
Citation: Stanimirović, P.S.; Tešić, N.;

Gerontitis, D.; Milovanović, G.V.;

Petrović, M.J.; Kazakovtsev, V.L.;

Stasiuk V. Application of Gradient

Optimization Methods in Defining

Neural Dynamics. Axioms 2024, 13, 49.

https://doi.org/10.3390/

axioms13010049

Academic Editor: Feliz Manuel

Minhós

Received: 1 November 2023

Revised: 24 December 2023

Accepted: 11 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Application of Gradient Optimization Methods in Defining
Neural Dynamics
Predrag S. Stanimirović 1,2 , Nataša Tešić 3, Dimitrios Gerontitis 4, Gradimir V. Milovanović 5 ,
Milena J. Petrović 6,* , Vladimir L. Kazakovtsev 2 and Vladislav Stasiuk 2

1 Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; pecko@pmf.ni.ac.rs
2 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal

University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia; vokz@bk.ru (V.L.K.); vstasyuk@sfu-kras.ru (V.S.)
3 Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,

21000 Novi Sad, Serbia; natasa.tesic27@gmail.com
4 Department of Information and Electronic Engineering, International Hellenic University,

57400 Thessaloniki, Greece; dimitrios_gerontitis@yahoo.gr or dimger@iee.ihu.gr;
5 Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia;

gvm@mi.sanu.ac.rs
6 Faculty of Sciences and Mathematics, University of Pristina in Kosovska Mitrovica, Lole Ribara 29,

38220 Kosovska Mitrovica, Serbia
* Correspondence: milena.petrovic@pr.ac.rs; Tel.: +381-28-425-396

Abstract: Applications of gradient method for nonlinear optimization in development of Gradient
Neural Network (GNN) and Zhang Neural Network (ZNN) are investigated. Particularly, the solution
of the matrix equation AXB = D which changes over time is studied using the novel GNN model,
termed as GGNN(A, B, D). The GGNN model is developed applying GNN dynamics on the gradient
of the error matrix used in the development of the GNN model. The convergence analysis shows that
the neural state matrix of the GGNN(A, B, D) design converges asymptotically to the solution of the
matrix equation AXB = D, for any initial state matrix. It is also shown that the convergence result is
the least square solution which is defined depending on the selected initial matrix. A hybridization
of GGNN with analogous modification GZNN of the ZNN dynamics is considered. The Simulink
implementation of presented GGNN models is carried out on the set of real matrices.

Keywords: gradient neural network; generalized inverses; Moore-Penrose inverse; linear matrix
equations

MSC: 68T05; 15A09; 65F20

1. Introduction and Background

Recurrent neural networks (RNNs) are an important class of algorithms for computing
matrix (generalized) inverses. These algorithms are used to find the solutions of matrix
equations or to minimize certain nonlinear matrix functions. RNNs are divided into
two subgroups: Gradient Neural Networks (GNNs) and Zhang Neural Networks (ZNNs).
The GNN design is explicit and mostly applicable to time-invariant problems, which means
that the coefficients of the equations that are addressed are constant matrices. ZNN models
can be implicit and are able to solve time-varying problems, where the coefficients of the
equations depend on the variable t ∈ R, t > 0, representing time [1–3].

The Moore–Penrose inverse of A ∈ Rp×n is the unique matrix A† = X ∈ Rn×p which
is the solution to the well-known Penrose equations [4,5]:

A = AXA, X = XAX, AX = (AX)T, XA = (XA)T,

where ()T denotes the transpose matrix. The rank of a matrix A, i.e., the maximum number
of linearly independent columns in A, is denoted by rank(A).

Axioms 2024, 13, 49. https://doi.org/10.3390/axioms13010049 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13010049
https://doi.org/10.3390/axioms13010049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0002-3255-8127
https://orcid.org/0000-0002-5073-143X
https://orcid.org/0000-0001-9297-9655
https://doi.org/10.3390/axioms13010049
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13010049?type=check_update&version=1
user
Выделение

user
Выделение

user
Выделение

user
Выделение

user
Выделение

user
Выделение

Axioms 2024, 13, 49 2 of 26

Applications of linear algebra tools and generalized inverses can be found in important
areas such as the modeling of electrical circuits [6], the estimation of DNA sequences [7] and
the balancing of chemical equations [8,9], as well as in other important research domains
related to robotics [10] and statistics [11]. A number of iterative methods for solving matrix
equations based on gradient values have been proposed [12–15].

In the following sections, we will focus on GNN and ZNN dynamical systems based
on the gradient of the objective function and their implementation. The main goal of this
research is the analysis of convergence and the study of analytic solutions.

Models with GNN neural designs for computing the inverse or the Moore–Penrose
inverse and linear matrix equations were proposed in [16–19]. Further, various dynami-
cal systems aimed at approximating the pseudo-inverse of rank-deficient matrices were
developed in [16]. Wei, in [20], proposed three RNN models for the approximation of the
weighted Moore–Penrose inverse. Online matrix inversion in a complex matrix case was
considered in [21]. A novel GNN design based on nonlinear activation functions (AFs)
was proposed and analyzed in [22,23] for solving the constant Lyapunov matrix equation
online. A fast convergent GNN aimed at solving a system of linear equations was proposed
and numerically analyzed in [24]. Xiao, in [25], investigated the finite-time convergence
of an appropriately accelerated ZNN for the online solution of the time-varying complex
matrix equation A(t)X(t) = B(t). A comparison with the corresponding GNN design
was considered. Two improved nonlinear GNN dynamical systems for approximating
the Moore–Penrose inverse of full-row or full-column rank matrices were proposed and
considered in [26]. GNN-type models for solving matrix equations and computing re-
lated generalized inverses were developed in [1,3,13,16,18,20,27–29]. The acceleration of
GNN dynamics to a finite-time convergence has been investigated recently. A finite-time
convergent GNN for approximating online solutions of the general linear matrix equa-
tion AX(t)B + CX(t)D = B was proposed in [30]. This goal was achieved using two
activation functions (AFs) in the construction of the GNN. The influence of AFs on the
convergence performance of a GNN design for solving the matrix equation AXB + X = C
was investigated in [31]. A fixed-time convergent GNN for solving the Sylvester equation
was investigated in [32]. Moreover, noise-tolerant GNN models equipped with a suitable
activation function (AF) able to solve convex optimization problems were developed in [33].

Our goal is to solve the equation AXB = D and apply its particular cases in computing
generalized inverses in real time by improving the GNN model developed in [34]. The
developed dynamical system is denoted by GNN(A, B, D). Or motivation is to improve
the GNN model denoted by GNN(A, B, D) and develop a novel gradient-based GGNN
model, termed GGNN(A, B, D), utilizing a novel type of dynamical system. The proposed
GGNN model is based on the standard GNN dynamics along the gradient of the standard
error matrix. The convergence analysis reveals the global asymptotic convergence of
GGNN(A, B, D) without restrictions, while the output belongs to the set of general solutions
to the matrix equation AXB = D.

In addition, we propose gradient-based modifications of the hybrid models devel-
oped in [35] as proper combinations of GNN and ZNN models for solving the matrix
equations BX = D and XC = D with constant coefficients. Analogous hybridizations for
approximating the matrix inverse were developed in [36], while two modifications of the
ZNN design for computing the Moore–Penrose inverse were proposed in [37]. Hybrid
continuous-gradient–Zhang neural dynamics for solving linear time-variant equations
were investigated in [38,39]. The developed hybrid GNN-ZNN models in this paper are
aimed at solving the matrix equations AX = B and XC = D, denoted by HGZNN(A, I, B)
and HGZNN(I, C, D), respectively.

The implementation was performed in MATLAB Simulink, and numerical experiments
were performed with simulations of the GNN, GGNN and HGZNN models.

The GNN used to solve the general linear matrix equation AXB = D is defined over
the error matrix E(t) = D − AV(t)B, where t ∈ [0,+∞) is time, and V(t) is an unknown
state-variable matrix that approximates the unknown matrix X in AXB = D. The goal

Axioms 2024, 13, 49 3 of 26

function is ε(t) = ||D − AV(t)B||2F/2, where ∥ · ∥F =
√

∑
ij

a2
ij denotes the Frobenius norm

of a matrix. The gradient of ε(t) is equal to

∂ε(t)
∂V

= ∇ε =
1
2

∂||D − AV(t)B||2F
∂V

= −AT(D − AV(t)B)BT.

The GNN evolutionary design is defined by the dynamic system

V̇(t) =
dV(t)

dt
= −γ

∂ε(t)
∂V

, V(0) = V0, (1)

where γ > 0 is a real parameter used to speed up the convergence, and V̇(t) denotes the
time derivative of V(t). Thus, the linear GNN aimed at solving AXB = D is given by the
following dynamics:

V̇(t) = γAT(D − AV(t)B)BT. (2)

The dynamical flow (2) is denoted as GNN(A, B, D). The nonlinear GNN(A, B, D) for
solving AXB = D is defined by

V̇(t) = γATF (D − AV(t)B)BT. (3)

The function array F (C) = F ([cij]) is based on the appropriate odd and monotonically
increasing activation function, which is applicable to the elements of a real matrix C =
(cij) ∈ Rm×n, i.e., F (C) = [f (cij)], i = 1, . . . , m, j = 1, . . . , n,.

Proposition 1 restates restrictions on the solvability of AXB = D and its general
solution.

Proposition 1 ([4,5]). If A ∈ Rm×n, B ∈ Rp×q and D ∈ Rm×q, then the fulfillment of the
condition

AA†DB†B = D (4)

is necessary and sufficient for the solvability of the linear matrix equation AXB = D. In this case,
the set of all solutions is given by

X =
{

A†DB† + Y − A† AYBB†| Y ∈ Rn×p
}

. (5)

The following results from [34] describe the conditions of convergence and the limit of
the unknown matrix V(t) from (3) as t → +∞.

Proposition 2 ([34]). Suppose the matrices A ∈ Rm×n, B ∈ Rp×q and D ∈ Rm×q satisfy (4).
Then, the unknown matrix V(t) from (3) converges as t → +∞ with the equilibrium state

V(t) → Ṽ = A†DB† + V(0)− A† AV(0)BB† (6)

for any initial state-variable matrix V(0) ∈ Rn×p.

The research in [40] investigated various ZNN models based on optimization methods.
The goal of the current research is to develop a GNN model based on the gradient EG(t) of
∥E(t)∥2

F instead of the original goal function E(t).

The obtained results are summarized as follows:

• A novel error function EG(t) is proposed for the development of the GNN dynamical
evolution.

• The GNN design based on the error function EG(t) is developed and analyzed theo-
retically and numerically.

• A hybridization of GNN and ZNN dynamical systems based on the error matrix EG is
proposed and investigated.

Axioms 2024, 13, 49 4 of 26

The overall organization of this paper is as follows. The motivation and derivation
of the GGNN and GZNN models are presented in Section 2. Section 3 is dedicated to the
convergence analysis of GGNN dynamics. A numerical comparison of GNN and GGNN
dynamics is given in Section 4. Neural dynamics based on the hybridization of GGNN
and GZNN models for solving matrix equations are considered in Section 6. Numerical
examples of hybrid models are analyzed in Section 6. Finally, the last section presents some
concluding remarks and a vision of further research.

2. Motivation and Derivation of GGNN and GZNN Models

The standard GNN design (2) solves the GLME AXB = D under constraint (4). Our
goal is to resolve this restriction and propose dynamic evolutions based on error functions
that tend to zero without restrictions.

Our goal is to define the GNN design for solving the GLME AXB = D based on the
error function

EG(t) := ∇ε(t) = AT(D − AV(t)B)BT = ATE(t)BT. (7)

According to known results from nonlinear unconstrained optimization [41], the equilib-
rium points of (7) satisfy

EG(t) := ∇ε(t) = 0.

We continue the investigation from [40]. More precisely, we develop the GNN model
based on the error function EG(t) instead of the error function E(t). In this way, new neural
dynamics are aimed at forcing the gradient EG to zero instead of the standard goal function
E(t). It is reasonable to call such an RNN model a gradient-based GNN (abbreviated
GGNN).

Proposition 3 gives the conditions for the solvability of the matrix equations E(t) = 0
and EG(t) = 0 and the general solutions to these systems.

Proposition 3 ([40]). Consider the arbitrary matrices A ∈ Rm×n, B ∈ Rk×h and D ∈ Rm×h.
The following statements are true:

(a) The equation E(t) = 0 is solvable if and only if (4) is satisfied, and the general solution to
E(t) = 0 is given by (5).

(b) The equation EG(t) = 0 is always solvable, and its general solution coincides with (5).

Proof. (a) This part of the proof follows from known results on the solvability and general
solution of the matrix equation AXB = D of generalized inverses [4] (p. 52, Theorem 1)
and its application to the matrix equation E(t) = 0 ⇐⇒ AV(t)B = D.
(b) According to [4] (p. 52, Theorem 1), the matrix equation

EG(t) = 0 ⇐⇒ AT AVBBT = ATDBT

is consistent if and only if

AT A
(

AT A
)†

ATDBT
(

BBT
)†

BBT = ATDBT

is satisfied. Indeed, applying the properties (AT A)† AT = A†, BT(BBT)† = B† and
AT AA† = AT, B†BBT = BT of the Moore–Penrose inverse [5] results in

AT A
(

AT A
)†

ATDBT
(

BBT
)†

BBT = AT AA†DB†BBT = ATDBT.

In addition, based on [4] (p. 52, Theorem 1), the general solution V(t) to EG(t) = 0 is

V =
(

AT A
)†

ATDBT
(

BBT
)†

+ Y −
(

AT A
)†

AT AYBBT
(

BBT
)†

= A†DB† + Y − A† AYBB†,
(8)

Axioms 2024, 13, 49 5 of 26

which coincides with (5).

In this way, the matrix equation E(t) = 0 is solvable under condition (4), while the
equation EG(t) = 0 is always consistent. In addition, the general solutions to equations
E(t) = 0 and EG(t) = 0 are identical [40].

The next step is to define the GGNN dynamics using the error matrix EG(t). Let us
define the objective function εG = ||EG||2F/2, whose gradient is equal to

∂εG(V(t))
∂V

=
∂||AT(D − AV(t)B)BT||2F

∂V
= −AT A

(
AT(D − AV(t)B)BT

)
BBT.

The dynamical system for the GGNN formula is obtained by applying the GNN evolution
along the gradient of εG(V(t)) based on EG(t), as follows:

V̇(t) = −γ
∂εG
∂V

= γAT A
(

AT(D − AV(t)B)BT
)

BBT.
(9)

The nonlinear GGNN dynamics are defined as

V̇(t) = γAT AF (AT(D − AV(t)B)BT)BBT, (10)

in which F (C) = F ([cij]) denotes the elementwise application of an odd and monotonically
increasing function f (·), as mentioned in the previous section for the GNN model (3).
Model (10) is termed GGNN(A, B, D). Three activation functions f (·) are used in numerical
experiments:

1. Linear function
flin(x) = x; (11)

2. Power-sigmoid activation function

fps(x, ρ, ϱ) =

{
xρ if |x| ≥ 1

1+e−ϱ

1−e−ϱ · 1+e−ϱx

1−e−ϱx if |x| < 1
(12)

where ϱ > 2, and ρ ≥ 3 is an odd integer;
3. Smooth power-sigmoid function

fsps(x, ρ, ϱ) =
1
2

xρ +
1 + e−ϱ

1 − e−ϱ · 1 + e−ϱx

1 − e−ϱx , (13)

where ϱ > 2, and ρ ≥ 3 is an odd integer.

Figure 1 represents the Simulink implementation of GGNN(A, B, D) dynamics (10).
On the other hand, the GZNN model, defined using the ZNN dynamics on the

Zhangian matrix EG(t), is defined in [40] by the general evolutionary design

ĖG(t) =
dEG(t)

dt
= −γF (EG(t)). (14)

Axioms 2024, 13, 49 6 of 26

A

A

B

B

D

D

Matrix
Multiply

AVB
Subtract

Matrix
Multiply

Product

transA
A a

A'

transB
B b

B'

Lin./ Nonlin.

3

rho

3

vrho

powersigmoid

x

rho

vrho

y

Power sigmoid function

smoothpowersig

x

rho

vrho

y

Smooth power sigmoid function

PS / SPS

FrobN
g E

Frobenius norm
E

Error

Scope

transpmult

A

Fres

B

y

MATLAB Function

K-

Gamma

1/s

Integrator

V

V

Scope1

Display1

Display

res=A'(D-AVB)B'

Figure 1. Simulink implementation of GGNN(A, B, D) evolution (10).

3. Convergence Analysis of GGNN Dynamics

In this section, we will analyze the convergence properties of the GGNN model given
by dynamics (10).

Theorem 1. Consider matrices A ∈ Rm×n, B ∈ Rp×q and D ∈ Rm×q. If an odd and monoton-
ically increasing array activation function F (·) based on an elementwise function f (·) is used,
then the activation state matrix V(t) ∈ Rn×p of the GGNN(A, B, D) model (10) asymptotically
converges to the solution of the matrix equation AXB = D, i.e., AT AV(t)BBT → ATDBT as
t → +∞, for an arbitrary initial state matrix V(0).

Proof. From statement (b) of Proposition 3, the solvability of AT AVBBT = ATDBT is
ensured. The substitution V(t) = V̄(t) + A†DB† transforms the dynamics (10) into

dV̄(t)
dt

=
dV(t)

dt
= γAT AF

(
AT(D − AV(t)B)BT

)
BBT

= γAT AF
(

AT
(

D − AV̄(t)B − AA†DB†B
)

BT
)

BBT

(4)
= γAT AF

(
AT(D − AV̄(t)B − D)BT

)
BBT

= −γAT AF
(

AT AV̄(t)BBT
)

BBT.

(15)

The Lyapunov function candidate that measures the convergence performance is
defined by

L(V̄(t), t) =
1
2
||V̄(t)||2F =

1
2

Tr
(

V̄(t)TV̄(t)
)

. (16)

The conclusion is L(V̄(t), t) ≥ 0. According to (16), assuming (15) and using d Tr(XTX) =
2Tr(XTdX), in conjunction with the basic properties of the matrix trace function, one can
express the time derivative of L(V̄(t), t) as follows:

Axioms 2024, 13, 49 7 of 26

dL(V̄(t), t)
dt

=
1
2

dTr
(
V̄(t)TV̄(t)

)
dt

=
1
2
· 2 · Tr

(
V̄(t)T dV̄(t)

dt

)
= Tr

[
V̄(t)T

(
−γAT AF

(
AT AV̄(t)BBT

)
BBT

)]
= −γTr

[
V̄(t)T AT AF

(
AT AV̄(t)BBT

)
BBT

]
= −γTr

[
BBTV̄(t)T AT AF

(
AT AV̄(t)BBT

)]
= −γTr

[(
AT AV̄(t)BBT

)T
F
(

AT AV̄(t)BBT
)]

.

(17)

Since the scalar-valued function f (·) is odd and monotonically increasing, it follows
that, for W(t) = AT AV̄(t)BBT,

dL(V̄(t), t)
dt

= −γTr
[
(WTF (W))

]
= −γ

m

∑
i=1

n

∑
j=1

wij f (wij)

{
< 0 if W(t) := AT AV̄(t)BBT ̸= 0
= 0 if W(t) := AT AV̄(t)BBT = 0,

(18)

which implies
dL(V̄(t), t)

dt

{
< 0 if W(t) ̸= 0
= 0 if W(t) = 0.

(19)

Observing the identity

W(t) = AT AV̄(t)BBT

= AT A
(

V(t)− A†DB†
)

BBT

= AT AV(t)BBT − ATDBT

= AT(AV(t)B − D)BT,

and using the Lyapunov stability theory, W(t) := AT(AV(t)B − D)BT globally converges
to the zero matrix from an arbitrary initial value V(0).

Theorem 2. The activation state-variable matrix V(t) of the model GGNN(A, B, D), defined by
(10), is convergent as t → +∞, and its equilibrium state is

V(t) → Ṽ(t) = A†DB† + V(0)− A† AV(0)BB† (20)

for every initial state matrix V(0) ∈ Rn×p.

Proof. From (10), the matrix V1(t) = (AT A)† AT AV(t)BBT(BBT)† satisfies

dV1(t)
dt

= (AT A)† AT A
dV(t)

dt
BBT(BBT)†

= γ(AT A)† AT A
[

AT A
(

AT(D − AV(t)B)BT
)

BBT
]

BBT(BBT)†.

According to the basic properties of the Moore–Penrose inverse [5], it follows that

(BBT)TBBT(BBT)† = (BBT)T = BBT, (AT A)† AT A(AT A)T = (AT A)T = AT A

Axioms 2024, 13, 49 8 of 26

which further implies

dV1(t)
dt

= γAT A
(

AT(D − AV(t)B)BT
)

BBT

=
dV(t)

dt
.

Consequently, V2(t) = V(t)−V1(t) satisfies dV2(t)
dt = dV(t)

dt − dV1(t)
dt = 0, which implies

V2(t) = V2(0)

= V(0)− V1(0)

= V(0)− (AT A)† AT AV(0)BBT(BBT)†

= V(0)− A† AV(0)BB†, t ≥ 0.

(21)

Furthermore, from Theorem 1, AT AV(t)BBT → ATDBT, and V1(t) converges to

V1(t) = (AT A)† AT AV(t)BBT(BBT)† → (AT A)† ATDBT(BBT)†

= A†DB†

as t → +∞. Therefore, V(t) = V1(t) + V2(t) converges to the equilibrium state

Ṽ(t) = A†DB† + V2(t) = A†DB† + V(0)− A† AV(0)BB†.

The proof is finished.

4. Numerical Experiments on GNN and GGNN Dynamics

The numerical examples in this section are based on the Simulink implementation of
the GGNN formula in Figure 1.

The parameter γ, initial state V(0) and parameters ρ and ϱ of the nonlinear activation
functions (12) and (13) are entered directly into the model, while matrices A, B and D are
defined from the workspace. It is assumed that ρ = ϱ = 3 in all examples. The ode15s
differential equation solver is used in the configuration parameters. In all examples, V∗

denotes the theoretical solution.
The blocks powersig, smoothpowersig and transpmult include the codes described in [34,42].

Example 1. Let us consider the idempotent matrix A from [43,44],

A =

1 0 1 1
0 1 1 2
0 0 0 0
0 0 0 0

of rank(A) = 2, and the theoretical Moore–Penrose inverse

V∗ = A† =
1
3

2 −1 0 0
−1 1 0 0
1 0 0 0
0 1 0 0

.

The matrix equation corresponding to the Moore–Penrose inverse is AT AX = AT [16], which
implies the error function E(t) = AT(I − AX). The corresponding GNN model is defined by
GNN(AT A, I4, AT), where I4 denotes the identity and zero 4 × 4 matrix. Constraint (4) reduces to
the condition AA† AT = AT, which is not satisfied. The input parameters of GNN(AT A, I4, AT) are
γ = 108, V(0) = O4, where O4 denotes the zero 4× 4 matrix. The corresponding GGNN((AT A)2,
I, AT AAT) design is based on the error matrix EG(t) = AT AAT(I − AV). The Simulink imple-

Axioms 2024, 13, 49 9 of 26

mentation of GGNN(A, B, D) from Figure 1 and the Simulink implementation of GNN(A, B, D)
from [34] export, in this case, the graphical results presented in Figures 2 and 3, which display the
behaviors of the norms ||EG(t)||F = ||AT AAT(I − AV(t))||F and ||V(t)− V∗||F, respectively.
It is observable that the norms generated by the application of the GGNN formula vanish faster
to zero than the corresponding norms in the GNN model. The graphs in the presented figures
strengthen the fast convergence of the GGNN dynamical system and its important role, which can
include the application of this specific model (10) to problems that require the computation of the
Moore–Penrose inverse.

Time (sec) ×10
-8

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-8

0 0.5 1

0

10

Time (sec) ×10
-8

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-8

0 0.5 1

0

10

Time (sec) ×10
-8

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-8

0 0.5 1

0

10

(a) (b) (c)

Figure 2. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥EG(t)∥F in GGNN((AT A)2, I, AT AAT) compared to GNN(AT A, I4, AT) in Example 1.

Time (sec) ×10
-8

0 1 2 3 4 5

||V
(t

)-
V

*
|| F

0

0.2

0.4

0.6

0.8

1

GNN

GGNN

 ×10
-8

0 2 4

0

0.5

1

Time (sec) ×10
-8

0 1 2 3 4 5

||V
(t

)-
V

*
|| F

0

0.2

0.4

0.6

0.8

1

GNN

GGNN

 ×10
-8

0 2 4

0

0.5

1

Time (sec) ×10
-8

0 1 2 3 4 5
||V

(t
)-

V
*
|| F

0

0.2

0.4

0.6

0.8

1

GNN

GGNN

 ×10
-8

0 2 4

0

0.5

1

(a) (b) (c)

Figure 3. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥V(t)− V∗∥F in GGNN((AT A)2, I, AT AAT) compared to GNN(AT A, I4, AT) in Example 1.

Example 2. Let us consider the matrices

A =

−8 8 −4
11 4 −7
1 −4 3
0 12 −10
6 12 −12

, B =

1 0 0
0 1 0
0 0 1
0 0 0

, D =

−84 2524 304
−2252 −623 2897

484 −885 −701
−1894 2278 2652
−2778 1524 3750

.

The exact minimum-norm least-squares solution is

V∗ = A†DB† =

− 7409

65 − 9564
65

8953
65 0

− 968
13

1770
13

1402
13 0

6503
65 − 4187

65 − 8826
65 0

.

The ranks of the input matrices are equal to r = rank(A) = 2, rank(D) = 2 and rank(B) =
3. Constraint (4) is satisfied in this case. The linear GGNN(A, B, D) formula (10) is applied to
solve the matrix equation AXB = D. The gain parameter of the model is γ = 109, V(0) = 0, and
the stopping time is t = 0.00001, which gives

X =

−113.9846 −147.1385 137.7385 0
−74.4615 136.1538 107.8462 0
100.0462 −64.4154 −135.7846 0

 ≈ A†DB†.

Axioms 2024, 13, 49 10 of 26

The elementwise trajectories of the state variables vij of the state matrix V(t) are shown in
Figure 4a–c with solid red lines for linear, power-sigmoid and smooth power-sigmoid activation
functions, respectively. The fast convergence of elementwise trajectories to the corresponding black
dashed trajectories of the theoretical solution V∗ is notable. In addition, faster convergence caused
by the nonlinear AFs fps and fsps is noticeable in Figure 4b,c. The trajectories in the figures indicate
the usual convergence behavior, so the system is globally asymptotically stable. The norms of the
error matrix EG of both models GNN and GGNN under linear and nonlinear AFs are shown in
Figure 5a–c. The power-sigmoid and smooth power-sigmoid activation functions show superiority
in their convergence speed compared with linear activation. On each graph in Figure 5a–c, the
Frobenius norm ∥EG(t)∥F of the error matrix EG(t) in the GGNN formula vanishes faster to zero
than that in the GNN model. Moreover, in each graph in Figure 6a–c, the Frobenius norm ∥E(t)∥F
in the GGNN formula vanishes faster to zero than that in the GNN model, which strengthens the
fact that the proposed dynamical system (10) initiates accelerated convergence compared to (3).

 Time (sec)
×10

-10

0 0.2 0.4 0.6 0.8 1

 S
ta

te
 v

a
ri

a
b

le
s

-150

-100

-50

0

50

100

150

Time (sec) ×10
-5

0 0.2 0.4 0.6 0.8 1

S
ta

te
 v

a
ri

a
b

le
s

-150

-100

-50

0

50

100

150

 Time (sec)
×10

-16

0 0.2 0.4 0.6 0.8 1

 S
ta

te
 v

a
ri

a
b

le
s

-150

-100

-50

0

50

100

150

(a) (b) (c)

Figure 4. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
Elementwise convergence trajectories vij ∈ V(t) of the GGNN(A, B, D) network in Example 2.

Time (sec) ×10
-10

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
5

0

0.5

1

1.5

2

GNN

GGNN

 ×10
-11

0 1 2

×10
5

0

1

2

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
5

0

0.5

1

1.5

2

GNN

GGNN

×10
-17

0 2 4

×10
4

0

5

10

15

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
5

0

0.5

1

1.5

2

GNN

GGNN

 ×10
-16

0 0.5 1

×10
4

0

5

10

(a) (b) (c)

Figure 5. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥EG(t)∥F in GGNN(A, B, D) compared to GNN(A, B, D) in Example 2.

Time (sec) ×10
-10

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

1000

2000

3000

4000

5000

6000

7000

8000

GNN

GGNN

 ×10
-11

0 1 2

0

5000

10000

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

1000

2000

3000

4000

5000

6000

7000

8000

GNN

GGNN

 ×10
-16

0 1 2 3

0

1000

2000

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

1000

2000

3000

4000

5000

6000

7000

8000

GNN

GGNN

 ×10
-15

0 1 2

0

500

1000

(a) (b) (c)

Figure 6. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥E(t)∥F in GGNN(A, B, D) compared to GNN(A, B, D) in Example 2.

All graphs shown in Figures 5 and 6 confirm the applicability of the proposed GGNN
design compared to the traditional GNN design, even if constraint (4) holds.

Axioms 2024, 13, 49 11 of 26

Example 3. Let us explore the behavior of GNN and GGNN dynamics for computing the Moore–
Penrose inverse of the matrix

A =

9 3 −3
−1 1 0
4 7 2
2 4 −4

13 5 8

.

The Moore–Penrose inverse of A is equal to

A† =

9908

127779 − 18037
766674 − 6874

127779 − 2663
383337

29941
766674

− 5690
127779

14426
383337

16741
127779

25130
383337 − 6392

383337

− 3517
42593

1979
255558

1073
42593 − 7373

127779
15049

255558

≈

 0.0775 −0.0235 −0.0538 −0.0069 0.0390
−0.0445 0.0376 0.1310 0.0655 −0.0167
−0.0826 0.0077 0.0252 −0.0577 0.0589

.

The rank of the input matrix is equal to r = rank(A) = 3. Consequently, the matrix A is
left invertible and satisfies A† A = I. The error matrix E(t) = I − VA initiates the GNN(I, A, I)
dynamics for computing A†. The gradient-based error matrix

EG(t) = (I − V(t)A)AT.

initiates the GGNN(I, AAT, AT) design.

The gain parameter of the model is γ = 100, and the initial state is V(0) = 0 with a stop time
t = 0.00001.

The Frobenius norms of the error matrix E(t) generated by the linear GNN and GGNN models
for different values of γ (γ = 102, γ = 103, γ = 106) are shown in Figure 7a–c. The graphs
in these figures confirm an increase in the convergence speed, which is caused by the increase in
the gain parameter γ. Because of that, the considered time intervals are [0, 10−2], [0, 10−3] and
[0, 10−6], respectively. In all three scenarios, a faster convergence of the GGNN model is observable
compared to the GNN design. The values of the norm ∥EG∥F generated by both the GNN and
GGNN models with linear and two nonlinear activation functions are shown in Figure 8a–c. Like
the conclusion in the previous example, the perception is that the GGNN converges faster compared
to the GNN model.

In addition, the graphs in Figure 8b,c, corresponding to the power-sigmoid and smooth power-
sigmoid AFs, respectively, show a certain level of instability in convergence, as well as an increase
in the value of ∥EG(t)∥F.

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||E
(t

)|
| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-4

0 5

0

10

20

Time (sec) ×10
-4

0 0.2 0.4 0.6 0.8 1 1.2

||E
(t

)|
| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-5

0 0.5 1

0

10

20

Time (sec) ×10
-6

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-8

0 5

0

10

20

(a) (b) (c)

Figure 7. (a) γ = 10, t ∈ [0, 10−2]. (b) γ = 103, t ∈ [0, 10−3]. (c) γ = 106, t ∈ [0, 10−6]. ∥E(t)∥F for
different γ in GGNN(I, AAT, AT) compared to GNN(I, A, I) in Example 3.

Axioms 2024, 13, 49 12 of 26

Time (sec) ×10
-11

0 0.2 0.4 0.6 0.8 1
||E

G
(t

)|
| F

×10
6

0

0.5

1

1.5

2

2.5

3

GNN

GGNN

 ×10
-12

0 2

×10
6

0

2

4

Time (sec) ×10
-11

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
6

0

0.5

1

1.5

2

2.5

3

GNN

GGNN

 ×10
-12

0 2

×10
5

0

5

Time (sec) ×10
-11

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
6

0

0.5

1

1.5

2

2.5

3

GNN

GGNN

 ×10
-12

0 2

×10
5

0

5

(a) (b) (c)

Figure 8. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥EG(t)∥F in GGNN(I, AAT, AT) compared to GNN(I, A, I) in Example 3.

Example 4. Consider the matrices

A =

 15 −352 −45 −238 42
−5 14 8 132 −65
235 −65 44 350 −73

, D =

−4 4 16
3 1 −9
1 −7 2
2 2 −4
4 1 −5

, A1 = DA,

which dissatisfy rank(A1) = rank(D) = 3. Now, we apply the GNN and GGNN formulae to
solve the matrix equation A1X = D. The standard error function is defined as E(t) = D − A1V(t).
So, we consider GNN(A1, I3, D). The error matrix for the corresponding GGNN model is EG(t) =
AT

1 (D − A1V(t)), which initiates the GGNN(AT
1 A1, I3, AT

1 D) flow. The gain parameter of the
model is γ = 109, and the final time is t = 0.00001. The zero initial state V(0) = 0 generates the
best approximate solution X = A†

1D = (DA)†D of the matrix equation A1X = D, given by

X = A†
1D =

− 133851170015
180355524917879 − 1648342203725

180355524917879
608888775010

180355524917879

− 508349079720
180355524917879 − 691967699675

180355524917879 − 48398092277
180355524917879

− 68130232042
180355524917879 − 242513061343

180355524917879
82710890618

180355524917879

− 31936168532
180355524917879

727110260384
180355524917879

134047117682
180355524917879

− 172434574901
180355524917879 − 1350198643304

180355524917879
225136761416

180355524917879

≈

−0.000742 −0.00914 0.00338
−0.00282 −0.00384 −0.000268
−0.000378 −0.00134 0.000459
−0.000177 0.00403 0.000743
−0.000956 −0.00749 0.00125

.

The Frobenius norms of the error matrix E(t) = D − A1V(t)B in the GNN and GGNN
models for both linear and nonlinear activation functions are shown in Figure 9a–c, and the error
matrix EG(t) = AT

1 (D − A1V(t)) in both models for linear and nonlinear activation functions are
shown in Figure 10a–c. It is observable that the GGNN converges faster than GNN.

Time (sec) ×10
-13

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-14

0 0.5 1

0

5

10

Time (sec) ×10
-13

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-14

0 0.5 1

0

5

Time (sec) ×10
-13

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

5

10

15

20

25

GNN

GGNN

 ×10
-14

0 0.5 1

0

5

(a) (b) (c)

Figure 9. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥E(t)∥F in GGNN(AT

1 A1, I3, AT
1 D) compared to GNN(A1, I3, D) in Example 4.

Axioms 2024, 13, 49 13 of 26

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1
||E

G
(t

)|
| F

×10
5

0

0.5

1

1.5

2

2.5

GNN

GGNN

 ×10
-16

0 2 4

×10
4

0

2

4

Time (sec) ×10
-16

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
5

0

0.5

1

1.5

2

2.5

GNN

GGNN

 ×10
-17

0 5

×10
4

0

5

Time (sec) ×10
-16

0 0.2 0.4 0.6 0.8 1

||E
G

(t
)|

| F

×10
5

0

0.5

1

1.5

2

2.5

GNN

GGNN

 ×10
-17

0 5

×10
4

0

5

(a) (b) (c)

Figure 10. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥EG(t)∥F in GGNN(AT

1 A1, I3, AT
1 D) compared to GNN(A1, I3, D) in Example 4.

Example 5. Tables 1 and 2 show the results obtained during experiments we conducted with
nonsquared matrices, where m × n is the dimension of the matrix. Table 1 lists the input data that
were used to perform experiments with the Simulink model and generated the results in Table 2. The
best cases in Table 2 are marked in bold text.

Table 1. Input data.

Matrix A Matrix B Matrix D Input and Residual Norm
m n rank(A) p q rank(B)m q rank(D)γ t f ∥AA†DB†B−D∥F

10 8 8 9 7 7 10 7 7 104 0.5 1.051
10 8 6 9 7 7 10 7 7 104 0.5 1.318
10 8 6 9 7 5 10 7 7 104 0.5 1.81
10 8 6 9 7 5 10 7 5 104 5 2.048
10 8 1 9 7 2 10 7 1 104 5 2.372
20 10 10 8 5 5 20 5 5 106 5 1.984
20 10 5 8 5 5 20 5 5 106 5 2.455
20 10 5 8 5 2 20 5 5 106 1 3.769
20 10 2 8 5 2 20 5 2 106 1 2.71
20 15 15 5 2 2 20 2 2 108 1 1.1
20 15 10 5 2 2 20 2 2 108 1 1.158
20 15 10 5 2 1 20 2 2 108 1 2.211
20 15 5 5 2 1 20 2 2 108 1 1.726

Table 2. Experimental results based on data presented in Table 1.

||E(t)||F (GNN) ||E(t)||F (GGNN) ||EG(t)||F (GNN) ||EG(t)||F (GGNN) CPU(GNN) CPU(GGNN)

1.051 1.094 2.52 × 10−9 0.02524 5.017148 13.470995
1.318 1.393 3.122 × 10−7 0.03661 22.753954 10.734163
1.811 1.899 0.0008711 0.03947 15.754537 15.547785
2.048 2.082 1.96 × 10−10 0.00964 9.435709 17.137916

2.372 2.3722 1.7422 × 10−15 2.003 ×10−15 21.645386 13.255210
1.984 1.984 2.288 ×10−14 9.978 ×10−15 21.645386 13.255210
2.455 2.455 1.657 ×10−11 1.693 ×10−14 50.846893 19.059385
3.769 3.769 6.991 ×10−11 4.071 ×10−14 42.184748 13.722390
2.71 2.71 1.429 ×10−14 1.176 ×10−14 148.484258 13.527065
1.1 1.1 1.766 ×10−13 5.949 ×10−15 218.169376 17.5666568

1.158 1.158 2.747 ×10−10 2.981 ×10−13 45.505618 12.441782
2.211 2.211 7.942 ×10−12 8.963 ×10−14 194.605133 14.117241
1.726 1.726 8.042 ×10−15 3.207 ×10−15 22.340501 11.650829

The numerical results arranged in Table 2 are divided into two parts by a horizontal
line. The upper part corresponds to the test matrices of dimensions ≤ 10, while the lower
part corresponds to the dimensions m, n ≥ 10. Considering the first two columns, it is
observable from the upper part that the GGNN generates smaller values ||E(t)||F compared
to the GGNN. The values of ||E(t)||F in the lower part generated by the GNN and GGNN
are equal. Considering the third and fourth columns, it is observable from the upper part
that the GGNN generates smaller values ||EG(t)||F compared to the GGNN. On the other
hand, the values of ||EG(t)||F in the lower part, generated by the GGNN, are smaller than

Axioms 2024, 13, 49 14 of 26

the corresponding values generated by the GNN. The last two columns show that the
GGNN requires less CPU time compared to the GNN. The general conclusion is that the
GGNN model is more efficient in rank-deficient test matrices of larger order m, n ≥ 10.

5. Mixed GGNN-GZNN Model for Solving Matrix Equations

The gradient-based error matrix for solving the matrix equation AX = B is defined by

EGA,I,B(t) = AT(AV(t)− B).

The GZNN design (14) corresponding to the error matrix EA,I,B, designated GZNN(A, I, B),
is of the form:

ĖGA,I,B(t) = −γF
(

AT(AV(t)− B)
)

. (22)

Now, the scalar-valued norm-based error function corresponding to EGA,I,B(t) is given
by

ε(t) = ε(V(t)) =
1
2
||EGA,I,B(t)||F =

||AT(AV(t)− B)||F
2

.

The following dynamic state equation can be derived using the GGNN(A, I, B) design
formula based on (10):

V̇(t) = −γAT AF
(

AT(AV(t)− B)
)

. (23)

Further, using a combination of ĖGA,I,B(t) = AT AV̇(t) and the GNN dynamics (23), it
follows that

ĖGA,I,B(t) = AT AV̇(t) = −γAT AAT AF
(

AT(AV(t)− B)
)

. (24)

The next step is to define the new hybrid model based on the summation of the
right-hand sides in (22) and (24), as follows:

ĖGA,I,B(t) = −γ

((
AT A

)2
+ I

)
F
(

AT(AV(t)− B)
)

. (25)

The model (25) is derived from the combination of the model GGNN(A, I, B) and
the model GZNN(A, I, B). Hence, it is equally justified to use the term Hybrid GGNN
(abbreviated HGGNN) and Hybrid GZNN (abbreviated HGZNN) model. But model (25)
is implicit, so it is not a type of GGNN dynamics. On the other hand, it is designed for
time-invariant matrices, which is not in accordance with the common nature of GZNN
models, because usually, the GZNN is used in the time-varying case. A formal comparison
of (25) and GZNN(A, I, B) reveals that both these methods possess identical left-hand
sides, and the right-hand side of (25) can be derived by multiplying the right-hand side of
GZNN(A, I, B) by the term

(
AT A

)2
+ I.

Formally, (25) is closer to GZNN dynamics, so we will denote the model (25) by
HGZNN(A, I, B), considering that this model is not the exact GZNN neural dynamics and
is applicable to time-invariant case. This is the case of the constant coefficient matrices A, I
and B. Figure 11 represents the Simulink implementation of HGZNN(A, I, B) dynamics
(25).

Axioms 2024, 13, 49 15 of 26

(I-A^TA)X'(t)-k(I+(A^TA)̂ 2)F(A^T(AX(t)-B)]

k(I+(A^TA)̂ 2)F(A^T(AX(t)-B)]

F[A^T(AX(t)-B)]

(I-A^TA)X'(t)

A^TA

(A^TA)̂ 2

A

A A^T

A^TA

I I+(A^TA)̂ 2

I (I-A^TA)

X'(t)

X(t)
AX(t) AX(t)-BA

A1

B

B

1

s

X(0)

Matrix
Multiply

Product6

u
T

A^T1

Matrix
Multiply

Product7

Matrix
Multiply

Product8

Matrix
Multiply

Product9

I

I1

Matrix
Multiply

Product10

k

k

In1 Out1

Nonlinear AFs F(.)1

Matrix
Multiply

Product11

X(t)

Interpreted
MATLAB Fcn

norm(u,'fro')

||A^T(AX(t)-B)||_F

Xt

X(t)

errror

||A^T(AX(t)-B)||_F

Figure 11. Simulink implementation of (25).

Now, we will take into account the process of solving the matrix equation XC = D.
The error matrix for this equation is defined by

EGI,C,D (t) = (V(t)C − D)CT.

The GZNN design (14) corresponding to the error matrix EI,C,D, denoted by GZNN(I, C, D),
is of the form:

ĖGI,C,D (t) = V̇CCT = −γF
(
(V(t)C − D)CT

)
. (26)

On the other hand, the GGNN design formula (10) produces the following dynamic
state equation:

V̇(t) = −γF
(
(V(t)C − D)CT

)
CCT, V(0) = V0. (27)

The GGNN model (27) is denoted by GGNN(I, C, D). It implies

ĖGI,C,D (t) = V̇(t)CCT = −γF
(
(V(t)C − D)CT

)
CCTCCT. (28)

A new hybrid model based on the summation of the right-hand sides in (26) and (28)
can be proposed as follows:

ĖGI,C,D (t) = −γF
(
(V(t)C − D)CT

)(
I +

(
CCT

)2
)

. (29)

The Model (29) will be denoted by HGZNN(I, C, D). This is the case with the constant
coefficient matrices I, C and D.

For the purposes of the proof of the following results, we will use ECR(M) to denote
the exponential convergence rate of the model M. With λmin(K) and λmax(K), we denote
the smallest and largest eigenvalues of the matrix K, respectively. Continuing the previous
work, we use three types of activation functions F : linear, power-sigmoid and smooth
power-sigmoid.

The following theorem determines the equilibrium state of HGZNN(A, I, B) and
defines its global exponential convergence.

Axioms 2024, 13, 49 16 of 26

Theorem 3. Let A ∈ Rk×n, B ∈ Rk×m be given and satisfy AA†B = B, and let V(t) ∈ Rn×m be
the state matrix of (25), where F is defined by flin, fps or fsps.

(a) Then, V(t) achieves global convergence and satisfies AV(t) → B when t → +∞, starting
from any initial state X(0) ∈ Rn×m. The state matrix V(t) ∈ Rn×m of HGZNN(A, I, B) is
stable in the sense of Lyapunov.

(b) The exponential convergence rate of the HGZNN(A, I, B) model (25) in the linear case is
equal to

ECR(HGZNN(A, I, B)) = γ
(

1 + σ4
min(A)

)
, (30)

where σmin(A) = λmin(AT A) is the minimum singular value of A.
(c) The activation state variable matrix V(t) of the model HGZNN(A, I, B) is convergent when

t → +∞ with the equilibrium state matrix

V(t) → ṼV(0) = A†B + (I − A† A)V(0). (31)

Proof. (a) The assumption AA†B = B provides the solvability of the matrix equation
AX = B.

The appropriate Lyapunov function is defined as

L(t) = 1
2
||EGA,I,B(t)||

2
F =

1
2

Tr
((

EGA,I,B(t)
)T

EGA,I,B(t)
)

.

Hence, from (25) and d Tr(VTV) = 2Tr(VTdV), it holds that

L̇(t) = 1
2

d
dt

Tr
((

EGA,I,B(t)
)T

EGA,I,B(t)
)

= Tr
((

EGA,I,B(t)
)T

ĖA,I,B(t)
)

= Tr
((

EGA,I,B(t)
)T

(
−γ

((
AT A

)2
+ I

)
F
(

EGA,I,B(t)
)))

= −γTr
(((

AT A
)2

+ I
)
F
(

EGA,I,B(t)
)(

EGA,I,B(t)
)T

)
.

According to similar results from [45], one can verify the following inequality:

L̇(t) ≤ −γTr
(((

AT A
)2

+ I
)

EGA,I,B(t)
(

EGA,I,B(t)
)T

)
.

We also consider the following inequality from [46], which is valid for a real symmetric
matrix K and a real symmetric positive-semidefinite matrix L of the same size:

λmin(K)Tr(L) ≤ Tr(KL) ≤ λmax(K)Tr(L). (32)

Now, the following can be chosen: K =
(

AT A
)2

+ I and L = EGA,I,B(t)
(

EGA,I,B(t)
)T

.

Consider λmin

((
AT A

)2
)
= λ2

min
(

AT A
)
= σ4

min(A), where λmin(A) is the minimum eigen-

value of A, and σmin(A) =
√

λmin(AT A) is the minimum singular value of A. Then,
1 + σ4

min(A) ≥ 1 is the minimum nonzero eigenvalue of
(

AT A
)2

+ I, which implies

L̇(t) ≤ −γ
(

1 + σ4
min(A)

)
Tr
(

EGA,I,B(t)
(

EGA,I,B(t)
)T

)
. (33)

Axioms 2024, 13, 49 17 of 26

From (33), it can be concluded

L̇(t)
{

< 0 if EGA,I,B(t) ̸= 0
= 0 if EGA,I,B(t) = 0.

(34)

According to (34), the Lyapunov stability theory confirms that EA,I,B(t) = AV(t)− B = 0
is a globally asymptotically stable equilibrium point of the HGZNN(A, I, B) model (25).
So, EA,I,B(t) converges to the zero matrix, i.e., AV(t) → B, from any initial state X(0).

(b) From (a), it follows that

L̇ ≤ −γ
(

1 + σ4
min(A)

)
Tr
((

EGA,I,B(t)
)T

EGA,I,B(t)
)

= −γ
(

1 + σ4
min(A)

)
||EGA,I,B(t)||

2
F

= −γ

2

(
1 + σ4

min(A)
)
L(t).

This implies

L ≤ L(0)e−γ(1+σ4
min(A))t ⇐⇒

||EGA,I,B(t)||
2
F ≤ ||EGA,I,B(0)||

2
F e−γ(1+σ4

min(A)) ⇐⇒

||EGA,I,B(t)||F ≤ ||EGA,I,B(0)||F e−γ/2(1+σ4
min(A)),

which confirms the convergence rate (30) of HGZNN(A, I, B).

(c) This part of the proof can be verified with the particular case B := I, D := B of
Theorem 2.

Theorem 4. Let C ∈ Rm×l , D ∈ Rn×l be given and satisfy DC†C = D, and let V(t) ∈ Rn×m be
the state matrix of (29), where F is defined by flin, fps or fsps.

(a) Then, V(t) achieves global convergence V(t)C → D when t → +∞, starting from any initial
state V(0) ∈ Rn×m. The state matrix V(t) ∈ Rn×m of HGZNN(I, C, D) is stable in the
sense of Lyapunov.

(b) The exponential convergence rate of the HGZNN(I, C, D) model (29) in the linear case is
equal to

ECR(HGZNN(I, C, D)) = γ
(

1 + σ4
min(C)

)
. (35)

(c) The activation state variable matrix V(t) of the model HGZNN(I, C, D) is convergent when
t → +∞ with the equilibrium state matrix

V(t) → ṼV(0) = DC† + V(0)(I − CC†). (36)

Proof. (a) The assumption DC†C = D ensures the solvability of the matrix equation
XC = D.

Let us define the Lyapunov function by

L(t) = 1
2
||EGI,C,D (t)||

2
F =

1
2

Tr
((

EGI,C,D (t)
)T

EGI,C,D (t)
)

.

Hence, from (29) and d Tr(XTX) = 2Tr(XTdX), it holds that

Axioms 2024, 13, 49 18 of 26

L̇(t) = 1
2

d
dt

Tr
((

EGI,C,D (t)
)T

EGI,C,D (t)
)

= Tr
((

EGI,C,D (t)
)T

ĖGI,C,D (t)
)

= Tr
((

EGI,C,D (t)
)T

(
−γ

((
CCT

)2
+ I

)
F
(

EGI,C,D (t)
)))

= −γTr
(((

CCT
)2

+ I
)
F
(

EGI,C,D (t)
)(

EGI,C,D (t)
)T

)
.

Following the principles from [45], one can verify the following inequality:

L̇(t) ≤ −γTr
(((

CCT
)2

+ I
)

EGI,C,D (t)
(

EGI,C,D (t)
)T

)
.

Consider the inequality (32) with the particular settings K =
(
CCT)2

+ I, L = EGI,C,D (t)(
EGI,C,D(t)

)T
. Let λmin

((
CCT)2

)
be the minimum eigenvalue of

(
CCT)2. Then, 1+σ4

min(C)) ≥

1 is the minimal nonzero eigenvalue of
(
CCT)2

+ I, which implies

L̇(t) ≤ −γ
(

1 + σ4
min(C)

)
Tr
(

EGI,C,D (t)
(

EGI,C,D (t)
)T

)
. (37)

From (37), it can be concluded

L̇(t)
{

< 0 if EGI,C,D (t) ̸= 0
= 0 if EGI,C,D (t) = 0.

(38)

According to (38), the Lyapunov stability theory confirms that EGI,C,D (t) = V(t)C − D = 0
is a globally asymptotically stable equilibrium point of the HGZNN(A, I, B) model (29).
So, EGI,C,D (t) converges to the zero matrix, i.e., V(t)C → D, from any initial state V(0).

(b) From (a), it follows

L̇ ≤ −γ
(

1 + σ4
min(C)

)
Tr
((

EGI,C,D (t)
)T

EGI,C,D (t)
)

= −γ
(

1 + σ4
min(C)

)
||EGI,C,D (t)||

2
F

= −γ

2

(
1 + σ4

min(C)
)
L(t).

This implies

L ≤ L(0)e−2γ(1+σ4
min(C))t ⇐⇒

||EGI,C,D (t)||
2
F ≤ ||EGI,C,D (0)||

2
Fe−2γ(1+σ4

min(C)) ⇐⇒

||EGI,C,D (t)||F ≤ ||EGI,C,D (0)||Fe−γ(1+σ4
min(C)),

which confirms the convergence rate (35) of HGZNN(I, C, D).

(c) This part of the proof can be verified with the particular case A := I, B := C of
Theorem 2.

Axioms 2024, 13, 49 19 of 26

Corollary 1. (a) Let the matrices A ∈ Rk×n, B ∈ Rk×m be given and satisfy AA†B = B, and
let V(t) ∈ Rn×m be the state matrix of (25), with an arbitrary nonlinear activation F . Then,
ECR(GZNN(A, I, B)) = γ and ECR(GGNN(A, I, B)) = γσmin(A).
(b) Let the matrices C ∈ Rm×l, D ∈ Rn×l be given and satisfy DC†C = D, and let V(t) ∈ Rn×m be
the state matrix of (29) with an arbitrary nonlinear activation F . Then, ECR(GZNN(I, C, D)) = γ
and ECR(GGNN(I, C, D)) = γσmin(C).

From Theorem 3 and Corollary 1(a), it follows that

ECR(HGZNN(A, I, B))
ECR(GZNN(A, I, B))

= 1 + σ4
min(A) ≥ 1. (39)

ECR(HGZNN(A, I, B))
ECR(GGNN(A, I, B))

=
1 + σ4

min(A)

σ2
min(A)

> 1. (40)

ECR(GZNN(A, I, B))
ECR(GGNN(A, I, B))

=
1

σ2
min(A)

{
< 1, σmin(A) > 1
≥ 1, σmin(A) ≤ 1

. (41)

Similarly, according to Theorem 4 and Corollary 1(b), it can be concluded that

ECR(HGZNN(I, C, D))

ECR(GZNN(I, C, D))
= 1 + σ4

min(C) ≥ 1. (42)

ECR(HGZNN(I, C, D))

ECR(GGNN(I, C, D))
=

1 + σ4
min(C)

σ2
min(C)

> 1. (43)

ECR(GZNN(I, C, D))

ECR(GGNN(I, C, D))
=

1
σ2

min(C)

{
< 1, σmin(C) > 1
≥ 1, σmin(C) ≤ 1

. (44)

Remark 1. (a) According to (40), it follows that ECR(HGZNN(A, I, B)) > ECR(GZNN(A, I, B)).
According to (39), it is obtained

ECR(HGZNN(A, I, B))

{
= ECR(GZNN(A, I, B)), σmin(A) = 0
> ECR(GZNN(A, I, B)), σmin(A) > 0.

According to (41), it follows

ECR(GZNN)(A, I, B)

{
< ECR(GGNN(A, I, B)), σmin(A) > 1
≥ ECR(GGNN(A, I, B)), σmin(A) ≤ 1

.

As a result, the following conclusions follow:

- HGZNN(A, I, B) is always faster than GGNN(A, I, B);
- HGZNN(A, I, B) is faster than GZNN(A, I, B) in the case where σmin(A) > 0;
- GZNN(A, I, B) is faster than GGNN(A, I, B)) in the case where σmin(A) < 1.

(b) According to (43), it follows that ECR(HGZNN(I, C, D)) > ECR(GZNN(I, C, D)).
According to (42), it follows that

ECR(HGZNN(I, C, D))

{
= ECR(GZNN(I, C, D)), σmin(C) = 0
> ECR(GZNN(I, C, D)), σmin(C) > 0.

According to (41) and (44), it can be verified

ECR(GZNN)(I, C, D)

{
< ECR(GGNN(I, C, D)), σmin(C) > 1
≥ ECR(GGNN(I, C, D)), σmin(C) ≤ 1

.

Axioms 2024, 13, 49 20 of 26

As a result, the following conclusions follow:

- HGZNN(I, C, D) is always faster than GGNN(I, C, D);
- HGZNN(I, C, D) is faster than GZNN(I, C, D) in the case where σmin(C) > 0;
- GZNN(I, C, D) is faster than GGNN(I, C, D)) in the case where σmin(C) < 1.

Remark 2. The particular HGZNN(AT A, I, AT) and GGNN(AT A, I, AT) designs define the cor-
responding modifications of the improved GNN design proposed in [26] if AT A is invertible. In the
dual case, HGZNN(I, CCT, CT) and GGNN(I, CCT, CT) define the corresponding modifications of
the improved GNN design proposed in [26] if CCT is invertible.

Regularized HGZNN Model for Solving Matrix Equations

The convergence of HGZNN(A, I, B) (resp. HGZNN(I, C, D)), as well as GGNN(A, I, B)
(resp. GGNN(I, C, D)), can be improved in the case where σmin(A) > 0 (resp. σmin(C) > 0).
There exist two possible situations when the acceleration terms AT A and CCT improve the
convergence. The first case assumes the invertibility of A (resp. C), and the second case
assumes the left invertibility of A (resp. right invertibility of C). Still, in some situations, the
matrices A and C could be rank-deficient. Hence, in the case where A and C are square and
singular, it is useful to use the invertible matrices A1 := A + λI and C1 := C + λI, λ > 0
instead of A and C and to consider the models HGZNN(A1, I, B) and HGZNN(I, C1, D).
The following presents the convergence results considering the nonsingularity of A1 and
C1.

Corollary 2. Let A ∈ Rn×n, B ∈ Rn×m be given and V(t) ∈ Rn×m be the state matrix of (25),
where F is defined by flin, fps or fsps. Let λ > 0 be a selected real number. Then, the following
statements are valid:

(a) The state matrix V(t) ∈ Rn×m
r of the model HGZNN(A1, I, B) converges globally to

ṼV(0) = A−1
1 B,

when t → +∞, starting from any initial state X(0) ∈ Rn×m, and the solution is stable in the
sense of Lyapunov.

(b) The exponential convergence rate of HGZNN(A1, I, B) in the case where F = I is equal to

ECR(HGZNN(A1, I, B)) = γ
(

1 + σ4
min(A + λI)

)
.

(c) Let ṼV(0) be the limiting value of V(t) when t → +∞. Then,

lim
λ→0

ṼV(0) = lim
λ→0

(A + λI)−1B. (45)

Proof. Since A + λI is invertible, it follows that V = (A + λI)−1B.
From (31) and the invertibility of A + λI, we conclude the validity of (a). In this case,

it follows that

ṼV(0) = (A + λI)−1B + (I − (A + λI)−1(A + λI))V(0)

= (A + λI)−1B + (I − I)V(0)

= (A + λI)−1B.

The part (b) is proved analogously to the proof of Theorem 3. The last part (c) follows from
(a).

Axioms 2024, 13, 49 21 of 26

Corollary 3. Let C ∈ Rm×m, D ∈ Rn×m be given and V(t) ∈ Rn×m be the state matrix of (29),
where F = I,F = Fps or F = Fsps. Let λ > 0 be a selected real number. Then, the following
statements are valid:

(a) The state matrix V(t) ∈ Rn×m
r of HGZNN(I, C1, D) converges globally to

ṼV(0) = D(C + λI)−1,

when t → +∞, starting from any initial state X(0) ∈ Rn×m, and the solution is stable in the
sense of Lyapunov.

(b) The exponential convergence rate of HGZNN(I, C1, D) in the case where F = I is equal to

ECR(HGZNN(I, C1, D)) = γ
(

1 + σ4
min(1)

)
.

(c) Let ṼV(0) be the limiting value of V(t) when t → +∞. Then,

lim
λ→0

ṼV(0) = lim
λ→0

D(C + λI)−1. (46)

Proof. It can be proved analogously to Corollary 2.

Remark 3. (a) According to (40), it can be concluded that

ECR(HGZNN(A1, I, B)) > ECR(GZNN(A1, I, B)).

Based on (39) it can be concluded

ECR(HGZNN(A1, I, B))>ECR(GZNN(A1, I, B)).

According to (41), one concludes

ECR(GZNN(A1, I, B))<ECR(GGNN(A1, I, B)).

(b) According to (43), it can be concluded

ECR(HGZNN(I, C1, D)) > ECR(GZNN(I, C1, D)).

According to (42), it follows

ECR(HGZNN(I, C1, D)) > ECR(GZNN(I, C1, D)).

Based on (41) and (44), it can be concluded

ECR(GZNN(I, C1, D))<ECR(GGNN(I, C1, D)).

6. Numerical Examples on Hybrid Models

In this section, numerical examples are presented based on the Simulink implementa-
tion of the HGZNN formula. The previously mentioned three types of activation functions
f (·) in (11), (12) and (13) will be used in the following examples. The parameters γ, the
initial state V(0) and the parameters ρ and ϱ of the nonlinear activation functions (12)
and (13) are entered directly into the model, while the matrices A, B, C and D are defined
from the workspace. We assume that ρ = ϱ = 3 in all examples. The ordinary differential
equation solver in the configuration parameters is ode15s.

We present numerical examples in which we compare Frobenius norms ||EG||F and
||A−1B − V(t)||F, which are generated by HGZNN, GZNN and GGNN.

Axioms 2024, 13, 49 22 of 26

Example 6. Consider the matrix

A =

0.49 0.276 0.498 0.751 0.959

0.446 0.68 0.96 0.255 0.547
0.646 0.655 0.34 0.506 0.139
0.71 0.163 0.585 0.699 0.149

0.755 0.119 0.224 0.891 0.258

.

In this example, we compare the HGZNN(A, I, I) model with GZNN(A, I, I) and GGNN(A, I, I),
considering all three types of activation functions. The gain parameter of the model is γ = 106, the
initial state V(0) = 0, and the final time is t = 0.00001.

The Frobenius norm of the error matrix EG in the HGZNN, GZNN and GGNN models for
both linear and nonlinear activation functions are shown in Figure 12a–c, and the error matrices
A−1B − V(t) of both models for linear and nonlinear activation functions are shown in Figure 13a–
c. On each graph, the Frobenius norm of the error from the HGZNN formula vanishes faster to zero
than those from the GZNN and GGNN models.

Time (sec) ×10
-10

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

1000

2000

3000

4000

5000

6000

7000

8000

GNN

GGNN

 ×10
-11

0 1 2

0

5000

10000

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

1000

2000

3000

4000

5000

6000

7000

8000

GNN

GGNN

 ×10
-16

0 1 2 3

0

1000

2000

Time (sec) ×10
-15

0 0.2 0.4 0.6 0.8 1

||E
(t

)|
| F

0

1000

2000

3000

4000

5000

6000

7000

8000

GNN

GGNN

 ×10
-15

0 1 2

0

500

1000

(a) (b) (c)

Figure 12. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥EA,I,B∥F of HGZNN(A, I, I) compared to GGNN(A, I, I) and GZNN(A, I, I) in Example 6.

Time (sec)
×10

-5

0 0.2 0.4 0.6 0.8 1

||A
-1

B
-X

(t
)|

| F

0

20

40

60

80

100

120
HGZNN

GZNN

GGNN

 ×10
-6

9.5 10

0

50

100

150

Time (sec)
×10

-5

0 0.2 0.4 0.6 0.8 1

||A
-1

B
-X

(t
)|

| F

0

20

40

60

80

100

120
HGZNN

GZNN

GGNN

 ×10
-6

2 4 6

0

50

100

Time (sec)
×10

-5

0 0.2 0.4 0.6 0.8 1

||A
-1

B
-X

(t
)|

| F

0

50

100

150
HGZNN

GZNN

GGNN

 ×10
-6

9 9.5 10

0

100

200

(a) (b) (c)

Figure 13. (a) Linear activation. (b) Power–sigmoid activation. (c) Smooth power–sigmoid activation.
∥A−1B − V(t)∥F of HGZNN(A, I, I) compared to GGNN(A, I, I) and GZNN(A, I, I) in Example 6.

Example 7. Consider the matrices

A =

0.0818 0.0973 0.0083 0.0060 0.0292 0.0372
0.0818 0.0649 0.0133 0.0399 0.0432 0.0198
0.0722 0.0800 0.0173 0.0527 0.0015 0.0490
0.0150 0.0454 0.0391 0.0417 0.0984 0.0339
0.0660 0.0432 0.0831 0.0657 0.0167 0.0952
0.0519 0.0825 0.0803 0.0628 0.0106 0.0920

,

B =

0.1649 0.1813 0.0851 0.1197 0.0138 0.1437 0.1558
0.1965 0.1759 0.0625 0.0942 0.0639 0.1937 0.0847
0.1460 0.1636 0.0323 0.1392 0.1062 0.1063 0.0182
0.0688 0.0521 0.0358 0.1400 0.1309 0.0650 0.0533
0.1168 0.1189 0.0846 0.1277 0.0815 0.0211 0.0307
0.0216 0.0045 0.0188 0.0067 0.1640 0.1222 0.0562

.

Axioms 2024, 13, 49 23 of 26

In this example, we compare the HGZNN(A, I, B) model with GZNN(A, I, B) and
GGNN(A, I, B), considering all three types of activation functions. The gain parameter of
the model is γ = 1000, the initial state V(0) = 0, and the final time is t = 0.01.

The elementwise trajectories of the state variable are shown with red lines in Figure 14a–c,
for linear, power-sigmoid and smooth power-sigmoid activation functions, respectively.
The solid red lines corresponding to HGZNN(A, I, B) converge to the black dashed lines of
the theoretical solution X. It is observable that the trajectories indicate the usual conver-
gence behavior, so the system is globally asymptotically stable. The error matrices EG of
the HGZNN, GZNN and GGNN models for both linear and nonlinear activation functions
are shown in Figure 15a–c, and the residual matrices A−1B − X(t) of both models for linear
and nonlinear activation functions are shown in Figure 16a–c. In each graph, for both error
cases, the Frobenius norm of the error of the HGZNN formula is similar to the Frobenius
norm of the error of the GZNN model, and they both converges faster to zero than the
GGNN model.

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

S
ta

te
 v

a
ri

a
b

le
s

-10

-5

0

5

10

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

S
ta

te
 v

a
ri

a
b

le
s

-10

-5

0

5

10

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

S
ta

te
 v

a
ri

a
b

le
s

-10

-5

0

5

10

(a) (b) (c)

Figure 14. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
Elementwise convergence trajectories of the HGZNN(A, I, B) network in Example 7.

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||A
T
(A

X
(t

)-
B

)|
| F

0

0.05

0.1

0.15

0.2

HGZNN

GZNN

GGNN

 ×10
-3

0 1 2 3

0

0.1

0.2

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||A
T
(A

X
(t

)-
B

)|
| F

0

0.05

0.1

0.15

0.2

HGZNN

GZNN

GGNN

 ×10
-3

0 1 2

0

0.1

0.2

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||A
T
(A

X
(t

)-
B

)|
| F

0

0.05

0.1

0.15

0.2

HGZNN

GZNN

GGNN

 ×10
-3

0 1 2

0

0.1

0.2

(a) (b) (c)

Figure 15. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
∥EA,I,B∥F of HGZNN(A, I, B) compared to GGNN(A, I, B) and GZNN(A, I, B) in Example 7.

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||A
-1

B
-X

(t
)|

| F

0

5

10

15

20

HGZNN

GZNN

GGNN

 ×10
-3

0 1 2

0

10

20

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||A
-1

B
-X

(t
)|

| F

0

5

10

15

20

HGZNN

GZNN

GGNN

 ×10
-3

0 1 2

0

10

20

Time (sec)

0 0.002 0.004 0.006 0.008 0.01

||A
-1

B
-X

(t
)|

| F

0

5

10

15

20

HGZNN

GZNN

GGNN

 ×10
-3

0 1 2

0

10

20

(a) (b) (c)

Figure 16. (a) Linear activation. (b) Power-sigmoid activation. (c) Smooth power–sigmoid activation.
Frobenius norm of error matrix A−1B − X(t) of HGZNN(A, I, B) compared to GGNN(A, I, B) and
GZNN(A, I, B) in Example 7.

Remark 4. In this remark, we analyze the answer to the question, “how are the system parameters
selected to obtain better performance?” The answer is complex and consists of several parts.

1. The gain parameter γ is the parameter with the most influence on the behavior of the observed
dynamic systems. The general rule is “the parameter γ should be selected as large as possible”.
The numerical confirmation of this fact is investigated in Figure 7.

Axioms 2024, 13, 49 24 of 26

2. The influence of γ and AFs is indisputable. The larger the value of γ, the faster the convergence.
And, clearly, AFs increase convergence compared to the linear models. In the presented
numerical examples, we investigate the influence of three AFs: linear, power-sigmoid and
smooth power-sigmoid.

3. The right question is as follows: what makes the GGNN better than the GNN under fair
conditions that assume an identical environment during testing? Numerical experiments show
better performance of the GGNN design compared to the GNN with respect to all three tested
criteria: ∥E(t)∥F, ∥EG(t)∥F and ∥V(t)− V∗∥F. Moreover, Table 2 in Example 5 is aimed at
convergence analysis. The general conclusion from the numerical data arranged in Table 2 is
that the GGNN model is more efficient compared to the GNN in rank-deficient test matrices of
larger order m, n ≥ 10.

4. The convergence rate of the linear hybrid model HGZNN(A, I, B)) depends on γ and the
singular value σmin(A), while the convergence rate of the hybrid model HGZNN(I, C, D)
depends on γ and σmin(C).

5. The convergence of the linear regularized hybrid model HGZNN(A + λI, I, B)) depends
on γ, σmin(A) and the regularization parameter λ > 0, while the convergence of the linear
regularized hybrid model HGZNN(I, C + λI, D)) depends on γ, σmin(C) and λ.

In conclusion, it is reasonable to analyze the system parameter selections to obtain better
performance. But the best performance is not defined.

7. Conclusions

We show that the error functions which make the basis of GNN and ZNN dynamical
evolutions can be defined using the gradient of the Frobenius norm of the traditional error
function E(t). The result of such a strategy is the usage of the error function EG(t) for
the basis of GNN dynamics, which results in the proposed GGNN model. The results
related to the GNN model (called GNN(A, B, D)) for solving the general matrix equation
AXB = D are extended in the GGNN model (called GGNN(A, B, D)) in both theoretical
and computational directions. In a theoretical sense, the convergence of the defined GGNN
model is considered. It is shown that the neural state matrix V(t) of the GGNN(A, B, D)
model asymptotically converges to the solution of the matrix equation AXB = D for an
arbitrary initial state matrix V(0) and coincides with the general solution of the linear ma-
trix equation. A number of applications of GNN(A, B, D) are considered. All applications
are globally convergent. Several particular appearances of the general matrix equation are
observed and applied for computing various classes of generalized inverses. Illustrative
numerical examples and simulation results were obtained using Matlab Simulink imple-
mentation and are presented to demonstrate the validity of the derived theoretical results.
The influence of various nonlinear activations on the GNN models is considered in both the
theoretical and computational directions. From the presented examples, it can be concluded
that the GGNN model is faster and has a smaller error compared to the GNN model.

Further research can be oriented to the definition of finite-time convergent GGNN or
GZNN models, as well as the definition of a noise-tolerant GGNN or GZNN design.

Author Contributions: Conceptualization, P.S.S. and G.V.M.; methodology, P.S.S., N.T., D.G. and
V.S.; software, D.G., V.L.K. and N.T.; validation, G.V.M., M.J.P. and P.S.S.; formal analysis, M.J.P.,
N.T. and D.G.; investigation, M.J.P., G.V.M. and P.S.S.; resources, D.G., N.T., V.L.K. and V.S.; data
curation, M.J.P., V.L.K., V.S., D.G. and N.T.; writing—original draft preparation, P.S.S., D.G. and N.T.;
writing—review and editing, M.J.P. and G.V.M.; visualization, D.G. and N.T.; supervision, G.V.M.;
project administration, M.J.P.; funding acquisition, G.V.M., M.J.P. and P.S.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Data Availability Statement: Data results are available on reader request.

Acknowledgments: Predrag Stanimirović is supported by the Science Fund of the Republic of Serbia
(No. 7750185, Quantitative Automata Models: Fundamental Problems and Applications—QUAM).

user
Выделение

Axioms 2024, 13, 49 25 of 26

Dimitrios Gerontitis receives financial support from the “Savas Parastatidis” named scholarship
granted provided by the Bodossaki Foundation. Milena J. Petrović acknowledges support from a
project supported by Ministry of Education and Science of Republic of Serbia, Grant No. 174025.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses or interpretation of the data; in the writing of the
manuscript, or in the decision to publish the results.

References
1. Zhang, Y.; Chen, K. Comparison on Zhang neural network and gradient neural network for time-varying linear matrix equation

AXB = C solving. In Proceedings of the 2008 IEEE International Conference on Industrial Technology, Chengdu, China, 21–24
April 2008; pp. 1–6. https://doi.org/10.1109/ICIT.2008.4608579.

2. Zhang, Y.; Yi, C.; Guo, D.; Zheng, J. Comparison on Zhang neural dynamics and gradient-based neural dynamics for online
solution of nonlinear time-varying equation. Neural Comput. Appl. 2011, 20, 1–7.

3. Zhang, Y.; Xu, P.; Tan, L. Further studies on Zhang neural-dynamics and gradient dynamics for online nonlinear equations
solving. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August
2009; pp. 566–571. https://doi.org/10.1109/ICAL.2009.5262860.

4. Ben-Israel, A.; Greville, T. N. E. Generalized Inverses: Theory and Applications, 2nd ed.; CMS Books in Mathematics; Springer:
New York, NY, USA, 2003.

5. Wang, G.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Science Press, Springer: Beijing, China, 2018.
6. Dash, P.; Zohora, F.T.; Rahaman, M.; Hasan, M.M.; Arifuzzaman, M. Usage of Mathematics Tools with Example in Electrical and

Electronic Engineering. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 2018, 46, 178–188.
7. Qin, F.; Lee, J. Dynamic methods for missing value estimation for DNA sequences. In Proceedings of the 2010 Inter-

national Conference on Computational and Information Sciences, IEEE, Chengdu, China, 9–11 July 2010; pp. 442–445.
https://doi.org/10.1109/ICCIS.2010.115.

8. Soleimani, F.; Stanimirović, P.S.; Soleimani, F. Some matrix iterations for computing generalized inverses and balancing chemical
equations. Algorithms 2015, 8, 982–998.

9. Udawat, B.; Begani, J.; Mansinghka, M.; Bhatia, N.; Sharma, H.; Hadap, A. Gauss Jordan method for balancing chemical equation
for different materials. Mater. Today Proc. 2022, 51, 451–454.

10. Doty, K.L.; Melchiorri, C.; Bonivento, C. A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 1993, 12, 1–19.
11. Li, L.; Hu, J. An efficient second-order neural network model for computing the Moore–Penrose inverse of matrices. IET Signal

Process. 2022, 16, 1106–1117.
12. Wang, X.; Tang, B.; Gao, X.G.; Wu, W.H. Finite iterative algorithms for the generalized reflexive and anti-reflexive solutions of the

linear matrix equation AXB = C. Filomat 2017, 31, 2151–2162.
13. Ding, F.; Chen, T. Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 2005, 50,

1216–1221.
14. Ding, F.; Zhang, H. Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems. IET

Control Theory Appl. 2014, 8, 1588–1595.
15. Zhang, H. Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations. Comput.

Math. Appl. 2019, 77, 1233–1244.
16. Wang, J. Recurrent neural networks for computing pseudoinverses of rank-deficient matrices. SIAM J. Sci. Comput. 1997, 18,

1479–1493.
17. Fa-Long, L.; Zheng, B. Neural network approach to computing matrix inversion. Appl. Math. Comput. 1992, 47, 109–120.
18. Wang, J. A recurrent neural network for real-time matrix inversion. Appl. Math. Comput. 1993, 55, 89–100.
19. Wang, J. Recurrent neural networks for solving linear matrix equations. Comput. Math. Appl. 1993, 26, 23–34.
20. Wei, Y. Recurrent neural networks for computing weighted Moore-Penrose inverse. Appl. Math. Comput. 2000, 116, 279–287.
21. Xiao, L.; Zhang, Y.; Li, K.; Liao, B.; Tan, Z. FA novel recurrent neural network and its finite-time solution to time-varying complex

matrix inversion. Neurocomputing 2019, 331, 483–492.
22. Yi, C.; Chen Y.; Lu, Z. Improved gradient-based neural networks for online solution of Lyapunov matrix equation. Inf. Process.

Lett. 2011, 111, 780–786.
23. Yi, C.; Qiao, D. Improved neural solution for the Lyapunov matrix equation based on gradient search. Inf. Process. Lett. 2013, 113,

876–881.
24. Xiao, L.; Li, K.; Tan, Z.; Zhang, Z.; Liao, B.; Chen, K.; Jin, L.; Li, S. Nonlinear gradient neural network for solving system of linear

equations. Inf. Process. Lett. 2019, 142, 35–40.
25. Xiao, L. A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation.

Neurocomputing 2015, 167, 254–259.
26. Lv, X.; Xiao, L.; Tan, Z.; Yang, Z.; Yuan, J. Improved Gradient Neural Networks for solving Moore-Penrose Inverse of full-rank

matrix. Neural Process. Lett. 2019, 50, 1993–2005.

Axioms 2024, 13, 49 26 of 26

27. Wang, J. Electronic realisation of recurrent neural network for solving simultaneous linear equations. Electron. Lett. 1992, 28,
493–495.

28. Zhang, Y.; Chen, K.; Tan, H.Z. Performance analysis of gradient neural network exploited for online time-varying matrix
inversion. IEEE Trans. Autom. Control. 2009, 54, 1940–1945.

29. Wang, J.; Li, H. Solving simultaneous linear equations using recurrent neural networks. Inf. Sci. 1994, 76, 255–277.
30. Tan, Z.; Chen, H. Nonlinear function activated GNN versus ZNN for online solution of general linear matrix equations. J. Frankl.

Inst. 2023, 360, 7021–7036.
31. Tan, Z.; Hu, Y.; Chen, K. On the investigation of activation functions in gradient neural network for online solving linear matrix

equation. Neurocomputing 2020 413, 185–192.
32. Tan, Z. Fixed-time convergent gradient neural network for solving online sylvester equation. Mathematics 2022 10, 3090.

https://doi.org/10.3390/math10173090.
33. Wang D.; Xin-Wei Liu, X.-W. A gradient-type noise-tolerant finite-time neural network for convex optimization. Neurocomputing

2022, 49, 647–656.
34. Stanimirović, P.S.; Petković, M.D. Gradient neural dynamics for solving matrix equations and their applications. Neurocomputing

2018, 306, 200–212.
35. Stanimirović, P.S.; Katsikis, V.N.; Li, S. Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 2018, 316,

124–134.
36. Sowmya, G.; Thangavel, P.; Shankar, V. A novel hybrid Zhang neural network model for time-varying matrix inversion. Eng. Sci.

Technol. Int. J. 2022, 26, 101009. https://doi.org/10.1016/j.jestch.2021.05.013.
37. Wu, W.; Zheng, B. Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix. Neuro-

computing 2020, 418, 221–231.
38. Zhang, Y.; Wang, C. Gradient-Zhang neural network solving linear time-varying equations. In Proceedings of the 2022 IEEE

17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 16–19 December 2022; pp. 396–403.
https://doi.org/10.1109/ICIEA54703.2022.10006243.

39. Wang, C., Zhang, Y. Theoretical Analysis of Gradient-Zhang Neural Network for Time-Varying Equations and Improved Method
for Linear Equations. In Neural Information Processing; ICONIP 2023, Lecture Notes in Computer Science; Luo, B., Cheng, L., Wu,
Z.G., Li, H., Li, C., Eds.; Springer: Singapore, 2024; Volume 14447. https://doi.org/10.1007/978-981-99-8079-6_22.

40. Stanimirović, P.S.; Mourtas, S.D.; Katsikis, V.N.; Kazakovtsev, L.A. Krutikov, V.N. Recurrent neural network models based on
optimization methods. Mathematics 2022, 10, 4292. https://doi.org/10.3390/math10224292.

41. Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 1999.
42. Stanimirović, P.S.; Petković, M.D.; Gerontitis, D. Gradient neural network with nonlinear activation for computing inner inverses

and the Drazin inverse. Neural Process. Lett. 2017, 48, 109–133.
43. Smoktunowicz, A.; Smoktunowicz, A. Set-theoretic solutions of the Yang–Baxter equation and new classes of R-matrices. Linear

Algebra Its Appl. 2018, 546, 86–114.
44. Baksalary, O. M.; Trenkler, G. On matrices whose Moore–Penrose inverse is idempotent. Linear Multilinear Algebra 2022, 70,

2014–2026.
45. Wang, X.Z.; Ma, H.; Stanimirović, P.S. Nonlinearly activated recurrent neural network for computing the Drazin inverse. Neural

Process. Lett. 2017, 46, 195–217.
46. Wang, S.D.; Kuo, T.S.; Hsu, C.F. Trace bounds on the solution of the algebraic matrix Riccati and Lyapunov equation. IEEE Trans.

Autom. Control 1986, 31, 654–656. https://doi.org/10.1109/TAC.1986.1104370.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction and Background
	Motivation and Derivation of GGNN and GZNN Models
	Convergence Analysis of GGNN Dynamics
	Numerical Experiments on GNN and GGNN Dynamics
	Mixed GGNN-GZNN Model for Solving Matrix Equations
	Numerical Examples on Hybrid Models
	Conclusions
	References

