b) The system of equations

X(A†)∗X = X, XA = A∗A and (A†)∗X = A#A

is consistent and its unique solution is X = A∗AA#.

Definition 6.4.1. Let A ∈ C
n×n and ind(A) = 1.

(a) The group-star matrix of A (or the group-star inverse of (A†)∗) is defined as

A#,∗ = A#AA∗.

(b) The star-group matrix of A (or the star-group inverse of (A†)∗) is defined as

A∗,# = A∗AA#.

Remark that, A#,∗ is a {3}-inverse of A and A∗,# is a {4}-inverse of A. Also, if A ∈ C
n×n

is EP, then A#,∗ = A∗ = A∗,#.

Lemma 6.4.1. Let A ∈ C
n×n and ind(A) = 1. Then:

(i) (A†)∗A#,∗ is the orthogonal projector onto R(A);

(ii) A#,∗(A†)∗ is a projector onto R(A) along N (A);

(iii) A#,∗ = [(A†)∗]
(2)
R(A),N (A∗);

(iv) (A†)∗A∗,# is a projector onto R(A) along N (A);

(v) A∗,#(A†)∗ is the orthogonal onto R(A∗);

(vi) A∗,# = [(A†)∗]
(2)
R(A∗),N (A).

We characterize the group-star matrix in the next consequence of Corollary 6.1.2.

Corollary 6.4.2. Let A ∈ C
n×n and ind(A) = 1. The following statements are equivalent:

(i) X ∈ C
n×n is the group-star matrix of A;

(ii) X satisfies equations

X(A†)∗X = X, (A†)∗X(A†)∗ = (A†)∗,

AX = AA∗ and X(A†)∗ = A#A;

(iii) X satisfies equations
A#AX = X and AX = AA∗;

(iv) X satisfies equations

A#AXAA† = X and AX(A†)∗ = A;

(v) X satisfies equations
A#AX = X and (A†)∗X = AA†;

(vi) X satisfies equations
XAA† = X and X(A†)∗ = A#A;

(vii) X satisfies equations
XAA† = X and X(A†)∗A = A;

(viii) X satisfies equations

XAA† = X and X(A†)∗A† = A
#©;

(ix) X satisfies equations
XAA† = X and XA = A#AA∗A;

(x) X satisfies equations

X(A†)∗X = X, (A†)∗X = AA† and X(A†)∗ = A#A;

(xi) X satisfies equations

X(A†)∗X = X, (A†)∗X(A†)∗ = (A†)∗,

(A†)∗X = AA† and X(A†)∗ = A#A.

135



128 CHAPTER 6. OUTER-STAR AND STAR-OUTER MATRICES

Also, we present some characterizations of the star-group matrix.

Corollary 6.4.3. Let A ∈ C
n×n and ind(A) = 1. The following statements are equivalent:

(i) X ∈ C
n×n is the star-group matrix of A;

(ii) X satisfies equations

X(A†)∗X = X, (A†)∗X(A†)∗ = (A†)∗,

XA = A∗A and (A†)∗X = A#A;

(iii) X satisfies equations
XAA# = X and XA = A∗A;

(iv) X satisfies equations

A†AXAA# = X and (A†)∗XA = A;

(v) X satisfies equations
XAA# = X and X(A†)∗ = A†A;

(vi) X satisfies equations
A†AX = X and (A†)∗X = A#A;

(vii) X satisfies equations
A†AX = X and A(A†)∗X = A;

(viii) X satisfies equations

A†AX = X and A†(A†)∗X = A#©;

(ix) X satisfies equations
A†AX = X and AX = AA∗AA#;

(x) X satisfies equations

X(A†)∗X = X, (A†)∗X = A#A and X(A†)∗ = A†A;

(xi) X satisfies equations

X(A†)∗X = X, (A†)∗X(A†)∗ = (A†)∗,

(A†)∗X = A#A and X(A†)∗ = A†A.

Notice that, in general, the Drazin-star and star-Drazin matrices are not inner inverses of
(A†)∗, but the group-star and star-group matrices are inner inverses of (A†)∗. Precisely, A#,∗

is {1, 2, 3}-inverse of (A†)∗ and A∗,# is {1, 2, 4}-inverse of (A†)∗.
By Corollary 6.1.4, we give characterizations of the group-star and star-group matrices from

a geometrical point of view.

Corollary 6.4.4. Let A ∈ C
n×n and ind(A) = 1.

(a) The system of conditions

(A†)∗X = PR(A) and R(X) ⊆ R(A)

is consistent and it has the unique solution X = A#,∗.

(b) The system of conditions

(A†)∗X = PR(A),N (A) and R(X) ⊆ R(A∗)

is consistent and it has the unique solution X = A∗,#.

In the part (i) of the next result, we obtain new characterizations of partial isometries, and
in parts (ii) and (vi), we present new characterizations of EP matrices.

Lemma 6.4.2. Let A ∈ C
n×n and ind(A) = 1. Then:

(i) AA#,∗A = A iff AA∗A = A iff AA∗,#A = A iff AA#,∗ = AA† iff A∗,#A = A†A;

(ii) AA#,∗ = AA# iff A#,∗ = A# iff AA∗ = AA# iff A∗ = A#© iff A is EP;

(iii) A#,∗A = AA# iff A#,∗ = A#©;

(iv) A#,∗A = A†A iff A#,∗ = A†;
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(v) A#,∗ = A∗ iff A#© = A†;

(vi) A∗,#A = AA# iff A∗,# = A# iff A∗A = AA# iff A∗ = A#© iff A is EP;

(vii) AA∗,# = AA# iff A∗,# = A#©;

(viii) AA∗,# = AA† iff A∗,# = A†;

(ix) A∗,# = A∗ iff A#© = A†.

Using Corollary 6.1.6 and Corollary 6.1.7, we develop maximal classes of complex matrices
for which the expressions of the group-star and star-group matrices are valid.

Corollary 6.4.5. Let A,U ∈ C
n×n and ind(A) = 1.

(a) Then the following statements are equivalent:

(i) A#,∗ = UAA∗;

(ii) UA = A#A;

(iii) AUA = A and R(UA) = R(A);

(iv) U = A# + Z(I − AA†), for arbitrary Z ∈ C
n×n.

(b) Then the following statements are equivalent:

(i) A∗,# = A∗AU ;

(ii) AU = AA#;

(iii) AUA = A and N (AU) = N (A);

(iv) U = A# + (I − A†A)Z, for arbitrary Z ∈ C
n×n.

In the case that a square matrix A of index one is given by (6.6), recall that [2]

A# = U

[
K−1Σ−1 K−1Σ−1K−1L

0 0

]
U∗.

Thus, we have the following representations of the group-star and star-group matrices.

Corollary 6.4.6. Let A ∈ C
n×n be represented as in (6.6) and ind(A) = 1. Then

A#,∗ = U

[
K−1Σ 0

0 0

]
U∗

and

A∗,# = U

[
(ΣK)∗ (ΣK)∗K−1L
(ΣL)∗ (ΣL)∗K−1L

]
U∗.

Now, we can notice that A#,∗ is EP.

Corollary 6.4.7. Let A ∈ C
n×n be represented as in (6.6) and ind(A) = 1. Then A#,∗ is EP.

In addition,

(A#,∗)† = (A#,∗)# = U

[
Σ−1K 0

0 0

]
U∗.

We present the integral representations and representations based on the full-rank decom-
position for the group-star and star-group matrices.

Corollary 6.4.8. Let A ∈ C
n×n and ind(A) = 1.

(a) Then

A#,∗ =

∫ ∞

0

exp
[− tA(A3)∗A2

]
A(A3)∗A2A∗ dt

and

A∗,# =

∫ ∞

0

A∗A exp
[− tA(A3)∗A2]A(A3)∗A dt.

(b) If A = B1G1 is a full-rank decomposition, then

A#,∗ = B1(G1B1)
−1G1G

∗
1B

∗
1

and
A∗,# = G∗

1B
∗
1B1(G1B1)

−1G1.
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6.5 Applications of outer-star and star-outer matrices

Applying outer-star and star-outer matrices, we will solve some systems of linear equations.

Theorem 6.5.1. Let A ∈ C
m×n
T,S . Then the equation

A
(2)
T,SAx = A

(2,∗)
T,S b (6.8)

is consistent and its general solution is

x = A
(2,∗)
T,S b+ (I − A

(2)
T,SA)y, (6.9)

for arbitrary y ∈ C
n.

Proof. If x is represented as in (6.9), then x satisfies (6.8):

A
(2)
T,SAx = A

(2)
T,SAA

(2,∗)
T,S b = A

(2)
T,SAA

(2)
T,SAA∗b = A

(2,∗)
T,S b.

Suppose that x is a solution of (6.8). Then A
(2,∗)
T,S b = A

(2)
T,SAx gives

x = A
(2,∗)
T,S b+ x− A

(2)
T,SAx = A

(2,∗)
T,S b+ (I − A

(2)
T,SA)x.

Hence, the solution x is of the form (6.9).

Notice that AD,∗b is a solution of the equation Alx = AlA∗b, ind(A) = k ≤ l.

Corollary 6.5.1. Let A ∈ C
n×n, ind(A) = k ≤ l and b ∈ C

n. Then the equation

Alx = AlA∗b (6.10)

is consistent and its general solution is

x = AD,∗b+ (I − ADA)y, (6.11)

for arbitrary y ∈ C
n.

Similarly, as in Theorem 6.5.1, we can prove the next theorem.

Theorem 6.5.2. Let A ∈ C
m×n
T,S . Then the equation

(A†)∗x = AA
(2)
T,Sb

is consistent and its general solution is

x = A
(∗,2)
T,S b+ (I − A†A)y,

for arbitrary y ∈ C
n.

We obtain the following consequence of Theorem 6.5.2 in the case that b ∈ R(AA
(2)
T,S).

Corollary 6.5.2. Let A ∈ C
m×n
T,S . Then the equation

(A†)∗x = b, b ∈ R(AA
(2)
T,S)

is consistent and its general solution is

x = A∗b+ (I − A†A)y,

for arbitrary y ∈ C
n.

Also, we can solve the equation (A†)∗x = b when b ∈ R((A†)∗A
(2)
T,S).

Theorem 6.5.3. Let A ∈ C
m×n
T,S and b ∈ R((A†)∗A

(2)
T,S). Then A

(2,∗)
T,S b is the unique solution in

T of
(A†)∗x = b. (6.12)

Proof. Because b ∈ R((A†)∗A
(2)
T,S), we have b = (A†)∗A

(2)
T,Sz, for some z ∈ C

m. If x = A
(2,∗)
T,S b,

then
(A†)∗x = (A†)∗A

(2,∗)
T,S b = (A†)∗A

(2)
T,SAA∗(A†)∗A

(2)
T,Sz = (A†)∗A

(2)
T,Sz = b,

that is, x is a solution of the system (6.12).

In order to verify that x = A
(2,∗)
T,S b is the unique solution of (6.12) in T , let x1 ∈ T be

another solution of (6.12). Thus, x = x1 from

x− x1 ∈ T ∩N ((A†)∗) ⊆ R(A
(2)
T,S) ∩N (A

(2,∗)
T,S (A†)∗) = R(A

(2)
T,SA) ∩N (A

(2)
T,SA) = {0}.
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Corollary 6.5.3. Let A ∈ C
n×n, ind(A) = k and b ∈ R((A†)∗AD). Then AD,∗b is the unique

solution in R(Ak) of (A†)∗x = b.

If ind(A) = 1 in Corollary 6.5.3, we obtain the following result.

Corollary 6.5.4. Let A ∈ C
n×n, ind(A) = 1 and b ∈ R(A). Then A#,∗b is the unique solution

in R(A) of (A†)∗x = b.

Similarly as Theorem 6.5.3, we verify the following result.

Theorem 6.5.4. Let A ∈ C
m×n
T,S and b ∈ R(AA

(2)
T,S). Then A∗b is the unique solution in R(A∗)

of (A†)∗x = b.

6.6 Summary

Our aim is to introduce the outer-star and star-outer matrices using the outer inverse and
conjugate transpose of a given rectangular matrix based on [98]. Thus, we present two new class
of rectangular matrices which includes Drazin-star and star-Drazin matrices. We present various
characterizations and representations of these new matrices. As applications of outer-star and
star-outer matrices, we solve corresponding systems of linear equations. This research enriches
previous knowledge about composite outer inverses, Drazin-star and star-Drazin matrices.

For further research, it will be interesting for example to consider generalizations of our
results to operators between Hilbert spaces [106] and to tensors [154].
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Chapter 7

Minimal rank properties of
outer inverses

The main idea of this chapter is to show that some outer inverses with prescribed range and/or
null space are solutions to appropriate matrix equations with minimal rank property. In this
way, we show that proper outer inverses are solutions to minimization problems in solving some
matrix equations with respect to the matrix rank.

The definition of the weak Drazin inverse was presented in [11] as a weakened form of the
Drazin inverse. Although a weak Drazin inverse lacks some of the properties of the Drazin
inverse, such as being unique, it is still easier to find the weak Drazin inverse than the Drazin
inverse. Also, the weak Drazin inverse may be applied instead of the Drazin inverse for ex-
ample in investigating differential equations or Markov chains as well as in its additional own
applications.

Consider a square matrix A ∈ C
n×n of index k = ind(A). Then, a matrix X ∈ C

n×n

represents [11]:

• a weak Drazin inverse of A when

XAk+1 = Ak;

• a minimal rank weak Drazin inverse of A when

XAk+1 = Ak and rank(X) = rank(AD);

• a commuting weak Drazin inverse of A when

XAk+1 = Ak and AX = XA.

Recall that, by [11], the Drazin inverse is unique minimal rank commuting weak Drazin inverse.
Some characterizations of the minimal rank weak Drazin inverse were given in [174]. Also, it was
proved in [174] that many recently defined generalized inverses, are special cases of the minimal
rank weak Drazin inverse.

The conditions for solvability of matrix equations and studying their explicit solutions were
applied in physics, mechanics, control theory, and many other fields [8, 156]. Motivated by
theoretical and applied importance of researches involving solvability of system of equations
and forms of their solutions, we continue to study this topic.

The aim of this chapter is to investigate solvability of systems of matrix equations which are
weaker than system considering in [11, 174] and to solve some constrained minimizations prob-
lems. Main novelty of the chapter is unification of solutions of considered matrix equations with
corresponding minimization problems. Consequently, we extend some well-known results and
give several new results for the weak Drazin inverse. Also, some characterizations for significant
Drazin inverse, group inverse and Moore-Penrose inverse are obtained as consequences.

The detailed explanations of our research goals follow based on [114].

(1) For X ∈ C
n×m, A ∈ C

m×n and B ∈ C
n×k, the first problem, which we consider, is to

find equivalent conditions for solvability of the constrained system

XAB = B and rank(X) = rank(B). (7.1)

We will prove that X is a solution to (7.1) if and only if (iff) X ∈ A{2}R(B),∗.
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(2) In the case that system (7.1) is consistent, we solve the minimization problem

min rank(X) subject to XAB = B. (7.2)

(3) We investigate solvability of system (7.1) with the additional assumptions. Precisely,
we add an additional constraint rank(X) = rank(B) = rank(A) or BAX = B or AX = XA.
A minimal rank outer inverse X with prescribed range R(B) which commutes with A, will be
called a commuting minimal rank outer inverse with prescribed range R(B).

(4) Suppose that A ∈ C
m×n, X ∈ C

n×m and C ∈ C
l×m. We study the solvability of the

system
CAX = C and rank(X) = rank(C). (7.3)

Since we will show that X is a solution to (7.3) iff X ∈ A{2}∗,N (C), a solution X to (7.3) is
called a minimal rank outer inverse with prescribed kernel N (C).

(5) If the system (7.3) is consistent, the minimization problem

min rank(X) subject to CAX = C (7.4)

can be solved.

(6) Special cases of the system (7.3) will be the topic of this research. A minimal rank outer
inverse X with prescribed kernel N (C) which commutes with A, will be called a commuting
minimal rank outer inverse with prescribed kernel N (C).

(7) Characterizations for the Drazin inverse, group inverse and Moore-Penrose inverse are
obtained applying our results.

(8) The solvability of the system which contains equalities from both systems (7.1) and (7.3)
is considered. Precisely, in the case that A ∈ C

m×n, X ∈ C
n×m, B ∈ C

n×k and C ∈ C
l×m, we

study the system

XAB = B, CAX = C and rank(X) = rank(B) = rank(C). (7.5)

We will observe that X is a solution to (7.5) iff X = A
(2)

R(B),N (C)
, and a solution X to (7.5)

is called a minimal rank outer inverse with predefined range R(B) and kernel N (C). Also, we
investigate solvability of the system (7.5) with additional conditions.

7.1 Minimal rank outer inverses with prescribed range

The main goals of this section are to consider solvability of the system (7.1) and the minimization
problem (7.2). In the first theorem, we will observe that X presents a solution to (7.1) iff X is
an outer inverse of A with the prescribed range R(B). Also, we give some systems of matrix
equations which are equivalent to the system (7.1).

Lemma 7.1.1. (a) If A ∈ C
m×n and B ∈ C

n×k, it follows

there exists X ∈ C
n×m such that XAB = B ⇐⇒ rank(AB) = rank(B). (7.6)

(b) For A ∈ C
m×n and C ∈ C

l×m, it follows

there exists X ∈ C
n×m such that CAX = C ⇐⇒ rank(CA) = rank(C). (7.7)

Proof. (a) The equality XAB = B gives rank(B) ≤ rank(AB) ≤ rank(B), i.e. rank(B) =
rank(AB).

On the other hand, rank(B) = rank(AB) ⇐⇒ B(AB)(1)AB = B (see, for example [156, P.
33]), implies XAB = B in the case X = B(AB)(1).

(b) This statement can be verified using the conjugate transpose matrices in the part (a).

Theorem 7.1.1. Suppose that A ∈ C
m×n, X ∈ C

n×m and B ∈ C
n×k.

(a) The subsequent statements are mutually equivalent:

(i) XAB = B and rank(X) = rank(B);

(ii) XAB = B and R(X) = R(B);

(iii) X is a solution to (1.5), i.e., X ∈ A{2}R(B),∗;

(iv) X = BB†X and XAB = B;

(v) XAX = X, X = BB†X and XAB = B.
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(b) Additionally,

min {rank(X)| XAB = B} = rank(B)

{rank(X)| XAB = B} ⊆ [rank(B), rank(X)]

{rank(X)| X ∈ A{2} ∧XAB = B} ⊆ [rank(B), rank(A)]

(7.8)

{
X ∈ C

n×m| XAB = B ∧ rank(X) = rank(B)
}
= A{2}R(B),∗ (7.9)

and

A{2}R(B),∗ =
{
X := B(AB)† + Y (I − (AB)(AB)†)|Y ∈ C

n×m

∧ XAB = B ∧ rank(X) = rank(B)} .
(7.10)

Proof. (a) (i) ⇒ (ii): From XAB = B, it follows R(B) ⊆ R(X). Further, rank(X) = rank(B)
gives R(X) = R(B).

(ii) ⇒ (iii): The hypothesis R(X) = R(B) implies X = BW1 for some W1 ∈ C
k×m. Then

XAX = XABW1 = BW1 = X.

(iii) ⇒ (iv): Since R(X) = R(B) and XAX = X, it follows

X = BU = BB†(BU) = BB†X

and
B = XV = XA(XV ) = XAB,

for some U ∈ C
k×m and V ∈ C

m×k.

(iv) ⇒ (v): The assumptions X = BB†X and XAB = B imply

XAX = (XAB)B†X = BB†X = X.

(v) ⇒ (i): From X = BB†X and XAB = B, it follows rank(X) = rank(B). Further,
XAB = BB†XAB = BB†B = B.

(b) It is straightforward that XAX = X implies rank(X) ≤ rank(A). On the other hand,
XAB = B implies rank(X) ≥ rank(B). So, (7.8) holds.

The set identity (7.9) follows from (i) ⇐⇒ (iii). Finally, the identity (7.10) follows from the
general solution to the matrix equation XAB = B [166].

Remark that the assumptions X = BB†X and XAB = B, exploited in Theorem 7.1.1, can
be replaced with some of the equivalent conditions presented in Corollary 7.1.1. In this way, we
can obtain several matrix equations systems with solutions satisfying X ∈ A{2}R(B),∗.

Corollary 7.1.1. [109, Corollary 2.4] Let A ∈ C
m×n, X ∈ C

n×m and B ∈ C
n×k.

(a) If XAX = X, notice that the following statements are equivalent:

(i) X = BB†X;

(ii) XA = BB†XA;

(iii) XAA† = BB†XAA†;

(iv) XAA∗ = BB†XAA∗;

(v) R(X) ⊆ R(B).

(b) The following statements are equivalent:

(i) XAB = B;

(ii) XABB† = BB†;

(iii) XABB∗ = BB∗;

(iv) XA(B†)∗ = (B†)∗.

Under the hypothesis XAX = X, we observe that XAB = B is equivalent to R(B) ⊆ R(X).

Proposition 7.1.1. If A ∈ C
m×n and B ∈ C

n×k, there exists X ∈ C
n×m satisfying XAB = B

and rank(X) = rank(B) if and only if rank(AB) = rank(B).

Proof. If there exists X such that XAB = B and rank(X) = rank(B), by Lemma 7.1.1, we
conclude that rank(AB) = rank(B).

The hypothesis rank(AB) = rank(B) and [132, Theorem 3] imply that there exists X ∈
A{2}R(B),∗. By Theorem 7.1.1, we have XAB = B and rank(X) = rank(B).
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Because of (7.8), a solution X to (7.1) is called a minimal rank outer inverse with prescribed
range R(B). Notice that a weak Drazin inverse is a particular solution of (7.1) for m = n,
B = Ak and k = ind(A). So, we study solvability of a more general system than the system
whose solution is the weak Drazin inverse.

For the particular settings B = Ak in Theorem 7.1.1, we obtain the next result which
involves characterizations of the minimal rank weak Drazin inverse.

Corollary 7.1.2 generalizes results from [174], since the statements (i)-(iii) of Corollary 7.1.2
are proposed in [174].

Corollary 7.1.2. For A,X ∈ C
n×n and k ∈ N, the next statements are equivalent:

(i) XAk+1 = Ak and rank(X) = rank(Ak);

(ii) XAk+1 = Ak and R(X) = R(Ak);

(iii) X ∈ A{2}R(Ak),∗;

(iv) X = Ak(Ak)†X and XAk+1 = Ak;

(v) XAX = X, X = Ak(Ak)†X and XAk+1 = Ak;

(vi) X is a minimal rank weak Drazin inverse of A.

The assumption rank(X) = rank(B) = rank(A) in the system (7.1) reduces the results of
Theorem 7.1.1 to the smaller class of inner reflexive inverses if A{1, 2}R(B),∗.

Theorem 7.1.2. Suppose that A ∈ C
m×n, X ∈ C

n×m and B ∈ C
n×k.

(a) The subsequent statements are mutually equivalent:

(i) XAB = B and rank(X) = rank(B) = rank(A);

(ii) XAX = X, R(X) = R(B) and R(AB) = R(A);

(iii) XAX = X, R(X) = R(B) and R(AB) ⊇ R(A);

(iv) XAX = X, R(X) = R(B) and A = AB(AB)†A;

(v) XAX = X, AXA = A and R(X) = R(B), i.e., X ∈ A{1, 2}R(B),∗.

(b) In addition,{
X ∈ C

n×m| XAB = B, rank(X) = rank(B) = rank(A)
}
= A{1, 2}R(B),∗. (7.11)

Proof. (a) (i) ⇒ (ii): According to Theorem 7.1.1, XAX = X and R(X) = R(B). Using
[132, Theorem 3], rank(AB) = rank(B) = rank(A). Therefore, the fact R(AB) ⊆ R(A) gives
R(AB) = R(A).

(ii) ⇔ (iii) ⇔ (iv): These equivalences are clear.
(ii) ⇒ (v): It is clear, by Theorem 7.1.1, that XAB = B. For some V ∈ C

k×n, the
assumption R(AB) = R(A) implies

A = ABV = AX(ABV ) = AXA.

(v) ⇒ (i): From the equalities XAX = X and AXA = A, we deduce that rank(X) =
rank(A). The hypothesis R(X) = R(B) yields rank(X) = rank(B) and

B = XT = XA(XT ) = XAB,

for some T ∈ C
m×k.

The proof of the part (b) follows from the results of the part (a) of this theorem. The ma-
trices X satisfying XAB = B, rank(X) = rank(B) are outer inverses of rank rank(X) =
rank(B) ≤ rank(A). In the case rank(X) = rank(B) = rank(A), outer inverses become
{1, 2}-inverses [132]. Consequently, the matrices X satisfying (7.11) are {1, 2}-inverses of rank
rank(X) = rank(B) = rank(A).

Proposition 7.1.2. If A ∈ C
m×n and B ∈ C

n×k, there exists X ∈ C
n×m that fulfills XAB = B

and rank(X) = rank(B) = rank(A) if and only if rank(AB) = rank(B) = rank(A).

When we add the assumption AX = XA in the system (7.1), we get the following charac-
terizations for a commuting minimal rank outer inverse with prescribed range R(B).

Theorem 7.1.3. For A,X,B ∈ C
n×n, the subsequent statements are equivalent each other:

(i) XAB = B, rank(X) = rank(B) and AX = XA;

(ii) XAX = X, R(X) = R(B) and AX = XA;
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(iii) X2A = AX2 = X and R(X) = R(B);

(iv) X2A = AX2 = X, X = BB†X and XAB = B.

Proof. (i) ⇔ (ii): It follows by Theorem 7.1.1.
(ii) ⇒ (iii): This implication is evident.
(iii) ⇒ (ii): Using X2A = AX2 = X, we get AX = AX2A = XA. Hence, X = X2A =

XAX.
(iv) ⇔ (iii): Applying Theorem 7.1.1, one can verify this implication.

By Theorem 7.1.3, we get the next consequence which contains several characterizations for
the Drazin inverse. For A ∈ C

n×n with k = ind(A), recall that, by [174, Corollary 2.3], X is a
minimal rank weak Drazin inverse of A and AX = XA iff X = AD.

Corollary 7.1.3. Let A,X ∈ C
n×n and k ∈ N. The subsequent statements are equivalent each

other:

(i) XAk+1 = Ak, rank(X) = rank(Ak) and AX = XA;

(ii) XAX = X, R(X) = R(Ak) and AX = XA;

(iii) X2A = AX2 = X and R(X) = R(Ak);

(iv) X2A = AX2 = X, X = Ak(Ak)†X and XAk+1 = Ak;

(v) X = AD.

In the case that the hypothesis BAX = B is added to the system (7.1), we present necessary
and sufficient conditions for the solvability of new system. The system XAB = BAX = B was
considered in [29] with additional assumptions different from our conditions.

Theorem 7.1.4. The subsequent statements are equivalent each other for A,X,B ∈ C
n×n:

(i) XAB = BAX = B and rank(X) = rank(B);

(ii) XAB = B, R(X) = R(B) and N (X) = N (B);

(iii) XAB = B, R(X) = R(B) and N (X) ⊆ N (B);

(iv) XAB = B, R(X) = R(B) and N (B) ⊆ N (X);

(v) XAB = B and N (B) ⊆ N (X);

(vi) XAX = X, BAX = B and R(X) = R(B);

(vii) XAX = X, R(X) = R(B) and N (X) = N (B), i.e. X = A
(2)
R(B),N (B);

(viii) XAX = X, R(X) = R(B) and N (X) ⊆ N (B);

(ix) XAX = X, R(X) = R(B) and N (B) ⊆ N (X).

Proof. (i) ⇒ (ii): Firstly, BAX = B gives N (X) ⊆ N (B). Since rank(X) = rank(B), then
dimN (X) = n− rank(X) = n− rank(B) = dimN (B). So, N (X) = N (B).

(ii) ⇒ (iii) and (iv): It is evident.
(iii) ⇒ (i): Theorem 7.1.1 and assumptions XAB = B and R(X) = R(B) imply XAX = X

and rank(X) = rank(B). The condition N (X) ⊆ N (B) yields, for some V ∈ C
n×n,

B = V X = (V X)AX = BAX.

(iv) ⇒ (v): This implication is clear.
(v) ⇒ (ii): From XAB = B, we conclude that R(B) ⊆ R(X) and rank(B) ≤ rank(X).

Because N (B) ⊆ N (X), we have X = SB, for some S ∈ C
n×n, and so rank(X) ≤ rank(B).

Hence, rank(X) = rank(B), which implies N (X) = N (B) and R(B) = R(X).
The rest follows by Theorem 7.1.1.

As a consequence of Theorem 7.1.4, we get the following result which involves characteriza-
tions of the Drazin inverse.

Corollary 7.1.4. Let A,X ∈ C
n×n and k ∈ N. The subsequent statements are mutually

equivalent:

(i) XAk+1 = Ak+1X = Ak and rank(X) = rank(Ak);

(ii) XAk+1 = Ak, R(X) = R(Ak) and N (X) = N (Ak);

(iii) XAk+1 = Ak, R(X) = R(Ak) and N (X) ⊆ N (Ak);
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(iv) XAk+1 = Ak, R(X) = R(Ak) and N (Ak) ⊆ N (X);

(v) XAk+1 = Ak and N (Ak) ⊆ N (X);

(vi) XAX = X, Ak+1X = Ak and R(X) = R(Ak);

(vii) XAX = X, R(X) = R(Ak) and N (X) = N (Ak), i.e. X = A
(2)

R(Ak),N (Ak)
= AD;

(viii) XAX = X, R(X) = R(Ak) and N (X) ⊆ N (Ak);

(ix) XAX = X, R(X) = R(Ak) and N (Ak) ⊆ N (X).

For k = 1 in Corollary 7.1.4, we obtain characterizations for the group inverse.

Corollary 7.1.5. The following statements are equivalent for A,X ∈ C
n×n:

(i) XA2 = A2X = A and rank(X) = rank(A);

(ii) XA2 = A, R(X) = R(A) and N (X) = N (A);

(iii) XA2 = A, R(X) = R(A) and N (X) ⊆ N (A);

(iv) XA2 = A, R(X) = R(A) and N (A) ⊆ N (X);

(v) XA2 = A and N (A) ⊆ N (X);

(vi) XAX = X, A2X = A and R(X) = R(A);

(vii) XAX = X, R(X) = R(A) and N (X) = N (A), i.e. X = A
(2)
R(A),N (A) = A#;

(viii) XAX = X, R(X) = R(A) and N (X) ⊆ N (A);

(ix) XAX = X, R(X) = R(A) and N (A) ⊆ N (X).

Theorem 7.1.4 also implies new characterizations for the Moore-Penrose inverse.

Corollary 7.1.6. The following statements are equivalent for A,X ∈ C
n×n:

(i) XAA∗ = A∗AX = A∗ and rank(X) = rank(A∗);

(ii) XAA∗ = A∗, R(X) = R(A∗) and N (X) = N (A∗);

(iii) XAA∗ = A∗, R(X) = R(A∗) and N (X) ⊆ N (A∗);

(iv) XAA∗ = A∗, R(X) = R(A∗) and N (A∗) ⊆ N (X);

(v) XAA∗ = A∗ and N (A∗) ⊆ N (X);

(vi) XAX = X, A∗AX = A∗ and R(X) = R(A∗);

(vii) XAX = X, R(X) = R(A∗) and N (X) = N (A∗), i.e.,

X = A
(2)
R(A∗),N (A∗) = A†;

(viii) XAX = X, R(X) = R(A∗) and N (X) ⊆ N (A∗);

(ix) XAX = X, R(X) = R(A∗) and N (A∗) ⊆ N (X).

Example 7.1.1. Consider the matrices

A =

⎡
⎢⎢⎢⎢⎣

ε+ 1 ε ε ε ε+ 1
ε ε− 1 ε ε ε
ε ε ε+ 1 ε ε
ε ε ε ε− 1 ε

ε+ 1 ε ε ε ε+ 1

⎤
⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎢⎢⎢⎣

2ε+ 1 ε ε
ε 2ε − 1 ε
ε ε 2ε + 1
ε ε ε
3ε ε ε

⎤
⎥⎥⎥⎥⎦ .

Let us generate the candidate solutions X in the generic form

X =

⎡
⎢⎢⎢⎢⎣

x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

⎤
⎥⎥⎥⎥⎦ , (7.12)
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where xi,j, i, j = 1, . . . , 5 are unevaluated symbols. The general solution X to XAB = B is the
matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1
2ε3+ε2−2ε+(−6ε3+3ε2+6ε+1)x1,1+(−6ε3+3ε2+6ε+1)x1,5−1

2(ε−1)ε(3ε+2)

−2ε+(6ε+3)x1,1+(6ε+3)x1,5−3

6ε+4

x2,1
−7ε3+3ε+(−6ε3+3ε2+6ε+1)x2,1+(−6ε3+3ε2+6ε+1)x2,5

2ε(3ε2−ε−2)
ε+(6ε+3)x2,1+(6ε+3)x2,5

6ε+4

x3,1
ε(ε+1)2+(−6ε3+3ε2+6ε+1)x3,1+(−6ε3+3ε2+6ε+1)x3,5

2ε(3ε2−ε−2)
5ε+(6ε+3)x3,1+(6ε+3)x3,5+4

6ε+4

x4,1
−ε(ε+1)2+(−6ε3+3ε2+6ε+1)x4,1+(−6ε3+3ε2+6ε+1)x4,5

2ε(3ε2−ε−2)
ε+(6ε+3)x4,1+(6ε+3)x4,5

6ε+4

x5,1
ε(5ε2−2ε−3)+(−6ε3+3ε2+6ε+1)x5,1+(−6ε3+3ε2+6ε+1)x5,5

2(ε−1)ε(3ε+2)

−5ε+(6ε+3)x5,1+(6ε+3)x5,5

6ε+4

4ε3−ε2−2ε+(−12ε4−8ε3+5ε2+6ε+1)x1,1+(−12ε4−8ε3+5ε2+6ε+1)x1,5−1

4(ε−1)ε2(3ε+2)
x1,5

ε(12ε3+3ε2−6ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x2,1+(−12ε4−8ε3+5ε2+6ε+1)x2,5

4(ε−1)ε2(3ε+2)
x2,5

−12ε4−3ε3+6ε2+ε+(−12ε4−8ε3+5ε2+6ε+1)x3,1+(−12ε4−8ε3+5ε2+6ε+1)x3,5

4(ε−1)ε2(3ε+2)
x3,5

ε(7ε2+2ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x4,1+(−12ε4−8ε3+5ε2+6ε+1)x4,5

4(ε−1)ε2(3ε+2)
x4,5

ε(ε2+2ε−3)+(−12ε4−8ε3+5ε2+6ε+1)x5,1+(−12ε4−8ε3+5ε2+6ε+1)x5,5

4(ε−1)ε2(3ε+2)
x5,5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which satisfies XAB = B but does not satisfy XAX = X. Ranks of relevant matrices are equal
to

rank(B) = rank(AB) = 3 < rank(A) = 4 < rank(X) = 5.

The matrix Z obtained by the replacement x1,5 = x2,5 = x3,5 = x4,5 = x5,5 = 0 in X is equal to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2ε3+ε2−2ε+(−6ε3+3ε2+6ε+1)x1,5−1

2(ε−1)ε(3ε+2)

−2ε+(6ε+3)x1,5−3

6ε+4

0
−7ε3+3ε+(−6ε3+3ε2+6ε+1)x2,5

2ε(3ε2−ε−2)
ε+(6ε+3)x2,5

6ε+4

0
ε(ε+1)2+(−6ε3+3ε2+6ε+1)x3,5

2ε(3ε2−ε−2)
5ε+(6ε+3)x3,5+4

6ε+4

0
(−6ε3+3ε2+6ε+1)x4,5−ε(ε+1)2

2ε(3ε2−ε−2)
ε+(6ε+3)x4,5

6ε+4

0
ε(5ε2−2ε−3)+(−6ε3+3ε2+6ε+1)x5,5

2(ε−1)ε(3ε+2)

(6ε+3)x5,5−5ε

6ε+4

4ε3−ε2−2ε+(−12ε4−8ε3+5ε2+6ε+1)x1,5−1

4(ε−1)ε2(3ε+2)
x1,5

ε(12ε3+3ε2−6ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x2,5

4(ε−1)ε2(3ε+2)
x2,5

−12ε4−3ε3+6ε2+ε+(−12ε4−8ε3+5ε2+6ε+1)x3,5

4(ε−1)ε2(3ε+2)
x3,5

ε(7ε2+2ε−1)+(−12ε4−8ε3+5ε2+6ε+1)x4,5

4(ε−1)ε2(3ε+2)
x4,5

ε(ε2+2ε−3)+(−12ε4−8ε3+5ε2+6ε+1)x5,5

4(ε−1)ε2(3ε+2)
x5,5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and satisfies rank(Z) = 4 > rank(B). Then the matrix equations ZAB = B holds, but ZAZ = Z
does not hold.

Finally, consider the matrix Q obtained by the replacement x1,5 = x2,5 = x3,5 = x4,5 =
x5,5 = 0 in Z:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2ε3+ε2−2ε−1
2(ε−1)ε(3ε+2)

−2ε−3
6ε+4

4ε3−ε2−2ε−1
4(ε−1)ε2(3ε+2)

0

0 3ε−7ε3

2ε(3ε2−ε−2)
ε

6ε+4
12ε3+3ε2−6ε−1
4(ε−1)ε(3ε+2)

0

0 (ε+1)2

2(3ε2−ε−2)
5ε+4
6ε+4

−12ε4−3ε3+6ε2+ε
4(ε−1)ε2(3ε+2)

0

0 − (ε+1)2

2(3ε2−ε−2)
ε

6ε+4
7ε2+2ε−1

4(ε−1)ε(3ε+2)
0

0 5ε2−2ε−3
2(ε−1)(3ε+2)

− 5ε
6ε+4

ε2+2ε−3
4(ε−1)ε(3ε+2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix Q satisfies rank(Q) = 3 = rank(B). Then both the matrix equations QAB = B and
QAQ = Q are satisfied, which is in accordance with the results presented in Theorem 7.1.1.

Now, let us calculate the matrix X = BU , where U ∈ C
5×3 is in generic form

U =

⎡
⎣ u1,1 u1,2 u1,3 u1,4 u1,5

u2,1 u2,2 u2,3 u2,4 u2,5

u3,1 u3,2 u3,3 u3,4 u3,5

⎤
⎦ .
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The set of solutions to BUAB = B with respect to U is given by⎡
⎢⎢⎣

u1,1 u1,2
3ε((−2ε2+ε+1)u1,2+1)

6ε3−3ε2−6ε−1

u2,1 u2,2 − 3ε(2ε+1)((ε−1)u2,2+1)
6ε3−3ε2−6ε−1

u3,1 u3,2
6ε2+3(−2ε2+ε+1)u3,2ε−3ε−1

6ε3−3ε2−6ε−1

(12ε4+8ε3−5ε2−6ε−1)u1,2−ε(6ε2+9ε+1)
2ε(6ε3−3ε2−6ε−1)

3ε2+2(−3ε2+ε+2)u1,2ε+(−6ε3+3ε2+6ε+1)u1,1−1

6ε3−3ε2−6ε−1

24ε3+26ε2+9ε+(12ε4+8ε3−5ε2−6ε−1)u2,2+1

2ε(6ε3−3ε2−6ε−1)
(−6ε3+3ε2+6ε+1)u2,1−2ε(3ε+2)((ε−1)u2,2+1)

6ε3−3ε2−6ε−1

(12ε4+8ε3−5ε2−6ε−1)u3,2−4ε2(4ε+1)

2ε(6ε3−3ε2−6ε−1)
(−6ε3+3ε2+6ε+1)u3,1+2ε(ε+(−3ε2+ε+2)u3,2+1)

6ε3−3ε2−6ε−1

⎤
⎥⎥⎥⎥⎦ .

Then the set A{2}R(B),∗ coincides with the set Y = BU which is given in Appendix A.
The rank identities rank(Y ) = rank(B) are satisfied.

7.2 Minimal rank outer inverses with prescribed ker-

nel

This section is devoted to the solvability of the system (7.3) as well as the minimization problem
(7.4). Besides some systems of matrix equations which are equivalent to the system (7.3), we
present that X is a solution to the system (7.3) iff X is an outer inverse of A with the prescribed
kernel N (C) in the next theorem.

Theorem 7.2.1. Let A ∈ C
m×n, X ∈ C

n×m and C ∈ C
l×m.

(a) The subsequent statements are mutually equivalent:

(i) CAX = C and rank(X) = rank(C);

(ii) CAX = C and N (X) = N (C);

(iii) X is a solution to (1.6), i.e., X ∈ A{2}∗,N (C);

(iv) X = XC†C and CAX = C;

(v) XAX = X, X = XC†C and CAX = C.

(b) In addition,

min {rank(X)| CAX = C} = rank(C)

{rank(X)| CAX = C} ⊆ [rank(C), rank(X)]

{rank(X)| X ∈ A{2} ∧ CAX = C} ⊆ [rank(C), rank(A)]

(7.13)

{
X ∈ C

n×m| CAX = C ∧ rank(X) = rank(C)
}
= A{2}∗,N (C). (7.14)

and

A{2}∗,N (C) =
{
X := (CA)†C + (I − (CA)†CA)Y | Y ∈ C

n×m

∧ CAX = C ∧ rank(X) = rank(C)} .
(7.15)

Proof. (i) ⇒ (ii): The hypothesis CAX = C implies N (X) ⊆ N (C). Since rank(X) = rank(C),
we deduce that N (X) = N (C).

(ii) ⇒ (iii): From N (X) = N (C), we have X = W2C for some W2 ∈ C
n×l. Then XAX =

W2CAX = W2C = X.
(iii) ⇔ (iv) ⇔ (v): These equivalences are clear by [109, Theorem 2.6].
(v) ⇒ (i): The assumptions X = XC†C and CAX = C give rank(X) = rank(C). Now,

CAX = CAXC†C = CC†C = C.
The rest of the proof is analogous as the proof of Theorem 7.1.1.

To get new systems of matrix equations which have an outer inverse of A with the prescribed
kernel N (C) as a solution, we can replace the conditions X = XC†C and CAX = C of Theorem
7.2.1 with some of the following necessary and sufficient conditions.

Remark 7.2.1. [109, Remark 2.7] Let A ∈ C
m×n, X ∈ C

n×m and C ∈ C
l×m.

(a) Under the assumption XAX = X, the following statements are equivalent:

(i) X = XC†C;

(ii) AX = AXC†C;

(iii) A†AX = A†AXC†C;
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(iv) A∗AX = A∗AXC†C;

(v) N (C) ⊆ N (X).

(b) The following statements are equivalent:

(i) CAX = C;

(ii) C†CAX = C†C;

(iii) C∗CAX = C∗C;

(iv) (C†)∗AX = (C†)∗.

Under the hypothesis XAX = X, we observe that CAX = C is equivalent to N (X) ⊆ N (C).

Proposition 7.2.1. If A ∈ C
m×n and C ∈ C

l×m, there exists X ∈ C
n×m satisfying CAX = C

and rank(X) = rank(C) if and only if rank(CA) = rank(C).

Because of (7.13), a solution X to (7.3) is called a minimal rank outer inverse with prescribed
kernel N (C).

Theorem 7.2.1 implies the following result.

Corollary 7.2.1. The following statements are equivalent for A,X ∈ C
n×n and k ∈ N:

(i) Ak+1X = Ak and rank(X) = rank(Ak);

(ii) Ak+1X = Ak and N (X) = N (Ak);

(iii) X ∈ A{2}∗,N (Ak);

(iv) X = X(Ak)†Ak and Ak+1X = Ak;

(v) XAX = X, X = X(Ak)†Ak and Ak+1X = Ak;

(vi) X is a minimal rank weak Drazin inverse of A.

We now consider the solvability of particular cases of the system (7.3). Firstly, we assume
that rank(X) = rank(C) = rank(A) holds in the system (7.3). Notice that the following result
can be proved as corresponding results of the previous section.

Theorem 7.2.2. Consider A ∈ C
m×n, X ∈ C

n×m and C ∈ C
l×m.

(a) The subsequent statements are mutually equivalent:

(i) CAX = C and rank(X) = rank(C) = rank(A);

(ii) XAX = X, N (X) = N (C) and N (A) = N (CA);

(iii) XAX = X, N (X) = N (C) and N (CA) ⊆ N (A);

(iv) XAX = X, N (X) = N (C) and A = A(CA)†CA;

(v) XAX = X, AXA = A and N (X) = N (C), i.e., X ∈ A{1, 2}∗,N (C).

(b) In addition,{
X ∈ C

n×m| CAX = C, rank(X) = rank(C) = rank(A)
}
= A{1, 2}∗,N (C). (7.16)

Proposition 7.2.2. If A ∈ C
m×n and C ∈ C

l×m, there exists X ∈ C
n×m satisfying CAX = C

and rank(X) = rank(C) = rank(A) if and only if rank(CA) = rank(C) = rank(A).

Several characterizations of a commuting minimal rank outer inverse with prescribed kernel
N (C) are proposed in Theorem 7.2.3.

Theorem 7.2.3. Let A,X,C ∈ C
n×n. The following statements are mutually equivalent:

(i) CAX = C, rank(X) = rank(C) and AX = XA;

(ii) XAX = X, N (X) = N (C) and AX = XA;

(iii) X2A = AX2 = X and N (X) = N (C);

(iv) X2A = AX2 = X, X = XC†C and CAX = C.

Theorem 7.2.3 gives the next result which gives characterizations of the Drazin inverse.

Corollary 7.2.2. The subsequent statements are equivalent for A,X,C ∈ C
n×n and k ∈ N:

(i) Ak+1X = Ak, rank(X) = rank(Ak) and AX = XA;

(ii) XAX = X, N (X) = N (Ak) and AX = XA;

(iii) X2A = AX2 = X and N (X) = N (Ak);
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(iv) X2A = AX2 = X, X = X(Ak)†Ak and Ak+1X = Ak;

(v) X = AD.

Taking that XAC = C in the system (7.3), we establish necessary and sufficient conditions
for a matrix X to be a solution to new system.

Theorem 7.2.4. Let A,X,C ∈ C
n×n. The subsequent statements are equivalent each other:

(i) CAX = XAC = C and rank(X) = rank(C);

(ii) CAX = C, N (X) = N (C) and R(X) = R(C);

(iii) CAX = C, N (X) = N (C) and R(X) ⊆ R(C);

(iv) CAX = C, N (X) = N (C) and R(C) ⊆ R(X);

(v) CAX = C and R(X) ⊆ R(C);

(vi) XAX = X, XAC = C and N (X) = N (C);

(vii) XAX = X, N (X) = N (C) and R(X) = R(C), i.e. X = A
(2)

R(C),N (C)
;

(viii) XAX = X, N (X) = N (C) and R(X) ⊆ R(C);

(ix) N (X) = N (C) and R(C) ⊆ R(X).

Consequently, by Theorem 7.2.4, we obtain the next characterizations for the Drazin inverse.

Corollary 7.2.3. The following statements are equivalent for A,X ∈ C
n×n and k ∈ N:

(i) Ak+1X = Ak, N (X) = N (Ak) and R(X) = N (Ak);

(ii) Ak+1X = Ak, N (X) = N (Ak) and R(X) ⊆ R(Ak);

(iii) Ak+1X = Ak, N (X) = N (Ak) and R(Ak) ⊆ R(X);

(iv) Ak+1X = Ak and N (X) ⊆ N (Ak);

(v) XAX = X, XAk+1 = Ak and N (X) = N (Ak);

(vi) XAX = X, N (X) = N (Ak) and R(X) = R(Ak), i.e. X = A
(2)

R(Ak),N (Ak)
= AD;

(vii) XAX = X, N (X) = N (Ak) and R(X) ⊆ R(Ak);

(viii) XAX = X, N (X) = N (Ak) and R(Ak) ⊆ R(X).

By Corollary 7.2.3, we can characterize the group inverse in the following way.

Corollary 7.2.4. The subsequent statements are equivalent for A,X ∈ C
n×n:

(i) A2X = A, N (X) = N (A) and R(X) = N (A);

(ii) A2X = A, N (X) = N (A) and R(X) ⊆ R(A);

(iii) A2X = A, N (X) = N (A) and R(A) ⊆ R(X);

(iv) A2X = A and N (X) ⊆ N (A);

(v) XAX = X, XA2 = A and N (X) = N (A);

(vi) XAX = X, N (X) = N (A) and R(X) = R(A), i.e. X = A
(2)
R(A),N (A) = A#;

(vii) XAX = X, N (X) = N (A) and R(X) ⊆ R(A);

(viii) XAX = X, N (X) = N (A) and R(A) ⊆ R(X).

According to Theorem 7.2.4, we have more characterizations for the Moore-Penrose inverse.

Corollary 7.2.5. The subsequent statements are equivalent for A,X ∈ C
n×n:

(i) A∗AX = A∗, N (X) = N (A∗) and R(X) = R(A∗);

(ii) A∗AX = A∗, N (X) = N (A∗) and R(X) ⊆ R(A∗);

(iii) A∗AX = A∗, N (X) = N (A∗) and R(A∗) ⊆ R(X);

(iv) A∗AX = A∗ and R(X) ⊆ R(A∗);

(v) XAX = X, XAA∗ = A∗ and N (X) = N (A∗);

(vi) XAX = X, N (X) = N (A∗) and R(X) = R(A∗), i.e. X = A
(2)
R(A∗),N (A∗) = A†;

(vii) XAX = X, N (X) = N (A∗) and R(X) ⊆ R(A∗);

(viii) XAX = X, N (X) = N (A∗) and R(A∗) ⊆ R(X).
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Example 7.2.1. Consider the matrix A from Example 7.1.1 and the matrix C of rank 3 defined
by

C =

⎡
⎣ 2 1 1 1 2

1 0 1 1 1
1 1 2 1 1

⎤
⎦

Let us generate the candidate solutions X in the generic form (7.12). The general solution X
to CAX = C is equal to⎡

⎢⎢⎢⎢⎢⎣

x1,1 x1,2 x1,3

− 2ε+(9ε+2)x3,1

9ε−2

−5ε−(9ε+2)x3,2+2

9ε−2

5ε−(9ε+2)x3,3+2

9ε−2

x3,1 x3,2 x3,3

− 3ε+(9ε+4)x3,1

9ε−2

6ε−(9ε+4)x3,2

9ε−2

3ε−(9ε+4)x3,3+4

9ε−2
5ε+(2−9ε)x1,1+(9ε−1)x3,1−1

9ε−2

−ε+(2−9ε)x1,2+(9ε−1)x3,2

9ε−2

−8ε+(2−9ε)x1,3+(9ε−1)x3,3+1

9ε−2

x1,4 x1,5

− 2ε+(9ε+2)x3,1

9ε−2

4ε−(9ε+2)x3,4

9ε−2
− 2ε+(9ε+2)x3,5

9ε−2

x3,4 x3,5
−3ε−(9ε+4)x3,4+2

9ε−2
− 3ε+(9ε+4)x3,5

9ε−2
−ε+(2−9ε)x1,4+(9ε−1)x3,4

9ε−2

5ε+(2−9ε)x1,5+(9ε−1)x3,5−1

9ε−2

⎤
⎥⎥⎥⎥⎥⎦ .

The matrix X satisfies CAX = C but does not satisfy XAX = X. Ranks of relevant matrices
are equal to

rank(C) = rank(CA) = 3 < rank(A) = 4 < rank(X) = 5.

The matrix Z obtained by the replacement x1,1 = x1,2 = x1,3 = x1,4 = x1,5 = 0 in X satisfies
rank(Z) = 4 > rank(B). Then the matrix equations ZAB = B holds, but ZAZ = Z does not
hold.

Finally, consider the matrix Q obtained by the replacement x3,1 = x3,2 = x3,3 = x3,4 =
x3,5 = 0 in Z:

Q =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
− 2ε

9ε−2
2−5ε
9ε−2

5ε+2
9ε−2

4ε
9ε−2

− 2ε
9ε−2

0 0 0 0 0
− 3ε

9ε−2
6ε

9ε−2
3ε+4
9ε−2

2−3ε
9ε−2

− 3ε
9ε−2

5ε−1
9ε−2

− ε
9ε−2

1−8ε
9ε−2

− ε
9ε−2

5ε−1
9ε−2

⎤
⎥⎥⎥⎥⎦ .

The matrix Q satisfies rank(Q) = 3 = rank(B). Then both the matrix equations QAB = B and
QAQ = Q are satisfied, which is in accordance with the results presented in Theorem 7.2.1.

Now, let us calculate the matrix X = UC, where U ∈ C
5×3 is in generic form

U =

⎡
⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

u4,1 u4,2 u4,3

u5,1 u5,2 u5,3

⎤
⎥⎥⎥⎥⎦ .

The set of solutions to CAUC = C with respect to U is given by⎡
⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3

u2,1 1− (9ε+2)u3,2

9ε−2
u2,3

(2−9ε)u2,1−6ε

9ε+2
u3,2

ε+(2−9ε)u2,3+2

9ε+2
6ε+(9ε+4)u2,1+2

9ε+2
− (9ε+4)u3,2

9ε−2
− 1

5ε +(9ε+4)u2,3+2

9ε+2
−(9ε+2)u1,1+(1−9ε)u2,1+1

9ε +2

(9ε−1)u3,2

9ε−2
− u1,2

−6ε−(9ε+2)u1,3+(1−9ε)u2,3

9 ε+2

⎤
⎥⎥⎥⎥⎥⎦ .

Then the set A{2}∗,N (C) coincides with the set Y = UC is given in Appendix B. The rank
identities rank(Y ) = rank(C) are satisfied.

7.3 Minimal rank outer inverses with prescribed range
and kernel

Applying results of Sections 7.1 and 7.2, we are able to characterize solvability of the system
(7.5). In particular, by Theorem 7.1.1 and Theorem 7.2.1, the system (7.5) has a solution X iff
X is an outer inverse of A with the prescribed range R(B) and kernel N (C).

Corollary 7.3.1. Consider A ∈ C
m×n, X ∈ C

n×m and B ∈ C
n×k, C ∈ C

l×m.
(a) The subsequent statements are mutually equivalent:
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(i) XAB = B, CAX = C and rank(X) = rank(B) = rank(C);

(ii) XAB = B, CAX = C, R(X) = R(B) and N (X) = N (C);

(iii) X is a solution to (1.7), i.e., X = A
(2)

R(B),N (C);

(iv) X = BB†X = XC†C, XAB = B and CAX = C;

(v) XAX = X, X = BB†X = XC†C, XAB = B and CAX = C.

(b) In addition, the system (7.5) has the unique solution X = A
(2)
R(B),N (C).

Theorem 7.1.2 and Theorem 7.2.2 imply the next characterizations of solution to the special
system of the system (7.5) with rank(X) = rank(B) = rank(C) = rank(A).

Corollary 7.3.2. (a) The subsequent statements are equivalent for A ∈ C
m×n, X ∈ C

n×m,
B ∈ C

n×k and C ∈ C
l×m:

(i) XAB = B, CAX = C and rank(X) = rank(B) = rank(C) = rank(A);

(ii) XAX = X, R(X) = R(B), N (X) = N (C), R(A) = R(AB) and N (A) = N (CA);

(iii) XAX = X, R(X) = R(B), N (X) = N (C), R(A) ⊆ R(AB) and N (CA) ⊆ N (A);

(iv) XAX = X, R(X) = R(B), N (X) = N (C) and A = AB(AB)†A = A(CA)†CA;

(v) XAX = X, AXA = A, R(X) = R(B) and N (X) = N (C), i.e., X ∈ A{1, 2}R(B),N (C).

(b) In addition, the constrained system in (i) has the unique solution X = A
(1,2)
R(B),N (C).

Using Theorem 7.1.3 and Theorem 7.2.3, we characterize the solvability of a new system
obtained from the system (7.5) adding an extra condition AX = XA.

Corollary 7.3.3. The subsequent statements are equivalent for A,X,B,C ∈ C
n×n:

(i) XAB = B, CAX = C, rank(X) = rank(B) = rank(C) and AX = XA;

(ii) XAX = X, R(X) = R(B), N (X) = N (C) and AX = XA;

(iii) X2A = AX2 = X, R(X) = R(B) and N (X) = N (C);

(iv) X2A = AX2 = X, X = BB†X = XC†C, XAB = B and CAX = C.

Example 7.3.1. Consider

A =

⎡
⎣ 1

ε
θ 0

0 1 θ
0 0 0

⎤
⎦ , B =

⎡
⎣ 0 0

1 1
0 ε3

⎤
⎦ , C =

[
1 0 1
1 1 1

]
.

Let us generate the possible solutions Q in the generic form

Q =

⎡
⎣ q1,1 q1,2 q1,3

q2,1 q2,2 q2,3
q3,1 q3,2 q3,3

⎤
⎦ ,

where qi,j , i, j = 1, . . . , 3 are unevaluated symbols. The general solution Q to the system of
matrix equations QAB = B,CAQ = C is equal to

Q =

⎡
⎣ 0 0 ε− εθ q2,3

1
θ

0 x2,3

− 1
θ2

1
θ

− q2,3
θ

⎤
⎦ .

Ranks of relevant matrices are equal to

rank(B) = rank(AB) = rank(C) = rank(CA) = rank(A) = 2 < rank(Q) = 3.

Consequently, the system of matrix equations QAB = B,CAQ = C holds, but

QAQ =

⎡
⎣ 0 0 0

1
θ

0 1
θ

− 1
θ2

1
θ

− 1
θ2

⎤
⎦ �= Q.

The important requirement in Corollary 7.3.1 is rank(B) = rank(C) = rank(A) = rank(X).
To reduce rank(Q) to rank(A) we use the matrix X obtained by the replacement replacements
q2,3 → 1/θ in Q, which gives

X =

⎡
⎣ 0 0 0

1
θ

0 1
θ

− 1
θ2

1
θ

− 1
θ2

⎤
⎦ .

All requirements in Corollary 7.3.1 are satisfied and all the matrix equations XAX = X, X =
BB†X = XC†C, XAB = B and CAX = C are fulfilled. Also, the matrix equation AXA = A
is satisfied, which means X = A

(1,2)

R(B),N (C).

It is important to mention that B(CAB)†C coincides with X, which is in accordance with
the Urquhart representation [150] and its generalizations from [?].
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7.4 Summary

The aim of this chapter is to investigate solvability of systems of constrained matrix equations.
Main novelty of the paper is the establishment of correlations between solutions of certain
constrained matrix equations with corresponding minimization problems [114]. Some well-known
results and several new results for the weak Drazin inverse are obtained in particular cases.
Certain characterizations for the Drazin inverse, group inverse and Moore-Penrose inverse are
obtained as corollaries.

Implementation of stated research highlights can be summarized as follows.
- Conditions (i)-(vi) in Theorem 7.1.1 are solutions to (7.1), while (7.2) is solved in (7.8) and
(7.9).
- Conditions (i)-(vi) in Theorem 7.2.1 are solutions to (7.3), while (7.4) is solved in (7.13) and
(7.14).

- The unique solution to (7.5) is X = A
(2)
R(B),N (C) and conditions (i)-(vi) in Corollary 7.3.1 are

conditions for solvability of (7.5).

152



7.4. SUMMARY 145

A
p
p
e
n
d
ix

A
.

⎡ ⎢ ⎢ ⎢ ⎣

(2
ε
+

1
)u

1
,1

+
ε
(u

2
,1

+
u
3
,1
)

(2
ε
+

1
)u

1
,2

+
ε
(u

2
,2

+
u
3
,2
)

εu
1
,1

+
(2
ε
−

1
)u

2
,1

+
εu

3
,1

εu
1
,2

+
(2
ε
−

1
)u

2
,2

+
εu

3
,2

εu
1
,1

+
εu

2
,1

+
(2
ε
+

1
)u

3
,1

εu
1
,2

+
εu

2
,2

+
(2
ε
+

1
)u

3
,2

ε
(u

1
,1

+
u
2
,1

+
u
3
,1
)

ε
(u

1
,2

+
u
2
,2

+
u
3
,2
)

ε
(3
u
1
,1

+
u
2
,1

+
u
3
,1
)

ε
(3
u
1
,2

+
u
2
,2

+
u
3
,2
)

ε
(−

6
u
3
,
2
ε
3
+
3
u
3
,
2
ε
2
+
3
(−

2
ε
2
+
ε
+
1
)u

2
,
2
ε
+
3
u
3
,
2
ε
+
(−

1
2
ε
3
+
9
ε
+
3
)u

1
,
2
+
2
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(−

6
u
3
,
2
ε
3
+
3
u
3
,
2
ε
2
−
6
ε
2
+
3
(−

2
ε
2
+
ε
+
1
)u

1
,
2
ε
+
3
u
3
,
2
ε
−
3
(4

ε
3
−
4
ε
2
−
ε
+
1
)u

2
,
2
+
2
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

−
(ε

−
1
) (

1
2
u
3
,
2
ε
3
+
3
(2

ε
+
1
)u

1
,
2
ε
2
+
3
(2

ε
+
1
)u

2
,
2
ε
2
+
1
2
u
3
,
2
ε
2
−
6
ε
2
+
3
u
3
,
2
ε
−
6
ε
−
1
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(−

6
u
3
,
2
ε
3
+
3
u
3
,
2
ε
2
+
3
(−

2
ε
2
+
ε
+
1
)u

1
,
2
ε
+
3
(−

2
ε
2
+
ε
+
1
)u

2
,
2
ε
+
3
u
3
,
2
ε
−
3
ε
−
1
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(−

6
u
3
,
2
ε
3
+
3
u
3
,
2
ε
2
+
9
(−

2
ε
2
+
ε
+
1
)u

1
,
2
ε
+
3
(−

2
ε
2
+
ε
+
1
)u

2
,
2
ε
+
3
u
3
,
2
ε
+
3
ε
−
1
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

(2
4
ε
5
+
2
8
ε
4
−
2
ε
3
−
1
7
ε
2
−
8
ε
−
1
)u

1
,
2
+
ε
(−

2
ε
(2

ε
2
+
ε
+
1
)+

(1
2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

2
,
2
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

3
,
2
)

2
ε
(6

ε
3
−
3
ε
2
−
6
ε
−
1
)

1
2
u
3
,
2
ε
5
+
8
u
3
,
2
ε
4
+
2
6
ε
4
−
5
u
3
,
2
ε
3
+
1
5
ε
3
−
6
u
3
,
2
ε
2
−
9
ε
2
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

1
,
2
ε
−
u
3
,
2
ε
−
7
ε
+
(2

4
ε
5
+
4
ε
4
−
1
8
ε
3
−
7
ε
2
+
4
ε
+
1
)u

2
,
2
−
1

2
ε
(6

ε
3
−
3
ε
2
−
6
ε
−
1
)

2
4
u
3
,
2
ε
5
+
2
8
u
3
,
2
ε
4
−
1
4
ε
4
−
2
u
3
,
2
ε
3
−
7
ε
3
−
1
7
u
3
,
2
ε
2
+
4
ε
2
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

1
,
2
ε
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

2
,
2
ε
−
8
u
3
,
2
ε
+
ε
−
u
3
,
2

2
ε
(6

ε
3
−
3
ε
2
−
6
ε
−
1
)

1
2
u
3
,
2
ε
4
+
8
u
3
,
2
ε
3
+
2
ε
3
−
5
u
3
,
2
ε
2
+
1
3
ε
2
−
6
u
3
,
2
ε
+
8
ε
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

1
,
2
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

2
,
2
−
u
3
,
2
+
1

2
(6

ε
3
−
3
ε
2
−
6
ε
−
1
)

1
2
u
3
,
2
ε
4
+
8
u
3
,
2
ε
3
−
1
0
ε
3
−
5
u
3
,
2
ε
2
−
5
ε
2
−
6
u
3
,
2
ε
+
6
ε
+
3
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

1
,
2
+
(1

2
ε
4
+
8
ε
3
−
5
ε
2
−
6
ε
−
1
)u

2
,
2
−
u
3
,
2
+
1

2
(6

ε
3
−
3
ε
2
−
6
ε
−
1
)

(2
ε
+
1
) (

3
ε
2
+
2
(−

3
ε
2
+
ε
+
2
)u

1
,
2
ε
+
(−

6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

1
,
1
−
1
)+

ε
((

−
6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

2
,
1
−
2
ε
(3

ε
+
2
) (

(ε
−
1
)u

2
,
2
+
1
))

+
ε
((

−
6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

3
,
1
+
2
ε
(ε

+
(−

3
ε
2
+
ε
+
2
)u

3
,
2
+
1
))

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(3

ε
2
+
2
(−

3
ε
2
+
ε
+
2
)u

1
,
2
ε
+
(−

6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

1
,
1
−
1
)+

(2
ε
−
1
) (
(−

6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

2
,
1
−
2
ε
(3

ε
+
2
) (

(ε
−
1
)u

2
,
2
+
1
))

+
ε
((

−
6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

3
,
1
+
2
ε
(ε

+
(−

3
ε
2
+
ε
+
2
)u

3
,
2
+
1
))

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(3

ε
2
+
2
(−

3
ε
2
+
ε
+
2
)u

1
,
2
ε
+
(−

6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

1
,
1
−
1
)+

ε
((

−
6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

2
,
1
−
2
ε
(3

ε
+
2
) (

(ε
−
1
)u

2
,
2
+
1
))

+
(2

ε
+
1
) (
(−

6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

3
,
1
+
2
ε
(ε

+
(−

3
ε
2
+
ε
+
2
)u

3
,
2
+
1
))

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(−

6
u
2
,
1
ε
3
−
6
u
2
,
2
ε
3
−
6
u
3
,
1
ε
3
−
6
u
3
,
2
ε
3
+
3
u
2
,
1
ε
2
+
2
u
2
,
2
ε
2
+
3
u
3
,
1
ε
2
+
2
u
3
,
2
ε
2
−
ε
2
+
2
(−

3
ε
2
+
ε
+
2
)u

1
,
2
ε
+
6
u
2
,
1
ε
+
4
u
2
,
2
ε
+
6
u
3
,
1
ε
+
4
u
3
,
2
ε
−
2
ε
+
(−

6
ε
3
+
3
ε
2
+
6
ε
+
1
)u

1
,
1
+
u
2
,
1
+
u
3
,
1
−
1
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

ε
(−

6
u
2
,
1
ε
3
−
6
u
2
,
2
ε
3
−
6
u
3
,
1
ε
3
−
6
u
3
,
2
ε
3
+
3
u
2
,
1
ε
2
+
2
u
2
,
2
ε
2
+
3
u
3
,
1
ε
2
+
2
u
3
,
2
ε
2
+
5
ε
2
+
6
(−

3
ε
2
+
ε
+
2
)u

1
,
2
ε
+
6
u
2
,
1
ε
+
4
u
2
,
2
ε
+
6
u
3
,
1
ε
+
4
u
3
,
2
ε
−
2
ε
+
(−

1
8
ε
3
+
9
ε
2
+
1
8
ε
+
3
)u

1
,
1
+
u
2
,
1
+
u
3
,
1
−
3
)

6
ε
3
−
3
ε
2
−
6
ε
−
1

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦.

153



146 CHAPTER 7. MINIMAL RANK OF OUTER INVERSES

A
p
p
e
n
d
ix

B
.

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

2
u
1
,1

+
u
1
,2

+
u
1
,3

u
1
,1

+
u
1
,3

2
u
2
,1

+
u
2
,3

−
(9

ε
+
2
)u

3
,
2

9
ε
−
2

+
1

u
2
,1

+
u
2
,3

9
u
3
,
2
ε
−
1
1
ε
+
(4

−
1
8
ε
)u

2
,
1
+
(2

−
9
ε
)u

2
,
3
+
2
u
3
,
2
+
2

9
ε
+
2

−
5
ε
+
(2

−
9
ε
)u

2
,
1
+
(2

−
9
ε
)u

2
,
3
+
2

9
ε
+
2

2
(6

ε
+
(9

ε
+
4
)u

2
,
1
+
2
)

9
ε
+
2

+
5
ε
+
(9

ε
+
4
)u

2
,
3
+
2

9
ε
+
2

−
(9

ε
+
4
)u

3
,
2

9
ε
−
2

−
1

1
1
ε
+
(9

ε
+
4
)u

2
,
1
+
(9

ε
+
4
)u

2
,
3
+
4

9
ε
+
2

−
u
1
,2

+
2
(−

(9
ε
+
2
)u

1
,
1
+
(1

−
9
ε
)u

2
,
1
+
1
)

9
ε
+
2

+
−
6
ε
−
(9

ε
+
2
)u

1
,
3
+
(1

−
9
ε
)u

2
,
3

9
ε
+
2

+
(9

ε
−
1
)u

3
,
2

9
ε
−
2

−
9
u
2
,
1
ε
−
9
u
2
,
3
ε
−
6
ε
−
(9

ε
+
2
)u

1
,
1
−
(9

ε
+
2
)u

1
,
3
+
u
2
,
1
+
u
2
,
3
+
1

9
ε
+
2

u
1
,1

+
u
1
,2

+
2
u
1
,3

u
1
,1

+
u
1
,2

+
u
1
,3

u
2
,1

+
2
u
2
,3

−
(9

ε
+
2
)u

3
,
2

9
ε
−
2

+
1

u
2
,1

+
u
2
,3

−
(9

ε
+
2
)u

3
,
2

9
ε
−
2

+
1

9
u
3
,
2
ε
−
4
ε
+
(2

−
9
ε
)u

2
,
1
+
(4

−
1
8
ε
)u

2
,
3
+
2
u
3
,
2
+
4

9
ε
+
2

9
u
3
,
2
ε
−
5
ε
+
(2

−
9
ε
)u

2
,
1
+
(2

−
9
ε
)u

2
,
3
+
2
u
3
,
2
+
2

9
ε
+
2

6
ε
+
(9

ε
+
4
)u

2
,
1
+
2

9
ε
+
2

+
2
(5

ε
+
(9

ε
+
4
)u

2
,
3
+
2
)

9
ε
+
2

−
(9

ε
+
4
)u

3
,
2

9
ε
−
2

−
1

6
ε
+
(9

ε
+
4
)u

2
,
1
+
2

9
ε
+
2

+
5
ε
+
(9

ε
+
4
)u

2
,
3
+
2

9
ε
+
2

−
(9

ε
+
4
)u

3
,
2

9
ε
−
2

−
1

−
u
1
,2

+
−
(9

ε
+
2
)u

1
,
1
+
(1

−
9
ε
)u

2
,
1
+
1

9
ε
+
2

−
2
(6

ε
+
(9

ε
+
2
)u

1
,
3
+
(9

ε
−
1
)u

2
,
3
)

9
ε
+
2

+
(9

ε
−
1
)u

3
,
2

9
ε
−
2

−
u
1
,2

+
−
(9

ε
+
2
)u

1
,
1
+
(1

−
9
ε
)u

2
,
1
+
1

9
ε
+
2

+
−
6
ε
−
(9

ε
+
2
)u

1
,
3
+
(1

−
9
ε
)u

2
,
3

9
ε
+
2

+
(9

ε
−
1
)u

3
,
2

9
ε
−
2

2
u
1
,1

+
u
1
,2

+
u
1
,3

2
u
2
,1

+
u
2
,3

−
(9

ε
+
2
)u

3
,
2

9
ε
−
2

+
1

9
u
3
,
2
ε
−
1
1
ε
+
(4

−
1
8
ε
)u

2
,
1
+
(2

−
9
ε
)u

2
,
3
+
2
u
3
,
2
+
2

9
ε
+
2

2
(6

ε
+
(9

ε
+
4
)u

2
,
1
+
2
)

9
ε
+
2

+
5
ε
+
(9

ε
+
4
)u

2
,
3
+
2

9
ε
+
2

−
(9

ε
+
4
)u

3
,
2

9
ε
−
2

−
1

−
u
1
,2

+
2
(−

(9
ε
+
2
)u

1
,
1
+
(1

−
9
ε
)u

2
,
1
+
1
)

9
ε
+
2

+
−
6
ε
−
(9

ε
+
2
)u

1
,
3
+
(1

−
9
ε
)u

2
,
3

9
ε
+
2

+
(9

ε
−
1
)u

3
,
2

9
ε
−
2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦.

154



References

[1] M.L. Arias, C. Conde, Generalized inverses and sampling problems, J. Math. Anal. Appl.
398 (2013), 744–751.

[2] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58(6)
(2010), 681–697.

[3] J.C.A. Barata, M.S. Hussein, The Moore-Penrose pseudoinverse: a tutorial review of the
theory, Braz. J. Phys. 42 (2012), 146–165.

[4] R. Behera, G. Maharana, J.K. Sahoo, Further results on weighted core-EP inverse of
matrices, Results Math. 75 (2020), 174.

[5] A. Ben-Israel, A Cramer rule for least-norm solutions of consistent linear equations, Linear
Algebra Appl. 43 (1982), 223–226.

[6] A. Ben-Israel, The Moore of the Moore-Penrose inverse, The Electronic Journal of Linear
Algebra 9 (2002), 150–157.

[7] A. Ben-Israel, Generalized inverses of matrices: a perspective of the work of Penrose,
Math. Proe. Camb. Phil. Soc. 100 (1986), 407–425.

[8] A. Ben-Israel, T.N.E. Greville, Generalized inverses: theory and applications, Second Ed.,
Springer, New York, Beflin, Heidelberg, Hong Kong, London, Milan, Paris, Tokyo, 2003.
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[33] D.S. Djordjević, P.S. Stanimirović, Y. Wei, The representation and approximation of outer
generalized inverses, Acta Math. Hungar. 104 (2004), 1–26.

[34] M.P. Drazin, Pseudo inverses in associative rings and semigroups, Amer. Math. Monthly
65, (1958), 506–514.

[35] H.K. Du, C.Y. Deng, The representation and characterization of Drazin inverses of oper-
ators on a Hilbert space, Linear Algebra Appl. 407 (2005), 117–124.

[36] L. Eldén, Perturbation theory for the least squares problem with equality constraints, SIAM
J. Numer. Anal 17 (1980), 338–350.

[37] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least
squares problems BIT 22 (1982), 487–502.

[38] D.E. Ferreyra, S.B. Malik, A generalization of the group inverse, Quaest. Math. (2023),
https://doi.org/10.2989/16073606.2022.2144533.

[39] D.E. Ferreyra, F.E. Levis, N. Thome, Maximal classes of matrices determining generalized
inverses, Appl. Math. Comput. 333 (2018), 42–52.

[40] D.E. Ferreyra, F.E. Levis, N. Thome, Revisiting the core EP inverse and its extension to
rectangular matrices, Quaestiones Mathematicae 41(2) (2018), 265–281.

[41] D.E. Ferreyra, V. Orquera, N. Thome, A weak group inverse for rectangular matrices,
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 3727–3740.

[42] Y. Gao, J. Chen, Pseudo core inverses in rings with involution, Commun. Algebra 46(1)
(2018), 38–50.

[43] Y. Gao, J. Chen, P. Patricio, Continuity of the core-EP inverse and its applications, Linear
Multilinear Algebra 69(3) (2021), 557–571.
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[165] Y. Wei, D. S. Djordjević, On integral representation of the generalized inverse A
(2)
T,S , Appl.

Math. Comput. 142 (2003), 189–194.
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